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Abstract

In this article we present computational results for the pressure in the human eye. Pressure
computations for different flow rates of the aqueous humor, viscosity of the aqueous humor, and
permeability of the trabecular meshwork are given. The fluid flow is assumed to be axisymmetric,
and modeled as a coupled systems of Stokes and Darcy fluid flow equations, represented the fluid
flow in the anterior cavity and trabecular meshwork, respectively. Rewriting the problem in
cylindrical coordinates reduces the 3-D problem to a problem in 2-D. Computations are also
given for varying angles between the base of the iris and the trabecular meshwork.
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1 Introduction

In this article we numerically investigate fluid flow through the Anterior Cavity (AC) and the
Trabecular Meshwork (TM) of the human eye. Of particular interest is the dependence of the
pressure difference between the AC and the TM on (i) the flow rate of the aqueous humor, (ii) the
viscosity of the aqueous humor, and (iii) the permeability of the TM. Our interest in modeling the
pressure in the eye is due to glaucoma, the second most common cause of blindness in the United
States, which in most cases is due to increased pressure in the eye [24]. An illustration of fluid
flow through the eye is given in Figures 1.1-1.2. In the eye fluid is generated by the ciliary muscle,
located along side of, and behind, the lens. The fluid then flows through the AC and the TM before
exiting through the Canal of Schlemm.

The model geometry of the eye used in our numerical simulations is shown in Figure 2.3. We assume
that the eye is positioned looking up, and that the eye in this orientation is symmetric about the
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oPUENEN  shaath Figure 1.2: Hlustration of flow through an eye
[31].
Figure 1.1: Illustration of anatomy of an eye
[20].

vertical axis. Additionally we assume that the fluid flow is axisymmetric, enabling the fluid flow
(through a change of variable to cylindrical coordinates) to be modeled as a 2-D problem.

There are a number of assumptions made in the construction of any computational model. To-
gether with the symmetry assumptions mentioned in the previous paragraph, for the computations
presented we assume that there is no temperature variation across the eye, the aqueous humor is
a Newtonian fluid, the flow through the TM can be model using the Darcy fluid flow equations
with the model parameter (the effective fluid viscosity) dependent upon the viscosity of the aqueous
humor and a permeability value for the TM. The fluid flow in the AC we model using the Stokes
fluid flow equations. In [13] existence and uniqueness of the the discrete approximation to the cou-
pled Stokes-Darcy fluid flow problem in an axisymmetric domain was established, together with a
priori error estimates. Numerical computations on a model test problem demonstrated that the
approximations satisfied the predicted error estimates. The computations presented below used the
same numerical approximation algorithm as studied in [13].

Using the “lubrication theory” limit of the Navier-Stokes equations, together with the Boussinesq
approximation for the buoyancy, buoyancy driven fluid flow in the AC, caused by a temperature
gradient across the AC, have been investigated in [7, 11, 2, 15]. Canning et al. in [7] derived a closed
form solution for the buoyancy driven flow and used it to investigate the motion and distribution of
particulates in the AC. El-Shahed and Abd elmaboud [11] extended the model of Canning et al. by
considering a slip-flow boundary condition for the velocity along the cornea. This model was further
extended by Avtar and Srivastava in [2] wherein, along with a slip-flow boundary condition for the
velocity, they also assumed a convection heat conduction boundary condition on the cornea. In [15]
Fitt and Gonzalez studied fluid flow in the AC caused by a temperature gradient, flow generated
by the ciliary body, and flow generated by lens tremors. A model for flow fluid through the TM
was considered by Avtar and Srivastava in [3]. For the TM modeled as an annular cylindrical ring,
they were able to construct closed form solutions for the 1-D model (function of the radial variable
r) for the pressure and the fluid velocity.

Numerical simulation in 3-D of fluid flow through the AC and TM have been performed by Kumar
[21] and Kathawate [19]. For their computational models they used the Navier-Stokes equations



with the Boussinesq approximation together, with the energy equation, for the flow in the AC
and used the Darcy-Forchheimer equations for the fluid flow in the TM. They modeled the TM as
being comprised of two pieces, one for the uveal and corneoscleral meshwork and the other for the
juxtacanalicular tissue.

Presented in the next section is the description of the computational model used for the eye. Section
3 describes the abstract mathematical formulation for the coupled Stokes-Darcy fluid flow problem
in an axisymmetric domain, together with the numerical approximation scheme. Numerical com-
putations for the difference between the average pressure in the AC and the average pressure in the
TM as a function of the viscosity of the aqueous humor, the permeability of the TM, and the flow
rate of the aqueous humor are presented in Section 4.

2 Computational model of the eye

An illustration of the computational model used for the eye is given in Figure 2.3.
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Figure 2.3: Model for simulating fluid flow through the eye.

The model geometry was constructed using [9, 10] and [28]. For the model we assume:

1. The radius of the inside of the cornea is 7.2mm.
2. The radius of the lens is 12.5mm.
3. The distance between the lens and the cornea along the vertical axis is 2.7mm.

4. The pupil aperture is 3mm.



5. The lower side of the iris has the same curvature as the lens. The top side of the iris is
approximated as a straight line. The width of the iris is approximately 0.5mm, and we assume
the iris attaches to the cornea. (Physically the iris attaches to the ciliary muscles very near
the cornea.)

The gap between the iris and the lens is 0.25mm.
The length of the interface between the AC and TM is 0.6mm.
The width of the TM at the bottom is 0.1mm.

© % N o

The length of the interface of the TM with the Canal of Schlemm is 0.3mm.

10. A straight line connects the point at the top of the interface of the AC and TM with the point
at the top of the interface of the TM with the Canal of Schlemm.

3 Mathematical Formulation of Abstract Problem

In this section we describe the abstract mathematical setting for the numerical simulation of fluid
flow through the eye. We describe the setting for the case of a specified inflow and outflow flow
rate, which represents a degenerate boundary condition. For a rigorous mathematical description of
the formulation see [13].

Let 0 C IR3, denote the flow domain of interest. Additionally, let flf and Q denote bounded
convex polygonal domains for the Stokes flow and Darcy flow, respectlvely The mterface boundary
between the domains is denoted by I := 00 N 89 Note that  := ru Q UT. The outward
pointing unit normal vectors to Q ¢ and Qp are denoted ny and n,, respectively. On I let t1, t2
denote linearly independent unit tangent vectors. We assume that there is an inflow boundary Lin,
a subset of 95 f\f‘, which is separated from f, and an outflow boundary f‘out, a subset of a(zp\f ,
which is also separated from I'. See Figure 3.1 for an illustration of the domain of the problem.

Define Ty := 9Q;\(I' UTy,), and T := 9Q,\ (T U T ).

We assume that the flow in the porous domain Qp is governed by the Darcy’s equation subject to
incompressibility of the fluid, a specified flow rate (Z) across I'yys, and a non-penetration condition
on I'.

For the Stokes flow:

-V <2V(vl(lulf) - ﬁfI) = f'f in Qf, (3.1)
V-iy = 0 inQy, (3.2)
[ Hy-fpds = —E, (3.3)
Lin
ﬁf =0 on f‘f. (3.4)
Ufy
where uy = | up, = upze; + urgey + uyr.e,, for e;, ey, e, denoting unit vectors in the x, y
Ufs
and z directions, respectively, and d(i1) := 1/2(Vi1 + (Vi)T) represents the deformation tensor.
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Figure 3.1: Illustration of axisymmetric low domain.

In (3.1)-(3.4) 6y denotes the fluid’s velocity, py the pressure, f'f an external forcing function, v the
fluid kinematic viscosity, and E a specified inflow rate for the fluid.

For the porous domain Qp:

v

vesf K, + Vg, = £, inQ,, (3.5)
Vi, = 0 inQ,,
/ W, f,ds — E, (3.7)
1L_/‘o'u,t
i, n, =0 on T,. (3.8)

In (3.5)-(3.8) 0y, Pp, f'p, denote the fluid velocity, pressure and external forcing functions, respec-
tively. Additionally, in (3.5) v.fs represents an effective kinematic fluid viscosity, and K the per-
meability (symmetric, positive definite) tensor of the domain. For simplicity, we let that there is a
scalar function s such that kI = v,y fK_l.

Across the interface I' the flows are coupled via the conservation of mass and balance of normal
forces. In addition, the Beavers-Joseph-Saffman (BJS) condition [4, 18, 30] is used for the tangential
forces boundary condition on I'.

g+ B, = 0, pp - (2vd(i)-ag) iy = py onl, (3.9)
it = - (2u&(ﬁf)-ﬁf)-f;l onl, 1=1,2, (3.10)

where a1, ao denote friction constants.

The boundary conditions (3.3) and (3.7) are commonly referred to as defective boundary conditions,
as they do not uniquely define a solution to (3.1)-(3.8). In Section 3.1 we present a weak formulation
of (3.1)-(3.8) and discuss the existence and uniqueness of the weak formulation. At the end of
Section 3.1 we comment that, in addition to (3.3) and (3.7), the weak formulation implicitly imposes
additional boundary conditions for iy on lv“m and for 1, on fout.



3.1 Function Spaces and Weak Formulation

In this section we introduce the function spaces needed to define the weak formulation for the
coupled fluid flow problem described above.

Let © := © x [0,27) € IR? be a bounded domain formed by revolving the polygon © around
the z-axis. For the axisymmetric formulation we introduce the following weighted function spaces
and associated norms. For any real a and 1 < p < oo, the space ,LP(0) is defined as the set of
measurable functions w such that

1/p
loll,1oe) = ( /@ |w\pradx) < o0,

where r = r(x) is the radial coordinate of x, i.e. the distance of a point x in © from the symmetry
axis. The subspace 1L3(©) of 1L?(0) denotes the functions ¢ with weighted integral equal to zero,

f@qrdx = 0.

We define the weighted Sobolev space 1 W!P(0) as the space of functions in 1 LP(0) such that their
partial derivatives of order less that or equal to [ belong to 1LP(©). Associated with W'P(0) is
the semi-norm | - [, yy1,p(@) and norm || - ||, y1.r(e) defined by

1/p

! 1/p !
wlwese) = (Zuafai—’fw||§’m(@>> el = (Dwfw,p(@))
k=0 k=0

When p = 2, we denote ;W"%(0) as 1 H'(0).

For a domain T C IR® we use the usual definitions and notation for Sobolev spaces. For vector
functions v defined on T expressed in cylindrical coordinates we use the notation v(r,6,z) =
vre, + vgeg + vye, = (vr,vp,v,), where e,, €y, e, denote unit vectors in the r, 6, and z directions,
respectively. Additionally, for v(r, z) defined on © we use v(r,z) = (v.,v,) = v.e, + v.e,.

Let Ry denote a rotation with respect to ¢ about the z-axis. A function ¥ is axisymmetric if
0 = Vo Ry for all ¢ € (0,27). A vector function v is rotationally invariant if v. = R_4 0V o
Ry for all ¢ € (0,27). Let H5(©) c H*(©), s = 0,1,2 denote those functions in H*(©) which
are axisymmetric, and H*(©)3 the space of rotationally invariant H*(0)3 vector functions. From
[1, 5, 23] we have the following two lemmas.

Lemma 1 For §(r,0,z) € H*(©), s = 0,1, the mapping 9(r,0,z) — v(r,z) € 1H*(©) is well
defined for smooth functions and (up to a factor of \/2m) is an isometry. Hence the lifting v(r, z) €
1H?(©), v(r,z) — 0(r,0,2) € H*(O) is also an isometry (up to a factor of V/2m).

For the case s = 2 introduce
1HE(©) = {ve 1H*(O) : dv/r € 1L*(©)}.

Lemma 2 For o(r,0,z) € Iﬁ(é), the mapping ¥(r,0,z) — v(r,z) € 1H2(O) is (up to a factor of
V2m) an isometry.



The trace space 1 H'/2(I) is defined using H'/2(I") and the isometry between H'(0) and 1 H!(0),
and { H~/2(T) the dual space of { H/?(I).

Let V, := [0/0r, 3/02]T, and for v = (v, v,), da(V) 1= 1/2(Vae(v) + (Va(v)T), and divge;(v) =
Vo v + v /r. In addition,

H(divaz;, ©) = {v = (v,, v;) € (L*(©))* : divesv € 1L*(O)} . (3.11)

_ _ 1/2
For v € H(divazi, ©), V]| i1(div,0) = (Hdww( 22 + el 20 + Huzqug(@)) . Analo-
gous to Lemma 2, we have the following relationship between H(divags, ©) and H(div,©) := {v €
ooy 5 g g 1/2
L2(6)? : Vv € L2(8)). where ¥l ey = (140200 + leslZas) + I0ylZa) + I0:2ss)) -

Lemma 3 For v(r,0,z) = (,,7,0.) € H(div,©), the mapping (5,,0,7,) = (vy,v,) = v(r, z) €
H(divgy;, ©) is (up to a factor of \/2m) an isometry.

For the description of the fluid flow in Q, we introduce the space 1V(©), a subset of 1 H(0), given
by

. 1/
Ve = {w € 1H'©) :we _1L2(@)} , with norm [|w||,y1e) = (\w\lHl(@ + HwHaLQ(@))

The relevance of the space 1V1(©) is apparent from the following lemma [1, 5, 23].
Lemma 4 For v(r,0,z) = (¥,,7,0.) € H'(0)3, we have (6,,7,) = (vy,v.) € 1V(O) x {H(O).

In order to incorporate the homogeneous boundary condition for the velocity on I'f, let

1H () = {weH' (Qy) :w =0 only}, and 1Vy(Qy) = {we V() :w =0 only}.

1/2
For convenience of notation, let Xy := 1V () x1H (), |[vllx, = (||%~H1V1 @ T ‘”ZEHl(Qf)) ,
and My = 1L2(Q) with |- [, = |- ], 220,

The underlying space for the fluid velocity in €, is H(divagi, p). However a function w in this
space may not have sufficient regularity for its trace to exist on 0€2,. Hencve, the iunterpretation of
the boundary condition w - n|r, = 0 needs to be carefully defined. For v € H(div,{),) we have that
v-n e H2(Q,). For v € H(divaz, ), A € 1H?(T), following Galvis and Sarkis [17] (see also
[14]), we define the operator v - n, € 1H/2(T') via an extension operator Er\. Specifically, for
Ae ﬁl/Q(I‘) the axisymmetric lifting of A from I' to I, define Efj\ := Y, where 7y is the trace
operator from H'(£2,) to H'/2(98),), and ¢ € H'(€,) is the weak solution of

(% et v o
v = { 0. on Ty 0¢/0n, = 0, on 0Q,\(T'UT o) . (3.13)



Er) is the axisymmetric restriction of EFS\ to 08y, satisfying [|ErAll, g1/200,) < C Al g2y
Then, we define the operator v-n € {H~/2(T) as

1

(v-n, Nr = (v-n, ErA)sq, = Py
™

(Vi EpA)pe (3.14)
where (-, -)aq, denotes the 1L%(09,) inner product, extended to a duality pairing.
For the description of the fluid flow in €2, let

Xp = {w € H(divg,Qp) : w-m|r, =0}, M, = 1L*(Q,). (3.15)

_ 1/2
and [wllx, = (Idivaes(W) 20,y + WP s2y) o+ - laty, = - a2,y (316)

Let
X =Xy xX,, and M::{qufop : /qrdx:()},
Q

and denote the dual space of X by X*.

The axisymmetric weak formulation for (3.1)—(3.10) may be stated as: Given f € X*, =
determine (u,p,\,8) € X x M x {HY?(T') x R? such that, for all v € X and (¢,(,0) € M x
1HY2(I) x IR?,

a(0.v) — b (0. B) + biv. ) = (E). (317)
b (0.0) = bi(w0) = o] Ty | /e, (318)
where

a(u, V) = af(ufa Vf) + ap(upv Vp) ) b(V, (qv Q)) = bf(vf7 (qf> Ql)) + bp(vpv (QPv 92)) ) (3'19)

br(v,¢) = /Vf-nfgrds + (vp-np, Qr, (3.20)
r
and
opuy) = [ 2 (A du) + 20 ) rax ¢ [oil 0 (voyrds (321)
f
ap(u,v) = /Q/Qll'V?"dX, (3.22)
be(v,(¢g,8)) = /Q q <Va-v + U—:) rdx + ﬂ/r v-nsrds, (3.23)
f in
bp(v,(q,B)) = /Q q (Va-v—i- %) rdx + f8 g v-n,rds. (3.24)

In (3.21) ays is the friction constant from the BJS condition.

Equivalence of the Differential Equations and Weak Formulation
The weak formulation (3.17)-(3.24) is obtained by multiplying the differential equations by suitably
smooth functions, integrating over the domain, and using Green’s theorem. Additionally, integrals



over fin and f’out (arising from using Green’s theorem) are replaced by /1 ff“m V- dS and [o ff“m v-
n, dS, respectively. For a smooth solution the steps used in deriving the weak formulation can be
reversed to show that equations (3.1)-(3.4), and (3.5)-(3.8) are satisfied. In addition, a smooth
solution to (3.17)-(3.18) satisfies the following boundary conditions (see [16, 14]).

Let § on 'y, be given by
2Vd(tl)flf = Snﬁf + ét)

9]

where 5, := (2vd(u)ny) - ny. Then, smooth solutions to (3.5)-(3.8) satisfy

On Ly : —Pr+ 8, = —B1  and & = 0. (3.25)
On Ty : Py = —Pa. (3.26)

3.2 Finite Element Approximation

In this section we discuss the finite element approximation to the coupled axisymmetric Stokes—
Darcy system (3.17),(3.18).

Let Q; C IR2, j = f,p, be a polygonal domain and let T;.n be a triangulation of Q;. Thus, the
computational domain is defined by

Q= UK; K € 7},hU7;1,h-
We assume that there exist constants ¢y, ¢y such that
cith < hg < capk

where hp is the diameter of triangle K, px is the diameter of the greatest ball included in K, and
h = InaXKETthUf/;’h hK.

We also assume that the triangulation on €, induces the partition on I', which we denote T h-
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Figure 3.2: Computational mesh for the AC. Figure 3.3: Computational mesh for the TM.

Let Py(K) denote the space of polynomials on K of degree no greater than k, and RTi(K) :=
(P1(K))? 4+ xP;(K) denote the 1st order Raviart-Thomas (R-T) elements [29, 6]. Then we define



the finite element spaces as follows.

Xpp = {veX;nCQp)?:v|k € Po(K), VK € T}, (3.27)
Mgy, = {qe MynC(Qy):qlx € PI(K), VK € Typ} (3.28)
Xpn = {veRN(K),VKeTu}, (3.29)
M,y = {q€ M;:qlx € Pi(K), VK € Ty}, (3.30)

L, = {¢eC): (k€ PK), YK € Trp} - (3.31)

The spaces (X ¢4, Myp) represent the Taylor-Hood pair of approximation spaces. Analogous to the
continuous formulation, we let X}, := X, x X}, 5, and My := {q € Myp x My - fQ qrdx = 0}.

For (X, n, M, ) Raviart-Thomas approximation spaces for the velocity and pressure, unlike in the
Cartesian setting, a,(-,-) is not coercive, with respect to the H(div, §2,,) norm, on

Zpn = {veXy: / qdivgi(v)rdx = 0, Yg & M,}. (3.32)

P
To compensate for this we add the term
~y / divazi(0) divgg;(v) rdx (3.33)
QP
to ap(u, v), where v > 0 is a fixed constant, and define

ap~(1,v) = ap(u,v) + 7/ divazi(0) divggi(v) rdx. (3.34)
Qp

In the approximation of Stokes and Navier-Stokes fluid flow problems in the Cartesian setting, the
addition of the analogous term to (3.33) has received considerable attention recently as a means of
improving the pointwise mass conservation of the approximation. (See [26, 27, 25, 22, 8].)

Discrete Approximation Problem: Given f € X*, fr € IR, determine (up, pp, An, B) € (Xp x Mj, X
Ly, x IR?) such that, for all v € X}, and (q,¢,0) € My x L, x R?,

ay(u,v) — b(v,p,B) + br(v,\) = (f,v), (3.35)
bag.0) ~ bilw¢) = | 7y | fo/tem). (3.36)
where ay(u,v) = af(uy, v¢) + ap~(up, vp).

4 Numerical Investigations

In this section we numerically investigate the dependence of the pressure in the eye on a number
of physical parameters related to fluid flow in the eye. Of specific interest is the difference between
the average pressure in the AC and the average pressure in the TM. An increase in this pressure
difference would correspond to the eye experiencing more difficulty in balancing the fluid generated
in the eye with the fluid leaving the eye through the TM.

10



Remark 1. The modeling equations (3.1)-(3.10) only determine the pressure up to an additive
constant. Physically, this corresponds to the motion of incompressible fluids been driven by the
pressure difference between two points, rather than the actual value of the pressure. Mathematically,
to uniquely specify the pressure, it is convenient to impose the condition that the average pressure
throughout € is zero. This condition was used for all the computations presented.

Remark 2. For the computation of the average pressure in the AC, AvgPreAC, we used the region
of the AC given by the union of the triangles in Figure 3.2 lying above z = 4.66. The average
pressure in the TM, AvgPreTM, was computed using all of the triangles in the TM. The pressure
difference between the average pressure in the AC and average pressure in the TM is denoted
APre = AvgPreAC - AvgPreTM.

Remark 3. We use the notation e-a to denote 10™%, e.g. 3.31e-4 denotes 3.31 x 1074,

4.1 Dependence of the average pressure on the “mathematical parameter”

The parameter v occurring in the numerical approximation is introduced to ensure that the approx-
imating system of equations is invertible. The parameter is not part of the modeling equations. In
this section with the following parameter fixed: the frictional constant, apys = 1; kinematic viscos-
ity in AC, v = 0.66; permeability of TM, x =2e-06; effective kinematic viscosity in TM, vers = v/k;
flow rate = 2.0 pL/min, the dependence of the pressure difference on - is investigated.

Presented in Figures 4.1 - 4.4 are the velocity and pressure profiles in the AC and TM corresponding
to the above parameters and v = 1.

Pressure in the AC region
Velocity in the A region

Figure 4.2: Computed pressure profile in the

Figure 4.1: Computed flow field in the AC. AC

Remark: The mathematical parameter v does not appear to influence the average pressure in the
AC and TM. For all the computations given below the value of v = 1 was used.

11



Pressure in the TM region
Velocity in the TM region ©10° 43p

3 40
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Figure 4.3: Computed flow field in the TM. Figure 4.4: Computed pressure profile in the

™
apjs=1 | AvgPreAC | AvgPreTM APre
v =0.01 | -5.7427e-02 | -2.4961e+01 | 2.4904e+01
v =0.1 | -5.7427e-02 | -2.4961e+01 | 2.4904e+01
v=1 | -5.7427e-02 | -2.4961e+01 | 2.4904e+01
v =10 | -5.7427¢-02 | -2.4961e+01 | 2.4904e+01
v =100 | -5.7427e-02 | -2.4961e+01 | 2.4904e+01

Table 4.1: Pressure dependence on 7.

4.2 Dependence of the average pressure on the Beavers-Joseph-Saffman tangen-
tial friction coefficient

The Beavers-Joseph-Saffman tangential friction coefficient relates the tangential component of the
normal stress vector at the AC-TM interface to the tangential velocity in the AC at that interface

(see (3.10)).

The following table shows the average pressure in the AC and TM using parameter values: v = 0.66;
k =2e-06; vesr = v/k; flow rate = 2.0 pL/min.

’ QaBJS ‘ AvgPreAC ‘ AvgPreTM ‘ APre
0.1 | -5.7593e-02 | -2.4950e+-01 | 2.4892e+01
1 -5.7427e-02 | -2.4961e+01 | 2.4904e+01
10 | -5.6367e-02 | -2.5033e+01 | 2.4977e+401

Table 4.2: Pressure dependence on apjg.

Remark: Increasing the Beavers-Joseph-Saffman tangential frictional coefficient, apjg, results in
an increase in the difference between the average pressure in the AC and the average pressure in
the TM.

12



4.3 Dependence of the average pressure on the viscosity of the fluid

In this section, the dependence of the pressure on the fluid viscosity v is investigated. For the
computations given the following parameter values were used: apjs = 1; K =2e-06; vers = v/k;
flow rate = 2.0 pL/min.

’ v ‘ AvgPreAC ‘ AvgPreTM ‘ APre ‘
0.61 | -5.3064e-02 | -2.3071e+01 | 2.3018e+01
0.66 | -5.7427e-02 | -2.4961e+01 | 2.4904e+01
0.71 | -6.1791e-02 | -2.6851e+01 | 2.6789¢+01
0.76 | -6.6155¢-02 | -2.8741e+01 | 2.8675e+01
0.81 | -7.0519e-02 | -3.0631e+01 | 3.0560e+-01

Table 4.3: Pressure dependence on fluid viscosity v.

Remark: The computations indicate that the difference between the average pressure in the AC
and the average pressure in the TM increases as the fluid viscosity increases.

4.4 Dependence of the average pressure on the permeability of the TM
The permeability of the TM is represented by the parameter k. Below are computations for the
average pressures for permeability values k =2e-05, k =2e-06, kK =2e-07, k =2e-08, and k =2e-09.

The following parameters values were used: apjs = 1; v = 0.66; verf = v/k; flow rate = 2.0
pL/min.

’ K ‘ AvgPreAC ‘ AvgPreTM ‘ APre ‘
2e-05 | -2.1230e-01 | -2.9939e00 2.7816€00
2e-06 | -5.7427e-02 | -2.4961e+01 | 2.4904e+01
2e-07 | 1.4873e00 | -2.4463e+02 | 2.4314e+02
2e-08 | 1.6932e+01 | -2.4410e+03 | 2.4241e+03
2e-09 | 1.7138e+02 | -2.4404e+4-04 | 2.4233e+04

Table 4.4: Pressure dependence on the permeability of the TM.

Remark: As the permeability of the TM decreases the computed difference between the average
pressure in the AC increases and the average pressure in the TM increases.

Figure 4.5 is a plot of the difference between the average pressure in the AC and the average pressure
in the TM versus the permeability of the TM. The model APre = 6e-5 x (permeability) =298 fits
the data remarkably well, with an R? value of 0.99996.

4.5 Dependence of the average pressure on the flow rate

Next we investigate the dependence of the pressure on the fluid rate of the aqueous humor. Compu-
tations using flow rates of 1.8uL/min, 2.0 pL/min, 2.02 gL /min, and 2.2 pL/min were performed.
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Figure 4.5: Pressure difference versus permeability of TM

The following parameters values were used: apjg = 1; v = 0.66; k =2e-06; veff = v/k.

flow rate \ AvgPreAC ‘ AvgPreTM ‘ APre ‘
1.8 -5.1685e-02 | -2.2465e+-01 | 2.2413e+-01
2.0 -5.7427e-02 | -2.4961e+01 | 2.4904e+01
2.02 -5.8002e-02 | -2.5211e+01 | 2.5153e+01
2.2 -6.3170e-02 | -2.7457e+01 | 2.7394e+01

Table 4.5: Pressure dependence on the flow rate.

Figure 4.6 plots the difference between the average pressure in the AC and the average pressure
in the TM versus the flow rate. The model APre = 12.452 x (flowrate) — Te-5 fits the data

remarkably well, with an R? value of 1.0.

Remark: Increasing the flow rate the difference between the average pressure in the AC and the
average pressure in the TM also increases. Indeed, a scaling argument shows that there is a linear
dependence between the flow rate and the difference between the average pressure in the AC and

the average pressure in the TM.
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Figure 4.6: Pressure difference versus flow rate

4.6 Dependence of the average pressure on the attachment angle of the iris to
the cornea

In this section results are given for computations performed using different angles of attachment
between the iris and the cornea. All the computations given above were done with the angle of
attachment © = 36.59°. In order to vary this angle of attachment, the top of the iris was altered,
while the edge closest to the lens remained unchanged. Illustrated in Figures 4.7 and 4.8 are the
attachment of the iris to the cornea corresponding to angles © = 36.59° and © = 29.73°.

Computations were performed with angles of attachment © = 36.59°, © = 34.30° (93.75% of 36.59°),
© = 32.01° (87.5% of 36.59°), © = 29.73° (81.25% of 36.59°), and © = 27.4° (75% of 36.59°).

The following values for the model parameters were used: apjg = 1; v = 0.66; kK =2e-06;vc 5 = V/kK;
flow rate = 2.0 gL /min.

’ S ‘ AvgPreAC ‘ AvgPreTM ‘ APre ‘
36.59° | -5.7427e-02 | -2.4961e+01 | 2.4904e+01
34.30° | -5.7718e-02 | -2.5018e+01 | 2.4960e+01
32.01° | -5.8319e-02 | -2.5090e+01 | 2.5032e+01
29.73° | -5.7926¢-02 | -2.5182e+01 | 2.5124e+01
27.44° | -5.6930e-02 | -2.5305e+01 | 2.5248e+01

Table 4.6: Pressure dependence on the attachment angle of the iris to the cornea.

Remark: Decreasing the angle of attachment between the iris and the cornea the difference in the
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Figure 4.7: Mesh with angle of attachment Figure 4.8: Mesh with angle of attachment
between the iris and cornea 36.59°. between the iris and cornea 29.73°.

average pressure in the AC and the average pressure in the TM increases.

5 Conclusion

The numerical computations indicate that as the viscosity of the aqueous humor increases, or the
permeability of the TM increases, or the flow rate of the aqueous humor increases, the difference
between the average pressure in the AC and the average pressure in the TM also increases. Addi-
tionally, the numerical computations imply that the difference between the average pressure in the
AC and the average pressure in the TM is directly proportional to (permeability of the TM)~!.
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