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Abstract

A solution algorithm for the linear/nonlinear Stokes-Darcy coupled problem is pro-
posed and investigated. The coupled system is formulated as a constrained optimal
control problem, where a flow balance is forced across the interface, inflow, and outflow
boundaries by minimizing a suitably defined functional. Optimization is achieved by
exploiting a Neumann type boundary condition imposed on each subproblem as a con-
trol. A numerical algorithm is presented for a least squares functional whose solution
yields a minimizer of the constrained optimization problem. Numerical experiments are
provided to validate accuracy and efficiency of the algorithm.
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1 Introduction

The Stokes-Darcy coupled system has received a good deal of attention in the area of sci-
entific computing due to its many important applications in modeling groundwater flow,
filtration processes, petroleum reservoirs, etc. [1, 2, 5, 6, 8, 10, 18, 21]. A variety of solution
algorithms have been proposed for solving the Stokes-Darcy system (see, for instance, [5]
and references therein). Fully coupled approaches are considered in [1, 2, 21, 10, 24], while
decoupling strategies are analyzed in [3, 5, 9, 13, 11, 25]. Of the fully coupled approaches,
some introduce new finite element spaces [1, 2] (along with modified solution algorithms),
and others either introduce Lagrange multiplier spaces [21, 10] or fully discontinuous ap-
proximations [24] to resolve the coupled system.

The decoupling strategies employ several domain decomposition techniques to allow use
of optimized algorithms for the Stokes and Darcy subproblems. The mortar space methods
introduce a subproblem based on mass conservation on the interface [24, 11, 3, 12], while
the Robin-Robin domain decomposition methods [5, 9] combine the conservation of mass

∗Department of Mathematical Sciences, Clemson University, Clemson, SC 29634-0975
(vjervin@clemson.edu).

†Department of Mathematical Sciences, Clemson University, Clemson, SC 29634-0975
(lea@clemson.edu).

‡Department of Mathematical Sciences, Clemson University, Clemson, SC 29634-0975
(hklee@mail.clemson.edu), Partially supported by the NSF under grant no. DMS-1016182.

1



and balance of normal forces on the interface into Robin conditions associated with each
subproblem. A two grid solution approach was proposed and analyzed in [4], with an initial
coupled approximation computed on a coarse mesh and then a correction, computable in
parallel, determined on a fine mesh for the Stokes and Darcy subproblems.

The solution algorithm considered in this paper is based on an optimization approach.
The optimization-based domain decomposition was initially studied in [17] for the Poisson
problem and later extended to the Navier-Stokes and the Boussinesq equations [16, 22].
There, the minimized functional measures the jump in the dependent variables across the
common boundary between subdomains. The dependent variables were solutions of sub-
problems with a suitably chosen boundary condition on the interface as a control. The
jump of subproblem solutions along the interfaces between subdomains was measured in
the L2 norm. This is mathematically reasonable as the traces of subproblem solutions on
the interface were L2 integrable. However, this is not the case for the Stokes-Darcy system.
Thus, the functional to be minimized should be carefully designed so that its definition
is consistent with the chosen function spaces for the Stokes and Darcy problems, respec-
tively. More detailed discussion will be given in Section 3, where the optimization problem
is introduced.

For the modeling equations, the boundary conditions we consider on the inflow and
outflow boundaries are specified flow rates. Such boundary conditions are called defective
boundary conditions because they do not determine a unique solution to the modeling equa-
tions. Similar to the domain decomposition method described above, the defective boundary
condition can be treated by flow matching, i.e., by minimizing the difference between given
rates and computed values [23]. Again, the control for optimization is Neumann conditions
on inflow and outflow boundaries, respectively.

To formulate an optimal control problem for the Stokes-Darcy system with defective
boundary conditions we introduce a dual-objective functional including two main objective
terms; one for the continuity of the normal components of the Stokes and Darcy velocities
and the other for flow matching. Constant weights are introduced to balance the objectives,
including a penalty term.

This paper is organized as follows. In the next section we describe the model problem,
introduce function spaces and state an existence result. In Section 3 the constrained mini-
mization problem is described and the existence of an optimal solution is shown. In Section
4, we reformulate the optimization problem as a least squares problem and present a com-
putational algorithm. We then extend the method to the nonlinear Stokes-Darcy system
in Section 5. Numerical experiments are given in Section 6 and some concluding remarks
concerning the method and its efficiency are provided in Section 7.

2 Model equations

Let Ωf , Ωp be bounded fluid and porous media domains in RI d, respectively, and I denote
the interface between two domains. Let Γin, Γout be inflow and outflow boundaries such
that Γin ⊂ ∂Ωf \ I , Γout ⊂ ∂Ωp \ I and define Γf := ∂Ωf \ (I ∪Γin), Γp := ∂Ωp \ (I ∪Γout),
as illustrated in Figure 2.1.
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Figure 2.1: Illustration of flow domain.

Consider the Stokes and Darcy problems:

−2νf∇ ·D(uf ) +∇pf = ff in Ωf , (2.1)

∇ · uf = 0 in Ωf , (2.2)

uf = 0 on Γf , (2.3)

−
∫

Γin

uf · nf dΓf = Q1 , (2.4)

µeffK
−1up + ∇pp = 0 in Ωp , (2.5)

∇ · up = fp in Ωp , (2.6)

up · np = 0 on Γp , (2.7)∫

Γout

up · np dΓp = Q2 , (2.8)

where uf denotes the fluid velocity, pf the fluid pressure, up the Darcy velocity and pp the
Darcy pressure. In (2.1), D(v) := (∇v + ∇vT )/2 is the rate of the strain tensor, νf the
fluid viscosity and ff the body force. The term fp in (2.6) models any sink/source terms in
Ωp. In (2.5) µeff represents an effective fluid viscosity, and K the permeability (symmetric,
positive definite) tensor of the porous media. For simplicity, we take νpI = µeffK

−1. In
(2.4), (2.8) nf , np denote outward unit normal vectors associated with Ωf , Ωp, respectively.
Note that on the inflow and outflows boundaries only the fluid flow rates are specified.
Such boundary conditions are known as defective boundary conditions [19]. By the mass
conservation law the specified flow rates satisfy Q1 +

∫
Ωp

fp dΩp = Q2. On the interface I,

the following conditions are imposed

uf · nf + up · np = 0 , (2.9)

nf · (pf − 2νfD(uf )) · nf = pp , (2.10)

nf · (pf − 2νfD(uf )) · tj = αuf · tj , j = 1, . . . , d− 1, (2.11)
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where tj, j = 1, . . . , d − 1, denote the (orthogonal) unit tangent unit vector on I. The
first two interface conditions enforce continuity of the normal component of velocities and
continuity of the normal component of the normal stress tensor on the interface, and the
third is the Beavers-Joseph-Saffmann condition [20].

In this paper we develop a numerical algorithm for the approximation of the coupled
system based on a minimization technique. The problem is formulated as a least squares
problem where the conditions (2.4), (2.8), (2.9) are satisfied by minimization, and the
condition (2.10) is naturally imposed by introducing a common Neumann type condition
for the Stokes and Darcy subproblems.

For the mathematical formulation we use the Sobolev spaces Wm,p(Θ), with norms
‖ · ‖m,p,Θ. In the case p = 2, the Sobolev space Wm,2(Θ) is denoted by Hm(Θ) with
the norm ‖ · ‖m,Θ. The corresponding space of vector valued or tensor-valued functions is
denoted by a boldface font. By (·, ·)Θ we denote the L2 inner product over Θ.

If Θ = Ωf or Ωp, and the context is clear, Θ is omitted, i.e., (·, ·) = (·, ·)Ωf
or (·, ·)Ωp

for functions defined in Ωf and Ωp. For γ ⊂ ∂Ωf ∪ ∂Ωp, we use 〈·, ·〉γ to denote the duality
pairing between H−1/2(γ) and H1/2(γ).

The function spaces for the velocities uf , up and the pressures pf , pp are defined by:

Xf := {v ∈ H1(Ωf ) : v = 0 on Γf} ,

Qf := L2(Ωf ) ,

Xp := Hdiv(Ωp) = {v ∈ L2(Ωp) : ∇ · v ∈ L2(Ωp), v · np = 0 on Γp} ,

Qp := L2(Ωp) ,

where the Darcy velocity space Xp is equipped with the norm

‖vp‖Hdiv(Ωp) :=
(
‖vp‖20,Ωp

+ ‖∇ · vp‖20,Ωp

)1/2
.

Introduce

S := H1/2(I)×H−1/2(Γin)×H1/2(Γout) , (2.12)

g := [g1,g2, g3]
T ∈ S , (2.13)

‖g‖S :=
(
‖g1‖2H1/2(I)

+ ‖g2‖2H−1/2(Γin)
+ ‖g3‖2H1/2(Γout)

)1/2
(2.14)

and consider the following variational formulation for the Stokes and Darcy problems. Given
g ∈ S determine (uf , pf ) and (up, pp) satisfying

2νf (D(uf ),D(vf ))− (pf ,∇ · vf ) + α(uf · t,vf · t)I
= (f ,vf ) + 〈g1,vf · nf 〉I + 〈g2,vf 〉Γin ∀vf ∈ Xf , (2.15)

(qf ,∇ · uf ) = 0 ∀qf ∈ Qf , (2.16)

νp (up,vp)− (pp,∇ · vp) = 〈g1,vp · np〉I + 〈g3,vp · np〉Γout ∀vp ∈ Xp , (2.17)

(qp,∇ · up) = (fp, qp) ∀qp ∈ Qp . (2.18)
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For u ∈ Hdiv(Ωp), u · np ∈ H−1/2(∂Ωp). For p ∈ H1/2(I), duality pairing does not
define 〈u · np, p〉I , as u · np acts on functions in H1/2(∂Ωp). Following the work of Galvis

and Sarkis ([12], Lemma 2.1), given Γs ⊂ ∂Ωp, r ∈ H1/2(Γs), let E
1/2
Γs

r ∈ H1/2(∂Ωp) denote

the extension of r to ∂Ωp. Then, for f ∈ H−1/2(∂Ωp), we denote

〈f, r〉Γs := 〈f,E1/2
Γs

r〉∂Ωp .

Also, as given in [12], for f ∈ H−1/2(∂Ωp), f |Γs = 0 is defined as

〈f,E1/2
00,Γs

w〉∂Ωp = 0 , for all w ∈ H
1/2
00 (Γs) ,

where E
1/2
00,Γs

w denotes the extension by 0 of w to ∂Ωp\Γs.
Using integration by parts and (2.10), it can be easily seen that g plays a role as

g1 = (nf · 2νfD(uf ) · nf − pf )|I , (2.19)

g2 = (nf · 2νfD(uf )− pfnf )|Γin , (2.20)

g3 = −pp|Γout , (2.21)

and the boundary condition (2.10) is weakly imposed through g1 on the right hand side of
(2.15) and (2.17).

Remark 2.1 The coupled Stokes-Darcy problem is analyzed in [5, 10, 21], where a Lagrange
multiplier λ is introduced to impose the interface condition (2.10).

For the existence, uniqueness, and boundedness of the solutions to (2.15)-(2.16) and
(2.17)-(2.18), from [11] we have the following.

Lemma 2.2 Given ff ∈ X−1
f , fp ∈ L2(Ωp), g ∈ S, the Stokes and Darcy systems (2.15)-

(2.16) and (2.17)-(2.18) have a unique solution (uf , pf ), (up, pp), respectively, satisfying

‖uf‖1,Ωf
+ ‖pf‖0,Ωf

≤ C
(
‖f‖−1,Ωf

+ ‖g1‖H1/2(I) + ‖g2‖H−1/2(Γin)

)
, (2.22)

‖up‖Hdiv(Ωp) + ‖pp‖0,Ωp ≤ C
(
‖fp‖0,Ωp + ‖g1‖H1/2(I) + ‖g3‖H1/2(Γout)

)
. (2.23)

�

3 Optimal control problem

To formulate an optimization problem let the interface boundary I be partitioned into non-
overlapped segments Ii for i = 1, 2, . . . , n such that I = ∪n

i=1Ii. In order to satisfy the
boundary conditions (2.4), (2.8), (2.9), we wish to find a function g ∈ S such that (uf , pf ),
(up, pp), solutions of (2.15)-(2.16) and (2.17)-(2.18), respectively, minimize

J (g) :=
1

2


ω1

n∑

i=1

(
1√
|Ii|

∫

Ii

uf · nf + up · np dIi

)2

+ δ‖g‖2S dI

+ω2

(
1√
|Γin|

∫

Γin

uf · nf dΓin +
Q1√
|Γin|

)2

+ ω2

(
1√
|Γout|

〈up · np, 1〉Γout −
Q2√
|Γout|

)2

 ,

(3.1)
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where |γ| := meas(γ) for γ ⊂ ∂Ωf ∪ ∂Ωp. In (3.1) δ > 0 is a penalty parameter and
ω1, ω2 > 0 are weights such that ω1 + ω2 = 1.

Minimizing the first term of (3.1) seeks to weakly impose the interface condition (2.9)
by forcing flow balance across the interface segments Ii. Physically this is appropriate as uf

and up denote different quantities, up representing an averaged fluid velocity. Note that,
assuming uf · nf + up · np is continuous,

lim
n→∞

n∑

i=1

(
1√
|Ii|

∫

Ii

uf · nf + up · np dIi

)2

= lim
n→∞

n∑

i=1

|Ii| ((uf · nf + up · np)|ξi)2 , for some ξi ∈ Ii ,

=

∫

I
(uf · nf + up · np)

2 dI . (3.2)

So, as n → ∞, for (uf · nf + up · np) continuous on I,

forcing
∑n

i=1

(
1√
|Ii|

∫
Ii
uf · nf + up · np dIi

)2

= 0 imposes (2.9) pointwise on I. However,

for the general setting up ∈ Hdiv(Ωp), up · np ∈ H−1/2(∂Ωp), the integral in (3.2) is not

defined, and we interpret
∫
Ii
up · np dIi = 〈up · np, E

1/2
Ii

1〉∂Ωp .

In (3.1) the factors 1/
√

|Γin| and 1/
√

|Γout| are used as normalizing constants to ac-
count for possible different lengths of the inflow and outflow boundaries.

Define the admissibility set Uad as

Uad := {(uf , pf ,up, pp,g) ∈ Xf ×Qf ×Xp ×Qp × S : J (uf , pf ,up, pp,g) < ∞} . (3.3)

We formulate the optimal control in the following terms:

Find (uf , pf ,up, pp,g) ∈ Uad such that the functional (3.1) is minimized

subject to (2.15) − (2.18) . (3.4)

As Q2 = Q1 +
∫
Ωp

fp dΩp, due to the mass conservation law, g3 in g may be set to an

arbitrary function, say 0, and an optimal g = (g1,g2, 0) may be sought to minimize the
functional (3.1). Using both g2 and g3 as controls for the defective boundary conditions on
Γin and Γout may result in an over controlled system. This case will be discussed in Section
6. However, for generality, we will assume a control function of the form g = (g1,g2, g3).

To establish the existence of an optimal solution of (3.4) we firstly show that J (g) is a
continuous function of g.

Lemma 3.1 The functional J (·) : S → RI is continuous.

Proof: From the bounds for uf and up given in (2.22) and (2.23), respectively, we have
that uf and up are continuous functions of g. Thus it suffices to show that for Γ1 ⊂ ∂Ωf ,
Γ2 ⊂ Ωp,

∫
Γ1

uf ·nf dΓ1 and 〈up ·np, 1〉Γ2
are continuous functions of uf and up, respectively.
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For the integral over Γ1, using the Trace Theorem,
∫

Γ1

uf · nf dΓ1 ≤ |Γ1|1/2 ‖uf · nf‖L2(Γ1) ≤ C |Γ1|1/2 ‖uf‖1,Ωf
. (3.5)

For the Γ2 term, using the definition given above,

〈up · np, 1〉Γ2
= 〈up · np, E

1/2
Γ2

1〉∂Ωp ≤ ‖up · np‖H−1/2(∂Ωp)
‖E1/2

Γ2
1‖H1/2(∂Ωp)

≤ C ‖up‖Hdiv(Ωp) |Γ2|1/2 . (3.6)

�

Theorem 3.2 There exists a solution (uf , pf ,up, pp,g) ∈ Xf × Qf ×Xp ×Qp × S of the
optimal control problem (3.4).

Proof: In this proof we use the notation (uf (g), pf (g)), (up(g), pp(g)) to denote the
solutions of (2.15)-(2.16), and (2.17)-(2.18), respectively, for the given data g. We first
note that the admissible set Uad is clearly not empty, e.g., (uf (0), pf (0),up(0), pp(0),0) ∈
Uad. Let gm be a minimizing sequence for the optimal control problem and set um

f =
uf (g

m), pmf = pf (g
m),um

p = up(g
m), pmp = pp(g

m). Then (um
f , pmf ,um

p , pmp ,gm) ∈ Uad for
all m, and satisfies

lim
m→∞

J (um
f , pmf ,um

p , pmp ,gm) = inf
(uf ,pf ,up,pp,g)∈Uad

J (uf , pf ,up, pp,g).

By the definition of Uad, we have

2νf (D(um
f ),D(vf ))− (pmf ,∇ · vf ) + α(um

f · t,vf · t)I
= (f ,vf ) + 〈gm1 ,vf · nf 〉I + 〈gm

2 ,vf 〉Γin ∀vf ∈ Xf , (3.7)

(qf ,∇ · um
f ) = 0 ∀qf ∈ Qf (Ω) , (3.8)

νp (u
m
p ,vp)− (pmp ,∇ · vp) = 〈gm1 ,vp · np〉I + 〈gm3 ,vp · np〉Γout ∀vp ∈ Xp , (3.9)

(qp,∇ · um
p ) = (fp, qp) ∀qp ∈ Qp(Ω) . (3.10)

The sequence gm is uniformly bounded in S from (3.3), and the corresponding sequence
(um

f (gm), pmf (gm),um
p (gm), pmp (gm)) is uniformly bounded in Xf × Qf × Xp × Qp from

(2.22)-(2.23). We can then extract subsequences, still denoted by (um
f , pmf ,um

p , pmp ,gm),
such that

gm ⇀ g̃ in S,
pmf ⇀ p̃f in Qf ,

um
f ⇀ ũf in Xf ,

um
f → ũf in L2(Ωf ),

pmp ⇀ p̃p in Qp,

um
p ⇀ ũp in Xp,

um
p ⇀ ũp in L2(Ωp)





(3.11)
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for some (ũf , p̃f , ũp, p̃p, g̃) ∈ Xf × Qf × Xp × Qp × S. Using (3.11), we can pass to the
limit in (2.15)-(2.18) to determine that (ũf , p̃f , ũp, p̃p, g̃) satisfies (2.15)-(2.18). Now, by
the continuity of J (·, ·, ·, ·, ·), we conclude that (ũf , p̃f , ũp, p̃p, g̃) is an optimal solution i.e.,

inf
(uf ,pf ,up,pp,g)∈Uad

J (uf , pf ,up, pp,g) = lim
m→∞

J (um
f , pmf ,um

p , pmp ,gm) = J (ũf , p̃f , ũp, p̃p, g̃).

(3.12)
Thus, an optimal solution to (3.4) exists. �

4 Least squares approach

In order to develop a computational algorithm we formulate the optimization problem (3.4)
as a least squares problem.

Define the linear operator N : S → Rn ×R2 × S by

N(g) =




√
ω1

1√
|I1|

∫
I1
uf · nf + up · np dI1

...√
ω1

1√
|In|

∫
In

uf · nf + up · np dIn
√
ω2

1√
|Γin|

(∫
Γin

uf · nf dΓin +Q1

)

√
ω2

1√
|Γout|

(∫
Γout

up · np dΓout −Q2

)

√
δg




≃




√
ω1 ρ(uf ,up, s)

√
ω2

1√
|Γin|

(∫
Γin

uf · nf dΓin +Q1

)

√
ω2

1√
|Γout|

(∫
Γout

up · np dΓout −Q2

)

√
δg




,

(4.1)
where, for qi =

∫
Ii
uf · nf + up · np dIi, 1Ii(s) the characteristic function on Ii,

ρ(s) =

n∑

i=1

1√
|Ii|

qi 1Ii(s) . (4.2)

ρ(s) as defined in (4.2) is contained in H1/2−ǫ(I). In the approximation scheme below ρ(s)
appears as an input on the right hand side of a Darcy equation as part of a well defined linear
functional. For the associated continuous variational formulation, formally we require such
functions to lie in H1/2(∂Ωp). This is readily obtained by smoothing ρ(s) and imposing a
value of 0 for the smoothed function at the endpoints of I. For example, in place of ρ(s),
one could consider

ρsm(s) ∈ QI := {g ∈ C1(I) : g ∈ P2(Ii), g = 0 at the endpoints of I}

satisfying

∫

Ii

ρsm(s)dIi = qi , i = 1, 2, . . . , n . (4.3)

Note that ρsm defines a bounded linear mapping from RI n onto QI ⊂ L2(I), with a
bounded inverse. Hence QI−1 = QI.

For generality, we consider

ρ(s) = ρ(uf ,up; s) = ρ(q1, q2, . . . , qn; s) : RI n −→ RI ⊂ L2(I) , (4.4)
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to denote a bounded linear onto mapping, with a bounded inverse.
The least squares problem we consider is

min
g∈S

J (g) =
1

2
min
g∈S

‖N(g)‖2RI×R2×S , (4.5)

which is equivalent to (3.1).
We solve this problem by a residual updating technique. First, an initial guess for a

minimizer g̃ is chosen and N(g0) is computed. Since we expect N(g̃) = [0 0 0
√
δg̃]T at the

minimizer, take N(g0) − [0 0 0
√
δg0]T as a residual and find a correction h0 for g0 such

that

1

2
‖
(
N(g0)− [0 0 0

√
δg0]T

)
+ N ′(g0)(h0)‖2RI×R2×S =

min
h∈S

1

2
‖
(
N(g0)− [0 0 0

√
δg0]T

)
+N ′(g0)(h)‖2RI×R2×S . (4.6)

In (4.6) N ′(g0)(·) : S → RI ×R2 × S is defined by

N ′(g0)(h) =




√
ω1 ρ(wf ,wp; s)

√
ω2

1√
|Γin|

∫
Γin

wf · nf dΓin
√
ω2

1√
|Γout|

∫
Γout

wp · np dΓout
√
δh




, (4.7)

where (wf , ξf ) and (wp, ξp) are the solutions of

2νf (D(wf ),D(vf ))− (ξf ,∇ · vf ) + α(wf · t,vf · t)I
= 〈h1,vf · nf 〉I + 〈h2,vf 〉Γin ∀vf ∈ Xf , (4.8)

(qf ,∇ ·wf ) = 0 ∀qf ∈ Qf , (4.9)

and

νp (wp,vp)− (ξp,∇ · vp) = 〈h1,vp · np〉I + 〈h3,vp · np〉Γout ∀vp ∈ Xp , (4.10)

(qp,∇ ·wp) = 0 ∀qp ∈ Qp . (4.11)

Recall the adjoint operator of N ′(g0)(·), N ′(g0)∗(·), satisfies N ′(g0)∗(·) : RI×R2×S∗ →
S∗.

The following theorem allows us to use the normal equation to solve the least squares
problem (4.6).

Theorem 4.1 The operator N ′(g0)(·) has a closed range. Hence, the solution of the linear
least squares problem (4.6) can be obtained by solving the normal equation

N ′(g0)∗N ′(g0)(h0) = −N ′(g0)∗
(
N(g0)− [0 0 0

√
δg0]T

)
. (4.12)
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Proof: Let {[ρ(ak1 , ak2 , . . . , akn; s),bk, ck]T } ⊂ Range(N ′(g0)) converge to [ρ(â1, â2, . . . , ân; s), b̂, ĉ]
T .

Then, there exist wk
f ∈ Xf , w

k
p ∈ Xp and hk ∈ S such that

aki =
√
ω1

1√
|Ii|

∫

Ii

wk
f · nf +wk

p · np dIi , i = 1, 2, . . . , n ,

bk =
√
ω2

[
1√
|Γin|

∫

Γin

wk
f · nf dΓin ,

1√
|Γout|

∫

Γout

wk
p · nf dΓout

]
,

ck =
√
δhk , (4.13)

where (wk
f , ξ

k
f ) and (wk

p , ξ
k
p ) are the solutions of (4.8)-(4.11) with h replaced by hk. Clearly,

hk = ck√
δ
→ ĉ√

δ
and, by passing to the limit, we have that âi =

√
ω1

1√
|Ii|

∫
Ii
ŵf · nf + ŵp ·

np dIi for i = 1, . . . , n, where (ŵf , ξ̂f ) and (ŵp, ξ̂p) satisfy (4.8)-(4.11) with h replaced by
ĉ√
δ
.

Hence, N ′(g0)(ĉ/
√
δ) = [ρ(â1, â2, . . . , ân; s), b̂, ĉ]

T , and N ′(g0)(·) has a closed range.
That h0 satisfies (4.12) follows from [15, Thm. 2.1.1]. �

Next we identify N ′(g0)∗(·) and verify that it is the adjoint operator of N ′(g0)(·).

Lemma 4.2 For (γ,σ,y) ∈ RI ×R2 × S∗, we have

N ′(g0)∗




γ
σ

y


 =




(zf · nf + zp · np)|I
zf |Γin

(zp · np)|Γout


+

√
δ y , (4.14)

where (zf , ϕf ) and (zp, ϕp) are the solutions of

2νf (D(zf ),D(vf ))− (ϕf ,∇ · vf ) + α(zf · t,vf · t)I

=
√
ω1

∫

I
γ(s) ρ(vf ,0; s) dI +

√
ω2 σ1

1√
|Γin|

∫

Γin

vf · nf dΓin ∀vf ∈ Xf , (4.15)

(qf ,∇ · zf ) = 0 ∀qf ∈ Qf , (4.16)

and

νp (zp,vp)− (ϕp,∇ · vp)

=
√
ω1

∫

I
γ(s) ρ(0,vp; s) dΓ +

√
ω2 σ2

1√
|Γout|

∫

Γout

vp · np dΓout ∀vp ∈ Xp , (4.17)

(qp,∇ · zp) = 0 ∀qp ∈ Qp . (4.18)

Proof: Letting (vf , qf ) = (zf , ϕf ), (vp, qp) = (zp, ϕp) in (4.8)-(4.11) and (vf , qf ) =
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(wf , ξf ), (vp, qp) = (wp, ξp) in (4.15)-(4.18), we obtain

〈h1, zf · nf + zp · np〉I + 〈h2, zf 〉Γin + 〈h3, zp · np〉Γout

=
√
ω1

∫

I
γ(s) ρ(vf ,vp; s) dI

+
√
ω2

[
σ1

1√
|Γin|

∫

Γin

wf · nf dΓin + σ2
1√
|Γout|

∫

Γout

wp · np dΓout

]
.

(4.19)

Hence, by (4.7), (4.14) and (4.19), for h = (h1,h2, h3) ∈ S


N ′(g0)h,




γ
σ

y




 =

√
ω1

∫

I
γ(s) ρ(vf ,vp; s) dI +

√
ω2

(
σ1

1√
|Γin|

∫

Γin

wf · nf dΓin

+ σ2
1√
|Γout|

∫

Γout

wp · np dΓout

)
+

√
δ〈h,y〉S∗ ,S

= 〈h1, zf · nf + zp · np〉I + 〈h2, zf 〉Γin + 〈h3, zp · np〉Γout +
√
δ〈h,y〉S∗ ,S

=


h, N ′(g0)∗




γ
σ

y




 . (4.20)

�

We adopt the following basic conjugate gradient algorithm for the linear least squares
problem (4.5), which can be found in many references. For example, see [14] or [15].

Algorithm 4.3 (Conjugate Gradient Method for the Least Squares Problem)

Given A, b, and x(0),

1. Set r(0) = b−Ax(0),

p(0) = A∗r(0).

2. For n = 0, 1, 2, · · · ,
a. if ‖A∗r(n)‖ < ǫ stop,

b. σ(n) = ‖A∗r(n)‖2/‖Ap(n)‖2,
c. x(n+1) = x(n) + σ(n)p(n),

d. r(n+1) = r(n) − σ(n)Ap(n),

e. τ (n) = ‖A∗r(n+1)‖2/‖A∗r(n)‖2,
f. p(n+1) = A∗r(n+1) + τ (n)p(n).

Thus, the linear least squares problem (4.5) can be solved using the following residual
updating algorithm.

Algorithm 4.4

11



1. Choose g0.

2. With x(0) = h̃, an initial guess for h, apply Algorithm 4.3, with A = N ′(g0),

b = −
(
N(g0)− [0 0 0

√
δg0]T

)
, to determine the solution x = h;

3. Solution g̃ = g0 + h,

5 Extension to a nonlinear problem

We consider the nonlinear Stokes-Darcy problem

−νf (|D(uf )|)∇ ·D(uf ) +∇pf = ff in Ωf , (5.1)

∇ · uf = 0 in Ωf , (5.2)

uf = 0 on Γf , (5.3)

−
∫

Γin

uf · nf dΓf = Q1 , (5.4)

νp(|up|)up +∇pp = 0 in Ωp , (5.5)

∇ · up = fp in Ωp , (5.6)

up · np = 0 on Γp , (5.7)∫

Γout

up · np dΓp = Q2 , (5.8)

where νf (|D(uf )|), νp(|up|) are given by the Cross model

νf (|D(uf )|) = νf∞ +
νf0 − νf∞

1 +Kf |D(uf )|2−rf
, (5.9)

νp(|up|) = νp∞ +
νp0 − νp∞

1 +Kp|up|2−rp
, (5.10)

for rf , rp > 1, respectively. Note that with the choice of rf = rp = 2, the system is
equivalent to the linear problem (2.1)-(2.8).

The nonlinear operator N(g) is defined as in (4.1), where uf , up satisfy

(νf (|D(uf )|)D(uf ),D(vf ))− (pf ,∇ · vf ) + α(uf · t,vf · t)I
= (f ,vf ) + 〈g1,vf · nf 〉I + 〈g2,vf 〉Γin ∀vf ∈ Xf , (5.11)

(qf ,∇ · uf ) = 0 ∀qf ∈ Qf , (5.12)

(νp(|up|)up,vp)− (pp,∇ · vp) = 〈g1,vp · np〉I + 〈g3,vp · np〉Γout ∀vp ∈ Xp , (5.13)

(qp,∇ · up) = (fp, qp) ∀qp ∈ Qp . (5.14)
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The linear operator N ′(g0)(h) is then defined as in (4.7) where (wf , ξf ) and (wp, ξp) are
the solutions of

(νf (|D(uf )|)D(wf ),D(vf ))

+

(
(rf − 2)(νf0 − νf∞)Kf

(1 +Kf |D(uf )|2−rf )2 |D(uf )|rf
D(uf ) (D(uf ) : D(wf )), D(vf )

)
− (ξf ,∇ · vf )

+ α (wf · t,vf · t)I = 〈h1,vf · nf 〉I + 〈h2,vf 〉Γin ∀vf ∈ Xf , (5.15)

(qf ,∇ ·wf ) = 0 ∀qf ∈ Qf , (5.16)

and

(νp(|up|)wp,vp) +

(
(rp − 2)(νp0 − νp∞)Kp

(1 +Kp|up|2−rp)2 |up|rp
up, (up : wp)vp

)
− (ξp,∇ · vp)

= 〈h1,vp · np〉I + 〈h3,vp · np〉Γout ∀vp ∈ Xp , (5.17)

(qp,∇ ·wp) = 0 ∀qp ∈ Qp . (5.18)

In (5.15) and (5.17) uf , up are solutions of (5.11)-(5.14) with g = [g1,g2, g3]
T replaced

by g0 = [g01 ,g
0
2, g

0
3 ]

T . Similarly, the adjoint operator N ′(g0)∗ is defined by (4.14), where
(zf , ϕf ) and (zp, ϕp) are the solutions of

(νf (|D(uf )|)D(zf ),D(vf ))

+

(
(rf − 2)(νf0 − νf∞)Kf

(1 +Kf |D(uf )|2−rf )2 |D(uf )|rf
D(uf ) (D(uf ) : D(zf )), D(vf )

)
− (ϕf ,∇ · vf )

+ α (wf · t,vf · t)I

=
√
ω1

∫

I
γ(s) ρ(vf ,0; s) dI +

√
ω2 σ1

1√
|Γin|

∫

Γin

vf · nf dΓin ∀vf ∈ Xf , (5.19)

(qf ,∇ · zf ) = 0 ∀qf ∈ Qf , (5.20)

and

(νp(|up|)zp,vp) +

(
(rp − 2)(νp0 − νp∞)Kp

(1 +Kp|up|2−rp)2 |up|rp
up, (up : zp)vp

)
− (ϕp,∇ · vp)

=
√
ω1

∫

I
γ(s) ρ(0,vp; s) dI +

√
ω2 σ2

1√
|Γout|

∫

Γout

vp · np dΓout ∀vp ∈ Xp , (5.21)

(qp,∇ · zp) = 0 ∀qp ∈ Qp . (5.22)

The Cross model, representing the viscosity functions (5.9), (5.10) is known as a strong
monotone operator [7], which yields an existence theorem for the nonlinear constraint (5.11)-
(5.14). The existence of an optimal solution can be also obtained based on the strong
monotonicity as shown in [23] for the Power law model.

As the model equations are nonlinear, the nonlinear least squares problem (4.5) can be
solved using the following algorithm, which is known as the Gauss-Newton method.
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Algorithm 5.1

1. Choose g0.

2. For n = 0, 1, 2, . . . ,

a. with x(0) = h̃, an initial guess for hn, apply Algorithm 4.3, with A = N ′(gn),

b = −
(
N(gn)− [0 0 0

√
δgn]T

)
, to determine the solution x = hn;

b. set gn+1 = gn + hn,

c. continue.

6 Numerical experiments

6.1 Experiment 1

We tested Algorithms 4.4, 5.1 for the coupled Stokes-Darcy system with a known exact
solution. Numerical experiments were performed using a non-physical example to inves-
tigate convergence of solutions with decreasing grid sizes. The subdomains chosen were
Ωf = (0, 1) × (1, 2) and Ωp = (0, 1) × (0, 1), with I = {(x, y) : 0 < x < 1, y = 1}.

Using the parameters νf∞ = νp∞ = 0.5, νf0 = νp0 = 1, Kf = Kp = 1, the right hand
side functions and boundary conditions on Γf ∪ Γin, Γp ∪ Γout were appropriately given so
that the exact solution was

uf = [(y − 1)2x3, −e1 cos(y)]T , pf = cos(x) ey + y2 − 2y + 1 , (6.1)

up = [−x (sin(y) e1+2(y−1)), −cos(y) e1+(y−1)2]T , pp = −sin(y) e1+cos(x)ey+y2−2y+1 .
(6.2)

The chosen exact solution satisfies the Beavers-Joseph-Saffmann condition (2.11) with α =
1. In order that the approximations converged to (6.1)-(6.2), uf , up · n were specified
on Γin and Γout, respectively. The Taylor-Hood P2 − P1 velocity–pressure approximating
elements were used for both the Stokes and the Darcy problems on structured meshes. For
approximations of the Darcy problem the stabilization term β (∇ · up,∇ · vp) was added
to (2.17) and (5.13), which ensures ∇ · uh

p ≈ 0. Consequently, the analogous terms were
added to (4.10), (4.17), (5.17) and (5.21). The parameter value β = 100 was used in all
experiments.

First, we solved the Stokes and the Darcy problem independently using the exact bound-
ary conditions on the interface, to compare with results by optimization. The errors using
the exact boundary conditions are presented in Table 6.1 and Table 6.3 for the linear
(rf = rp = 2) and the nonlinear (rf = fp = 1.5) problems, respectively.

In the objective functional (4.5) we set δ = 10−10, ω1 = 1, ω2 = 0, n = 2(k − 1), with
k is the number of grid points on I, and used ρ(s) given by (4.2). As an initial control the
constant function g0 = −0.1 was chosen and the constant function x0 = 0.01 was used to
start the CG algorithm. Results for the linear and the nonlinear problems by Algorithms
4.4, 5.1 are presented in Table 6.2 and Table 6.4, respectively. For the nonlinear case,
a chosen stopping criterion (J < 10−7) was met after only two iterations of the Gauss-
Newton. In this test we observed that solutions by the optimization approach were as
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accurate as solutions obtained by using the exact boundary conditions, yielding the same
rates of convergence.

Remark 6.1 The algorithms were also tested with an increased number of subsections on I.
Namely, for n = 4(k− 1) no difference in accuracy of the solutions was observed. However,
with fewer subsections, n = k − 1, the solutions lost some accuracy. We believe that the
number of subsections required for optimal accuracy of a solution depends upon by several
factors, such as the regularity of the true solution and the polynomial degree of the finite
element spaces used.

uf pf
grid L2 error L2 rate H1 error H1 rate L2 error L2 rate

3× 3 1.24 · 10−2 1.59 · 10−1 2.34 · 10−1

5× 5 1.30 · 10−3 3.26 3.64 · 10−2 2.13 7.58 · 10−2 1.62

9× 9 1.45 · 10−4 3.17 8.74 · 10−3 2.06 2.20 · 10−2 1.78

17× 17 1.72 · 10−5 3.07 2.15 · 10−3 2.02 5.93 · 10−3 1.89

33× 33 2.11 · 10−6 3.03 5.35 · 10−4 2.01 1.54 · 10−3 1.95

up pp
L2 error L2 rate Hdiv error Hdiv rate L2 error L2 rate

3× 3 2.23 · 10−1 5.91 · 10−4 6.60 · 10−2

5× 5 6.07 · 10−2 1.88 1.65 · 10−4 1.84 1.59 · 10−2 2.05

9× 9 1.65 · 10−2 1.88 4.24 · 10−5 1.96 3.86 · 10−3 2.04

17× 17 4.44 · 10−3 1.90 1.07 · 10−5 1.98 9.56 · 10−4 2.01

33× 33 1.18 · 10−3 1.91 2.70 · 10−6 1.99 2.38 · 10−5 2.00

Table 6.1: Errors using the exact boundary condition on I for rf = rp = 2.

6.2 Experiment 2

The defective boundary conditions (2.4), (2.8) were considered for the same flow domains
as in Experiment 1. In (2.1)-(2.8) the right hand side functions ff , fp were chosen to be 0

and 0, respectively. The inflow and outflow boundaries were specified as Γin = {0.75 ≤ x ≤
1, y = 2}, Γout = {0 ≤ x ≤ 0.25, y = 0}, where the flow rate conditions with Q1 = Q2 = 3
were imposed. All parameter values were chosen as in Experiment 1 and the same finite
elements on the 17×17 structured mesh for each flow domain were used in all computations.
The weights ω1, ω2 = 1 were chosen.

First, the control g = (g1,g2, 0) was used (i.e. g3 = 0) for the linear case (rf = rp = 2).
(See the comment following (3.4)). Figure 6.1 shows the contour plot for the magnitude of
the velocity and streamlines of the controlled flow in the entire flow domain. The vertical
component of the computed velocity on the inflow and outflow boundaries is presented in
Figure 6.2. For the nonlinear case with rf = fp = 1.5 similar results were obtained.

Next we considered the control g = (g1,g2, g3). Figures 6.3, 6.4 show the streamlines
and the vertical component of the computed velocity on the inflow and outflow boundaries.
As shown in Figure 6.4, the computed solution has fluid flowing into the domain on a part
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uf pf
grid L2 error L2 rate H1 error H1 rate L2 error L2 rate

3× 3 1.17 · 10−2 1.58 · 10−1 2.38 · 10−1

5× 5 1.27 · 10−3 3.20 3.62 · 10−2 2.12 7.58 · 10−2 1.65

9× 9 1.45 · 10−4 3.13 8.72 · 10−3 2.05 2.20 · 10−2 1.79

17× 17 1.73 · 10−5 3.07 2.15 · 10−3 2.02 5.92 · 10−3 1.89

33× 33 2.12 · 10−6 3.03 5.35 · 10−4 2.01 1.54 · 10−3 1.95

up pp
L2 error L2 rate Hdiv error Hdiv rate L2 error L2 rate

3× 3 1.39 · 10−1 6.61 · 10−4 6.31 · 10−2

5× 5 3.87 · 10−2 1.85 1.82 · 10−4 1.86 1.56 · 10−2 2.02

9× 9 1.09 · 10−2 1.82 4.62 · 10−5 1.98 3.84 · 10−3 2.02

17× 17 3.01 · 10−3 1.86 1.15 · 10−5 2.00 9.55 · 10−4 2.01

33× 33 8.04 · 10−4 1.90 2.87 · 10−6 2.00 2.38 · 10−5 2.00

Table 6.2: Errors using Algorithm 4.4 for rf = rp = 2.

uf pf
grid L2 error L2 rate H1 error H1 rate L2 error L2 rate

3× 3 1.24 · 10−2 1.59 · 10−1 2.05 · 10−1

5× 5 1.30 · 10−3 3.26 3.64 · 10−2 2.13 6.63 · 10−2 1.63

9× 9 1.45 · 10−4 3.17 8.74 · 10−3 2.06 1.88 · 10−2 1.82

17× 17 1.72 · 10−5 3.07 2.15 · 10−3 2.02 5.02 · 10−3 1.91

33× 33 2.11 · 10−6 3.03 5.36 · 10−4 2.01 1.29 · 10−3 1.95

up pp
L2 error L2 rate Hdiv error Hdiv rate L2 error L2 rate

3× 3 2.44 · 10−1 5.99 · 10−4 6.60 · 10−2

5× 5 6.64 · 10−2 1.88 1.65 · 10−4 1.89 1.59 · 10−2 2.05

9× 9 1.81 · 10−2 1.88 4.23 · 10−5 1.97 3.87 · 10−3 2.04

17× 17 4.86 · 10−3 1.90 1.07 · 10−5 1.99 9.59 · 10−4 2.01

33× 33 1.29 · 10−3 1.91 2.68 · 10−6 1.99 2.39 · 10−4 2.00

Table 6.3: Errors using the exact boundary condition on I for rf = rp = 1.5.

of Γout. Thus, Γout is not in fact an outflow boundary and this causes instability for the
Darcy flow near Γout.

The problem we approximated, (2.1)-(2.11), is not mathematically well-posed problem
due to the defective boundary conditions. Therefore, we expect that there are many local
optimal solutions to (3.4) and a different numerical solution could be obtained by using a
different initial guess.
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uf pf
grid L2 error L2 rate H1 error H1 rate L2 error L2 rate

3× 3 1.16 · 10−2 1.58 · 10−1 2.09 · 10−1

5× 5 1.27 · 10−3 3.19 3.62 · 10−2 2.12 6.63 · 10−2 1.66

9× 9 1.46 · 10−4 3.13 8.72 · 10−3 2.05 1.88 · 10−2 1.82

17× 17 1.73 · 10−5 3.07 2.15 · 10−3 2.02 5.01 · 10−3 1.91

33× 33 2.11 · 10−6 3.04 5.35 · 10−4 2.01 1.29 · 10−3 1.95

up pp
L2 error L2 rate Hdiv error Hdiv rate L2 error L2 rate

3× 3 1.57 · 10−1 6.64 · 10−4 6.34 · 10−2

5× 5 4.36 · 10−2 1.85 1.82 · 10−4 1.87 1.56 · 10−2 2.02

9× 9 1.23 · 10−2 1.82 4.61 · 10−5 1.98 3.85 · 10−3 2.02

17× 17 3.39 · 10−3 1.86 1.15 · 10−5 2.01 9.57 · 10−4 2.01

33× 33 9.03 · 10−4 1.91 2.86 · 10−6 2.00 2.38 · 10−5 2.00

Table 6.4: Errors using Algorithm 5.1 for rf = rp = 1.5.
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Figure 6.1: Plot of the magnitude of the
velocity and streamlines by g = (g1,g2, 0).
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Figure 6.2: vertical velocities on inflow
and outflow boundaries by g = (g1,g2, 0).

7 Conclusion

We considered a numerical method for the linear/nonlinear Stokes-Darcy system with defec-
tive boundary conditions. The coupled problem was formulated as a minimization problem,
where the system was decoupled through a control function on the interface. We showed
that the proposed algorithm found an optimal control function, generating a solution for
the Stokes-Darcy system satisfying both the interface conditions and the defective boundary
conditions.

The method we investigated has several attractive features such as (i) decomposition
of the coupled system into Stokes and Darcy subproblems (enabling existing software and
solution algorithms for the Stokes and Darcy problems to be used), (ii) solution of the
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Figure 6.3: Plot of the magnitude of
the velocity and streamlines by g =
(g1,g2, g3).
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Figure 6.4: vertical velocities on inflow
and outflow boundaries by g = (g1,g2, g3).

Stokes and Darcy subproblems in parallel, (iii) solvability of the least squares problem by
the CG algorithm without forming the normal equation explicitly.

Another attractive feature of the method is its efficiency, in particular for the nonlinear
case. It was observed in all computations that only two or three Guass-Newton iterations
were required to reduce the objective functional below the specified tolerance of 10−8. In the
nonlinear case the operators N ′ andN ′∗ are still linear (functions of the solution to linearized
Stokes and Darcy subproblems), whereas N(gn) is a function of the (nonlinear) Stokes and
Darcy subproblems. Thus, one only needs to solve decoupled nonlinear subproblems two or
three times in the solution process. This is a great advantage of the method over numerical
solution methods for the coupled nonlinear Stokes-Darcy system.
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