Generalized Newtonian Fluid Flow through a Porous Medium

V.J. Ervin * Hyesuk Lee[†] A.J. Salgado [‡]

May 29, 2014

Abstract

We present a model for generalized Newtonian fluid flow through a porous medium. In the model the dependence of the fluid viscosity on the velocity is replaced by a dependence on a smoothed (locally averaged) velocity. With appropriate assumptions on the smoothed velocity, existence of a solution to the model is shown. Two examples of smoothing operators are presented in the appendix. A numerical approximation scheme is presented and an a priori error estimate derived. A numerical example is given illustrating the approximation scheme and the a priori error estimate.

Key words. Darcy equation, Generalized Newtonian fluid

AMS Mathematics subject classifications. 65N30, 75D03, 76A05, 76M10

1 Introduction

Of interest in this article is the modeling and approximation of generalized Newtonian fluid flow through a porous medium. Darcy's modeling equations for a steady-state fluid flow through a porous medium, Ω , are

$$\nu_{eff} K^{-1} \mathbf{u} + \nabla p = 0, \text{ in } \Omega, \qquad (1.1)$$

$$\nabla \cdot \mathbf{u} = 0, \text{ in } \Omega. \tag{1.2}$$

where **u** and *p* denote the velocity and pressure of the fluid, respectively. $K(\mathbf{x})$ in (1.1) represents the permeability of the medium at $\mathbf{x} \in \Omega$, which is assumed to be a symmetric, positive definite tensor. As our investigations are not concerned with K, we assume that K is of the form $k(\mathbf{x})\mathbf{I}$ where $k(\mathbf{x})$ is a Lipschitz continuous, positive, bounded and bounded away from zero, scalar function. ν_{eff} in (1.1) represents the effective viscosity of the fluid.

^{*}Department of Mathematical Sciences, Clemson University, Clemson, SC 29634, USA. (vjervin@clemson.edu) [†]Department of Mathematical Sciences, Clemson University, Clemson, SC 29634-0975, U.S.A.

⁽hklee@mail.clemson.edu) Partially supported by the NSF under grant no. DMS-1016182.

[‡]Department of Mathematics, University of Tennessee, Knoxville, TN 37996, U.S.A. (asalgad1@utk.edu)

In the case of a Newtonian fluid we have that ν_{eff} is a positive constant. For a generalized Newtonian fluid ν_{eff} is a function of $|\mathbf{u}|$. Two such examples are

Power Law Model: $\nu_{eff}(|\mathbf{u}|) = c_{\nu} |\mathbf{u}|^{r-2}$, Cross Model: $\nu_{eff}(|\mathbf{u}|) = \nu_{\infty} + \frac{\nu_0 - \nu_{\infty}}{1 + c_{\nu} |\mathbf{u}|^{2-r}}$, (1.3)

where c_{ν} , ν_0 , ν_{∞} and r are fluid dependent constants. For shear thinning fluids 1 < r < 2. (In modeling the viscosity of shear thinning fluids the Power Law model suffers the criticism that as $|\mathbf{u}| \to 0 \ \nu_{eff} \to \infty$.)

For the case of a Newtonian fluid (1.1), (1.2) are well studied. The two standard approaches in analyzing (1.1), (1.2) are: (i) study (1.1), (1.2) as a mixed formulation problem for \mathbf{u} and p (either $(\mathbf{u}, p) \in H_{div}(\Omega) \times L^2(\Omega)$, or $(\mathbf{u}, p) \in L^2(\Omega) \times H^1(\Omega)$), or (ii) use (1.2) to eliminate \mathbf{u} in (1.1) to obtain a generalized Laplace's equation for p.

For generalized Newtonian fluids, with $\nu_{eff} = \nu_{eff}(|\mathbf{u}|)$, assumptions are required on ν_{eff} in order to establish existence and uniqueness of solutions. Typical assumptions are uniform continuity of $\nu_{eff}(|\mathbf{u}|)\mathbf{u}$ and strong monotonicity of $\nu_{eff}(|\mathbf{u}|)$ [7, 8, 10], i.e., there exists C > 0 such that

$$|\nu_{eff}(|\mathbf{u}|)\mathbf{u} - \nu_{eff}(|\mathbf{v}|)\mathbf{v}| \leq C |\mathbf{u} - \mathbf{v}|, \ \forall \mathbf{u}, \mathbf{v} \in \mathbb{R}^d,$$
(1.4)

$$(\nu_{eff}(|\mathbf{u}|)\mathbf{u} - \nu_{eff}(|\mathbf{v}|)\mathbf{v}) \cdot (\mathbf{u} - \mathbf{v}) \geq C(\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v}), \ \forall \mathbf{u}, \mathbf{v} \in \mathbb{R}^{d}.$$
(1.5)

A more general setting where the fluid rheology is defined implicitly has been analyzed in [5, 6]. The case where the fluid viscosity depends on the shear rate and pressure has been studied in [13, 12]. For both of these cases additional structure beyond (1.4) and (1.5) is required in order to establish existence and uniqueness of a solution.

A nonlinear Darcy fluid flow problem, with a permeability dependent upon the pressure was investigated by Azaïez, Ben Belgacem, Bernardi, and Chorfi [2], and Girault, Murat, and Salgado [11]. For a Lipschitz continuous permeability function, bounded above and bounded away from zero, existence of a solution $(\mathbf{u}, p) \in L^2(\Omega) \times H^1(\Omega)$ was established. Important in handling the nonlinear permeability function, in establishing existence of a solution, was the property that $p \in H^1(\Omega)$. In [2] the authors also investigated a spectral numerical approximation scheme for the nonlinear Darcy problem, assuming an axisymmetric domain Ω . A convergence analysis for the finite element discretization of that problem was given in [11].

Our interest in this paper is in relaxing the assumptions (1.4) and (1.5). Specifically, our interest is assuming that $\nu_{eff}(\cdot)$ is only Lipschitz continuous and both bounded above and bounded away from zero. However, relaxing the conditions (1.4) and (1.5) requires us to make an additional assumption regarding the argument of $\nu_{eff}(\cdot)$. In order to obtain a modeling system of equations for which a solution can be shown to exist, we replace **u** in $\nu_{eff}(|\mathbf{u}|)$ by a *smoothed* velocity, \mathbf{u}^s . The approach of regularizing the model with the introduction of \mathbf{u}^s is, in part, motivated by the fact that the Darcy fluid flow equations can be derived by *averaging*, e.g. volume averaging [16], homogenization [1], or mixture theory [14].

Presented in the Appendix are two smoothing operators for \mathbf{u} . One is a local averaging operator, whereby $\mathbf{u}^s(\mathbf{x})$ is obtained by averaging \mathbf{u} in a neighborhood of \mathbf{x} . The second smoothing operator, which is nonlocal, computes $\mathbf{u}^s(\mathbf{x})$ using a differential filter applied to \mathbf{u} . That is, \mathbf{u}^s is given by the solution to an elliptic differential equation whose right hand side is \mathbf{u} . For establishing the existence of a solution to (1.1)-(1.2), the key property of the smoothing operators is that they transform a weakly convergent sequence in $L^2(\Omega)$ into a sequence which converges strongly in $L^{\infty}(\Omega)$.

For the mathematical analysis of this problem it is convenient to have homogeneous boundary conditions. This is achieved by introducing a suitable change of variables. For example, assuming $\partial \Omega = \Gamma_{in} \cup \Gamma \cup \Gamma_{out}$, in the case the specified boundary conditions are

$$\mathbf{u} \cdot (-\mathbf{n}) = g_{in} \text{ on } \Gamma_{in}, \ \mathbf{u} \cdot \mathbf{n} = 0 \text{ on } \Gamma, \ p = p_{out} \text{ on } \Gamma_{out},$$

we introduce functions $\mathbf{b}(\mathbf{x})$ and $p_b(\mathbf{x})$ defined on Ω satisfying

$\nabla \cdot \mathbf{b} =$	$0,\mathrm{in}\Omega,$		
$\mathbf{b}\cdot\mathbf{n}~=~$	$-g_{in},{ m on}\Gamma_{in},$	$\nabla \cdot \nabla p_b =$	$0, \text{ in } \Omega,$
$\mathbf{b} \cdot \mathbf{t}_i =$	$0,{ m on}\Gamma_{in},$	10	p_{out} , on Γ_{out} ,
b =	$0,\mathrm{on}\partial\Omega\backslash\Gamma_{in},$	-	$0, \text{ on } \partial\Omega \backslash \Gamma_{out}.$
		$\overline{\partial \mathbf{n}}$ –	$0, 011 032 \setminus 1 out$.

where t_i , i = 1, ..., (d-1) denotes an orthogonal set of tangent vectors on Γ_{in} .

(In case the pressure is specified on the inflow boundary Γ_{in} , then $\mathbf{b} = \mathbf{0}$, and the definition of p_b is appropriately modified.)

With the change of variables: $\mathbf{u} = \mathbf{u}_0 + \mathbf{b}$ and $p = p_0 + p_b$, and subsequent relabeling $\mathbf{u}_0 = \mathbf{u}$, $p_0 = p$ and $\mathbf{f} = -\nabla p_b$ we obtain the following system of modeling equations:

$$\beta(|\mathbf{u}^s + \mathbf{b}|)\mathbf{u} + \beta(|\mathbf{u}^s + \mathbf{b}|)\mathbf{b} + \nabla p = \mathbf{f}, \text{ in } \Omega, \qquad (1.6)$$

$$\nabla \cdot \mathbf{u} = 0, \text{ in } \Omega, \qquad (1.7)$$

$$\mathbf{u} \cdot \mathbf{n} = 0, \text{ on } \Gamma_{in} \cup \Gamma, \qquad (1.8)$$

$$p = 0, \text{ on } \Gamma_{out}, \qquad (1.9)$$

where $\beta(|\mathbf{u}^s + \mathbf{b}|) = \nu_{eff}(|\mathbf{u}^s + \mathbf{b}|) k^{-1}$.

In the next section we show that, under suitable assumptions on $\beta(\cdot)$ and \mathbf{u}^s , there exists a unique solution to (1.6)-(1.9). An approximation scheme is presented in Section 3, and an a priori error estimate derived. A numerical example illustrating the approximation scheme and the a priori error estimate is presented in Section 4.

2 Existence and Uniqueness

In this section we investigate the existence and uniqueness of solutions to the nonlinear system equations (1.6)-(1.9). We assume that $\Omega \subset \mathbb{R}^d$, d = 2 or 3, is a convex polyhedral domain and for vectors in $\mathbb{R}^d |\cdot|$ denotes the Euclidean norm.

Throughout, we use C to denote a generic nonnegative constant, independent of the mesh parameter h, whose actual value may change from line to line in the analysis.

We make the following assumptions on $\beta(\cdot)$ and \mathbf{u}^s . Assumptions on $\beta(\cdot)$

 $\overline{\mathbf{A}\beta\mathbf{1}:\beta(\cdot):\mathbb{R}^{+}\longrightarrow} \mathbb{R}^{+},$ $\mathbf{A}\beta\mathbf{2}:0 < \beta_{min} \leq \beta(s) \leq \beta_{max}, \forall s \in \mathbb{R}^{+},$ $\mathbf{A}\beta\mathbf{3}: \beta \text{ is Lipschitz continuous, } |\beta(s_{1}) - \beta(s_{2})| \leq C_{\beta} |s_{1} - s_{2}|.$

Assumptions on \mathbf{u}^s $\overline{\mathbf{A}\mathbf{u}^s\mathbf{1}}$: For $\mathbf{u} \in L^2(\Omega)$, $\|\mathbf{u}^s\|_{L^{\infty}(\Omega)} \leq C_s \|\mathbf{u}\|_{L^2(\Omega)}$, $\mathbf{A}\mathbf{u}^s\mathbf{2}$: For $\{\mathbf{u}_n\}_{n=1}^{\infty} \subset L^2(\Omega)$, with \mathbf{u}_n converging weakly to $\mathbf{u} \in L^2(\Omega)$, then $\{\mathbf{u}_n^s\}_{n=1}^{\infty}$ converges to \mathbf{u}^s in $L^{\infty}(\Omega)$,

 $Au^{s}3$: The mapping $u \mapsto u^{s}$ is linear.

 $\frac{\text{Weak formulation of (1.6)-(1.9)}}{\text{Let } X = \{ \mathbf{v} \in H_{div}(\Omega) : \mathbf{v} \cdot \mathbf{n} = 0, \text{ on } \Gamma_{in} \cup \Gamma \}. \text{ We use}$

$$(f, g) := \int_{\Omega} f \cdot g \, d\Omega$$
, and $||f|| := (f, f)^{1/2}$

to denote the L^2 inner product and the L^2 norm over Ω , respectively, for both scalar and vector valued functions. Additionally, we introduce the norm

$$\|\mathbf{v}\|_{X} = \left(\int_{\Omega} \left(\nabla \cdot \mathbf{v} \,\nabla \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{v}\right) d\Omega\right)^{1/2}$$

Remark: For $\mathbf{v} \in H_{div}(\Omega)$ it follows that $\mathbf{v} \cdot \mathbf{n} \in H^{-1/2}(\partial \Omega)$. For the interpretation of the condition $\mathbf{v} \cdot \mathbf{n} = 0$ on $\Gamma_{in} \cup \Gamma$ see [9, 15].

We restate (1.6)-(1.9) as: Given $\mathbf{b}, \mathbf{f} \in L^2(\Omega)$, find $(\mathbf{u}, p) \in X \times L^2(\Omega)$, such that for all $\mathbf{v} \in X$ and $q \in L^2(\Omega)$

$$(\beta(|\mathbf{u}^s + \mathbf{b}|)\mathbf{u}, \mathbf{v}) - (p, \nabla \cdot \mathbf{v}) + (\beta(|\mathbf{u}^s + \mathbf{b}|)\mathbf{b}, \mathbf{v}) = (\mathbf{f}, \mathbf{v}), \qquad (2.1)$$

$$(q, \nabla \cdot \mathbf{u}) = 0. \tag{2.2}$$

For the spaces X and $L^2(\Omega)$ we have the following inf-sup condition

$$\inf_{q \in L^2(\Omega)} \sup_{\mathbf{v} \in X} \frac{(q, \nabla \cdot \mathbf{v})}{\|q\| \|\mathbf{v}\|_X} \ge c_0 > 0.$$

$$(2.3)$$

We begin by establishing boundedness of any solution to (2.1)-(2.2).

Lemma 2.1 Any solution $(\mathbf{u}, p) \in X \times L^2(\Omega)$ to (2.1)-(2.2) satisfies

$$\|\mathbf{u}\|_{X} + \|p\| \leq C \left(\|\mathbf{b}\| + \|\mathbf{f}\|\right).$$
(2.4)

Proof: From (2.2) and that $\nabla \cdot X \subset L^2(\Omega)$ we have that any solution **u** to (2.1)-(2.2) satisfies

$$\|\nabla \cdot \mathbf{u}\| = 0. \tag{2.5}$$

With the choice $\mathbf{v} = \mathbf{u}$, q = p, subtracting (2.2) from (2.1), and using assumption $\mathbf{A}\beta \mathbf{2}$ yields

$$(\beta(|\mathbf{u}^s + \mathbf{b}|)\mathbf{u}, \mathbf{u}) = -(\beta(|\mathbf{u}^s + \mathbf{b}|)\mathbf{b}, \mathbf{u}) + (\mathbf{f}, \mathbf{u}), \beta_{min} \|\mathbf{u}\|^2 \leq \beta_{max} \|\mathbf{b}\| \|\mathbf{u}\| + \|\mathbf{f}\| \|\mathbf{u}\|.$$

$$(2.6)$$

Combining (2.5) and (2.6) we obtain the stated bound for **u**. The estimate for p is obtained using the inf-sup condition (2.3).

$$\begin{aligned} \|p\| &\leq \frac{1}{c_0} \sup_{\mathbf{v} \in X} \frac{(p, \nabla \cdot \mathbf{v})}{\|\mathbf{v}\|_X} &= \frac{1}{c_0} \sup_{\mathbf{v} \in X} \frac{(\beta(|\mathbf{u}^s + \mathbf{b}|)\mathbf{u}, \mathbf{v}) + (\beta(|\mathbf{u}^s + \mathbf{b}|)\mathbf{b}, \mathbf{v}) - (\mathbf{f}, \mathbf{v})}{\|\mathbf{v}\|_X} \\ &\leq \frac{1}{c_0} \left(\|\beta(|\mathbf{u}^s + \mathbf{b}|)\mathbf{u}\| + \|\beta(|\mathbf{u}^s + \mathbf{b}|)\mathbf{b}\| + \|\mathbf{f}\| \right) \\ &\leq \frac{1}{c_0} \left(\beta_{max} \left(\|\mathbf{u}\| + \|\mathbf{b}\| \right) + \|\mathbf{f}\| \right), \end{aligned}$$

from which the stated bound follows.

Define
$$Z = \{ \mathbf{v} \in X : (q, \nabla \cdot \mathbf{v}) = 0, \forall q \in L^2(\Omega) \}$$

Because of the inf-sup condition (2.3), the weak formulation (2.1)-(2.2) can be equivalently stated as: Given **b**, $\mathbf{f} \in L^2(\Omega)$), find $\mathbf{u} \in Z$, such that for all $\mathbf{v} \in Z$

$$(\beta(|\mathbf{u}^s + \mathbf{b}|)\mathbf{u}, \mathbf{v}) + (\beta(|\mathbf{u}^s + \mathbf{b}|)\mathbf{b}, \mathbf{v}) = (\mathbf{f}, \mathbf{v}).$$
(2.7)

Remark: For $\mathbf{v} \in Z$, $\|\mathbf{v}\|_X = \|\mathbf{v}\|$, as $\|\nabla \cdot \mathbf{v}\| = 0$.

To establish the existence of a solution to (2.7) we use the Leray-Schauder fixed point theorem. To do this we show that a solution to (2.7) is a fixed point of a compact mapping Φ .

Theorem 2.1 For $\beta(\cdot)$ and \mathbf{u}^s satisfying assumptions $\mathbf{A}\beta \mathbf{1} - \mathbf{A}\beta \mathbf{3}$ and $\mathbf{A}\mathbf{u}^s \mathbf{1} - \mathbf{A}\mathbf{u}^s \mathbf{2}$, respectively, there exists a solution \mathbf{u} to (2.7).

Proof: Let $\Phi : Z \longrightarrow Z$ be defined by $\Phi(\mathbf{u}) = \mathbf{w}$, where \mathbf{w} satisfies

$$(\beta(|\mathbf{u}^s + \mathbf{b}|)\mathbf{w}, \mathbf{v}) + (\beta(|\mathbf{u}^s + \mathbf{b}|)\mathbf{b}, \mathbf{v}) = (\mathbf{f}, \mathbf{v}).$$
(2.8)

That Φ is well defined follows from $\mathbf{A}\beta \mathbf{2}$ and the Lax-Milgram theorem.

To show that Φ is a compact operator, let $\{\mathbf{u}_n\}_{n=1}^{\infty}$ denote a bounded sequence in Z. From $\{\mathbf{u}_n\}_{n=1}^{\infty}$ we can extract a subsequence, which we again denote as $\{\mathbf{u}_n\}_{n=1}^{\infty}$, such that $\{\mathbf{u}_n\}_{n=1}^{\infty}$ converges weakly to $\mathbf{u} \in Z$. For $\mathbf{w}_n = \Phi(\mathbf{u}_n)$, using (2.8)

$$\begin{aligned} (\beta(|\mathbf{u}^s + \mathbf{b}|)\mathbf{w}, \mathbf{v}) &- (\beta(|\mathbf{u}^s_n + \mathbf{b}|)\mathbf{w}_n, \mathbf{v}) &= -(\beta(|\mathbf{u}^s + \mathbf{b}|)\mathbf{b}, \mathbf{v}) + (\beta(|\mathbf{u}^s_n + \mathbf{b}|)\mathbf{b}, \mathbf{v}) \\ \iff (\beta(|\mathbf{u}^s_n + \mathbf{b}|)(\mathbf{w} - \mathbf{w}_n), \mathbf{v}) &= -((\beta(|\mathbf{u}^s + \mathbf{b}|) - \beta(|\mathbf{u}^s_n + \mathbf{b}|))\mathbf{w}, \mathbf{v}) \\ &- ((\beta(|\mathbf{u}^s + \mathbf{b}|) - \beta(|\mathbf{u}^s_n + \mathbf{b}|))\mathbf{b}, \mathbf{v}) .\end{aligned}$$

With $\mathbf{v} = \mathbf{w} - \mathbf{w}_n$, and using $\mathbf{A}\beta \mathbf{2}$ and $\mathbf{A}\beta \mathbf{3}$

$$\begin{aligned} \beta_{min} \|\mathbf{w} - \mathbf{w}_n\|^2 &\leq \|C_{\beta} | \left(|\mathbf{u}^s + \mathbf{b}| - |\mathbf{u}_n^s + \mathbf{b}| \right) | \mathbf{w} \| \|\mathbf{w} - \mathbf{w}_n \| \\ &+ \|C_{\beta} | \left(|\mathbf{u}^s + \mathbf{b}| - |\mathbf{u}_n^s + \mathbf{b}| \right) | \mathbf{b} \| \|\mathbf{w} - \mathbf{w}_n \| \\ &\leq \|C_{\beta} | \mathbf{u}^s - \mathbf{u}_n^s | \mathbf{w} \| \|\mathbf{w} - \mathbf{w}_n \| + \|C_{\beta} | \mathbf{u}^s - \mathbf{u}_n^s | \mathbf{b} \| \|\mathbf{w} - \mathbf{w}_n \| \\ &\leq C_{\beta} \sqrt{d} \| \mathbf{u}^s - \mathbf{u}_n^s \|_{L^{\infty}(\Omega)} \|\mathbf{w}\| \|\mathbf{w} - \mathbf{w}_n \| \\ &+ C_{\beta} \sqrt{d} \| \mathbf{u}^s - \mathbf{u}_n^s \|_{L^{\infty}(\Omega)} \|\mathbf{b}\| \| \mathbf{w} - \mathbf{w}_n \| \\ &+ C_{\beta} \sqrt{d} \| \mathbf{u}^s - \mathbf{u}_n^s \|_{L^{\infty}(\Omega)} \|\mathbf{b}\| \| \mathbf{w} - \mathbf{w}_n \| \\ &\Rightarrow \| \mathbf{w} - \mathbf{w}_n \|_X = \| \mathbf{w} - \mathbf{w}_n \| \leq \frac{C_{\beta} \sqrt{d}}{\beta_{min}} \| \mathbf{u}^s - \mathbf{u}_n^s \|_{L^{\infty}(\Omega)} \left(\| \mathbf{w} \| + \| \mathbf{b} \| \right), \end{aligned}$$

from which, with $Au^{s}2$, we can conclude that Φ is a compact operator.

For $r = \frac{\beta_{max}}{\beta_{min}} (\|\mathbf{b}\| + \|\mathbf{f}\|)$, from Lemma 2.1 we have that $\|\Phi(\mathbf{u})\| \leq r$, $\forall \mathbf{u} \in \mathbb{Z}$. Then, applying the Leray-Schauder fixed point theorem [17] we obtain that there exists a $\mathbf{u} \in \mathbb{Z}$ such that $\mathbf{u} = \Phi(\mathbf{u})$.

Under small data conditions we have the following theorem guaranteeing uniqueness of solutions to (2.7).

Theorem 2.2 With the stated assumptions $\mathbf{A}\beta\mathbf{1} - \mathbf{A}\beta\mathbf{3}$ and $\mathbf{A}\mathbf{u}^{s}\mathbf{1} - \mathbf{A}\mathbf{u}^{s}\mathbf{2}$, and the condition that $\|\mathbf{b}\| \leq \max\left\{\beta_{min}/\beta_{max}, \beta_{min}/(C_{\beta}\sqrt{d}C_{s})\right\}$, if a solution \mathbf{u} to (2.7) exists satisfying

$$\|\mathbf{u}\| < \max\left\{\frac{\beta_{min}}{\beta_{max}}, \frac{\beta_{min}}{C_{\beta}\sqrt{d}C_{s}}\right\} - \|\mathbf{b}\|, \qquad (2.9)$$

then there is no other solution to (2.7).

Proof: Suppose that both **u** and **w** $\in Z$ satisfy (2.7), i.e., together with (2.7) we have that

$$(\beta(|\mathbf{w}^s + \mathbf{b}|)\mathbf{w}, \mathbf{v}) + (\beta(|\mathbf{w}^s + \mathbf{b}|)\mathbf{b}, \mathbf{v}) - (\mathbf{f}, \mathbf{v}) = 0, \quad \forall \mathbf{v} \in \mathbb{Z}.$$
(2.10)

With $\mathbf{v} = \mathbf{u} - \mathbf{w}$, subtracting (2.10) from (2.7) and using the bounds for $\beta(\cdot)$ we obtain

$$\begin{aligned} (\beta(|\mathbf{w}^s + \mathbf{b}|)(\mathbf{u} - \mathbf{w}), (\mathbf{u} - \mathbf{w})) &+ ((\beta(|\mathbf{u}^s + \mathbf{b}|) - \beta(|\mathbf{w}^s + \mathbf{b}|))\mathbf{u}, (\mathbf{u} - \mathbf{w})) \\ &+ ((\beta(|\mathbf{u}^s + \mathbf{b}|) - \beta(|\mathbf{w}^s + \mathbf{b}|))\mathbf{b}, (\mathbf{u} - \mathbf{w})) = 0 \ (2.11) \\ \Rightarrow \beta_{min} \|\mathbf{u} - \mathbf{w}\|^2 &\leq \beta_{max} \|\mathbf{u}\| \|\mathbf{u} - \mathbf{w}\| + \beta_{max} \|\mathbf{b}\| \|\mathbf{u} - \mathbf{w}\| \end{aligned}$$

$$\Rightarrow (\beta_{min} - \beta_{max}(\|\mathbf{u}\| + \|\mathbf{b}\|))\|\mathbf{u} - \mathbf{w}\| \le 0$$

$$(2.12)$$

$$\Rightarrow \mathbf{w} = \mathbf{u}, \text{ provided} \qquad \|\mathbf{u}\| < \frac{\rho_{min}}{\beta_{max}} - \|\mathbf{b}\|.$$
(2.13)

Alternatively, from (2.11), using $\mathbf{A}\beta\mathbf{3}$ and $\mathbf{A}\mathbf{u}^{\mathbf{s}}\mathbf{1}$,

$$\beta_{min} \|\mathbf{u} - \mathbf{w}\|^{2} \leq C_{\beta} \sqrt{d} \|\mathbf{u}^{s} - \mathbf{w}^{s}\|_{L^{\infty}(\Omega)} \|\mathbf{u}\| \|\mathbf{u} - \mathbf{w}\| + C_{\beta} \sqrt{d} \|\mathbf{u}^{s} - \mathbf{w}^{s}\|_{L^{\infty}(\Omega)} \|\mathbf{b}\| \|\mathbf{u} - \mathbf{w}\| \leq C_{\beta} \sqrt{d} C_{s} (\|\mathbf{u}\| + \|\mathbf{b}\|) \|\mathbf{u} - \mathbf{w}\|^{2}$$

$$\Rightarrow (\beta_{min} - C_{\beta} \sqrt{d} C_{s} (\|\mathbf{u}\| + \|\mathbf{b}\|)) \|\mathbf{u} - \mathbf{w}\|^{2} \leq 0$$

$$\Rightarrow \mathbf{w} = \mathbf{u}, \text{ provided} \qquad \|\mathbf{u}\| < \frac{\beta_{min}}{C_{\beta} \sqrt{d} C_{s}} - \|\mathbf{b}\|.$$

3 Finite Element Approximation

In this section we investigate the finite element approximation to (\mathbf{u}, p) satisfying (1.6)-(1.9).

Let T_h be a triangulation of Ω made of triangles (in \mathbb{R}^2) or tetrahedrons (in \mathbb{R}^3). Thus, the computational domain is defined by

$$\overline{\Omega} = \bigcup_{K \in T_h} \overline{K}.$$

We assume that there exist constants c_1, c_2 such that

$$c_1 h \le h_K \le c_2 \rho_K \,,$$

where h_K is the diameter of triangle (tetrahedron) K, ρ_K is the diameter of the greatest ball (sphere) included in K, and $h = \max_{K \in T_h} h_K$. For $k \in \mathbb{N}$, let $P_k(A)$ denote the space of polynomials on Aof degree no greater than k, and $RT_k(T_h)$ the (Piola) affine transformation of the Raviart-Thomas elements of order k on the unit triangle. We define the finite element spaces X_h , X_h^s and Q_h as follows.

$$X_h := \{ RT_k(T_h) \cap X \} , \qquad (3.1)$$

$$X_h^s := \left\{ \mathbf{v} \in X \cap C^0(\overline{\Omega}) : \mathbf{v}|_K \in P_l(K), \, \forall K \in T_h \right\},$$
(3.2)

$$Q_h := \{ q \in L^2(\Omega) : q |_K \in P_k(K), \, \forall K \in T_h \}.$$
(3.3)

Additionally, let $Z_h := \{ \mathbf{v} \in X_h : (q, \mathbf{v}) = 0, \forall q \in Q_h \}$. (3.4)

Note that as $\nabla \cdot X_h \subset Q_h$, for $\mathbf{v} \in Z_h$ we have that $\|\nabla \cdot \mathbf{v}\| = 0$, thus $\|\mathbf{v}\|_X = \|\mathbf{v}\|$.

For X_h and Q_h defined in (3.1) and (3.3), the following discrete inf-sup condition is satisfied

$$\inf_{q \in Q_h} \sup_{\mathbf{v} \in X_h} \frac{(q, \nabla \cdot \mathbf{v})}{\|q\|_Q \|\mathbf{v}\|_X} \ge c_0 > 0.$$
(3.5)

With X_h , Z_h , Q_h defined above, we have the following approximation properties [4, 3]. For $\mathbf{u} \in Z \cap H^{k+1}(\Omega)$ and $p \in H^{k+1}(\Omega)$

$$\inf_{\mathbf{v}\in Z_h} \|\mathbf{u} - \mathbf{v}\|_X = \inf_{\mathbf{v}\in Z_h} \|\mathbf{u} - \mathbf{v}\| \leq C \inf_{\mathbf{v}\in X_h} \|\mathbf{u} - \mathbf{v}\| = C h^{k+1} \|\mathbf{u}\|_{H^{k+1}(\Omega)}, \quad (3.6)$$

$$\inf_{q \in Q_h} \|p - q\| \leq C h^{k+1} \|p\|_{H^{k+1}(\Omega)}.$$
(3.7)

The approximation scheme we investigate is: Given $\mathbf{b}, \mathbf{f} \in L^2(\Omega)$, determine $(\mathbf{u}_h, p_h) \in X_h \times Q_h$, satisfying

$$(\beta(|\mathbf{u}_h^s + \mathbf{b}|)\mathbf{u}_h, \mathbf{v}) - (p_h, \nabla \cdot \mathbf{v}) + (\beta(|\mathbf{u}_h^s + \mathbf{b}|)\mathbf{b}, \mathbf{v}) = (\mathbf{f}, \mathbf{v}), \ \forall \mathbf{v} \in X_h$$
(3.8)

(q

$$, \nabla \cdot \mathbf{u}_h) = 0, \ \forall q \in Q_h.$$
 (3.9)

Regarding \mathbf{u}_h^s , note that applying a smoother to a function $\mathbf{v} \in X_h$ (typically) does not result in $\mathbf{v}^s \in X_h^s$. Therefore, we let $\tilde{\mathbf{u}}_h^s \in H^{l+1}(\Omega) \cap C^0(\Omega)$ denote the result of the smoother applied to \mathbf{u}_h , and define

$$\mathbf{u}_h^s(x) = I_h \tilde{\mathbf{u}}_h^s(x), \qquad (3.10)$$

where $I_h : C^0(\Omega) \longrightarrow X_h^s$ denotes an interpolation operator.

We assume that the smoothed velocity $\tilde{\mathbf{u}}_h^s$ is sufficiently regular such that there exists a constant dependent on $\tilde{\mathbf{u}}_h^s$, $C_{\tilde{\mathbf{u}}_h^s}$ such that

$$\|\tilde{\mathbf{u}}_h^s - I_h \tilde{\mathbf{u}}_h^s\|_{L^{\infty}(\Omega)} \leq C_{\tilde{\mathbf{u}}_h^s} h^{l+1}.$$

$$(3.11)$$

The precise dependence of $C_{\tilde{\mathbf{u}}_h^s}$ on $\tilde{\mathbf{u}}_h^s$ will depend on the particular smoother used.

The existence, uniqueness, and boundedness of the solutions (\mathbf{u}_h^n, p_h^n) to (3.8)-(3.9) are established in a completely analogous manner as for the continuous problem.

Corollary 3.1 (See Lemma 2.1.) Any solution $(\mathbf{u}, p) \in X_h \times Q_h$ to (3.8)-(3.9) satisfies

$$\|\mathbf{u}_h\|_X + \|p_h\| \le C \left(\|\mathbf{b}\| + \|\mathbf{f}\|\right).$$
(3.12)

Corollary 3.2 (See Theorem 2.1.) For $\beta(\cdot)$ and \mathbf{u}_h^s satisfying assumptions $\mathbf{A}\beta\mathbf{1}-\mathbf{A}\beta\mathbf{3}$ and $\mathbf{A}\mathbf{u}^s\mathbf{1}-\mathbf{A}\mathbf{u}^s\mathbf{2}$, respectively, there exists a solution (\mathbf{u}_h, p_h) to (3.8)-(3.9).

Proof: The existence of \mathbf{u}_h is established as that for \mathbf{u} in Theorem 2.1. The existence of p_h then follows from the discrete inf-sup condition (3.5).

In the next lemma we present the a priori error estimate for the approximation given by (3.8)-(3.9).

Lemma 3.1 For $(\mathbf{u}, p) \in H^{k+1}(\Omega) \cap X \times H^{k+1}(\Omega)$ satisfying (2.1)-(2.2), (\mathbf{u}_h, p_h) satisfying (3.8)-(3.9), and \mathbf{u} satisfying the small data condition

$$C_{\beta}\sqrt{d}C_{s}\left(\left\|\mathbf{u}\right\| + \left\|\mathbf{b}\right\|\right) < \beta_{min}, \qquad (3.13)$$

and assuming that $C_{\tilde{\mathbf{u}}_h^s}$ given in (3.11) is bounded by a constant $C_{\mathbf{u}}$, we have that there exists C > 0 such that

$$\|\mathbf{u} - \mathbf{u}_h\|_X + \|p - p_h\| \le C \left(h^{k+1} \|\mathbf{u}\|_{H^{k+1}(\Omega)} + h^{k+1} \|p\|_{H^{k+1}(\Omega)} + C_{\mathbf{u}} h^{l+1} \right).$$
(3.14)

Remark: The condition (3.13) guarantees uniqueness of the solution to (3.8)-(3.9), see Theorem 2.2.

Proof: We have that the solutions \mathbf{u}_h and \mathbf{u} to (3.8)-(3.9) and (2.1)-(2.2), respectively, satisfy the following equations for all $\mathbf{v} \in Z_h$:

$$(\beta(|\mathbf{u}_h^s + \mathbf{b}|)\mathbf{u}_h, \mathbf{v}) + (\beta(|\mathbf{u}_h^s + \mathbf{b}|)\mathbf{b}, \mathbf{v}) = (\mathbf{f}, \mathbf{v}), \qquad (3.15)$$

and

$$(\beta(|\mathbf{u}_h^s + \mathbf{b}|)\mathbf{u}, \mathbf{v}) + (\beta(|\mathbf{u}_h^s + \mathbf{b}|)\mathbf{b}, \mathbf{v}) = (\mathbf{f}, \mathbf{v}) - ((\beta(|\mathbf{u}^s + \mathbf{b}|) - \beta(|\mathbf{u}_h^s + \mathbf{b}|))\mathbf{u}, \mathbf{v}) - ((\beta(|\mathbf{u}^s + \mathbf{b}|) - \beta(|\mathbf{u}_h^s + \mathbf{b}|))\mathbf{b}, \mathbf{v}) .$$
(3.16)

With $\mathbf{e} = \mathbf{u} - \mathbf{u}_h$, subtracting equations (3.15) and (3.16) we obtain

$$(\beta(|\mathbf{u}_{h}^{s} + \mathbf{b}|)\mathbf{e}, \mathbf{v}) = -((\beta(|\mathbf{u}^{s} + \mathbf{b}|) - \beta(|\mathbf{u}_{h}^{s} + \mathbf{b}|))\mathbf{u}, \mathbf{v}) -((\beta(|\mathbf{u}^{s} + \mathbf{b}|) - \beta(|\mathbf{u}_{h}^{s} + \mathbf{b}|))\mathbf{b}, \mathbf{v}), \forall \mathbf{v} \in Z_{h}.$$

$$(3.17)$$

For $\mathbf{U} \in Z_h$, let $\mathbf{e} = (\mathbf{u} - \mathbf{U}) + (\mathbf{U} - \mathbf{u}_h) := \mathbf{\Lambda} + \mathbf{E}$. Then, for $\mathbf{v} = \mathbf{E}$, (3.17) becomes

$$(\beta(|\mathbf{u}_{h}^{s} + \mathbf{b}|)\mathbf{E}, \mathbf{E}) = -(\beta(|\mathbf{u}_{h}^{s} + \mathbf{b}|)\mathbf{\Lambda}, \mathbf{E}) - ((\beta(|\mathbf{u}^{s} + \mathbf{b}|) - \beta(|\mathbf{u}_{h}^{s} + \mathbf{b}|))\mathbf{u}, \mathbf{E}) - ((\beta(|\mathbf{u}^{s} + \mathbf{b}|) - \beta(|\mathbf{u}_{h}^{s} + \mathbf{b}|))\mathbf{b}, \mathbf{E}).$$
(3.18)

Next we bound each of the terms in (3.18).

$$(\beta(|\mathbf{u}_h^s + \mathbf{b}|)\mathbf{E}, \mathbf{E}) \geq \beta_{min} \|\mathbf{E}\|^2.$$
(3.19)

$$-\left(\beta(|\mathbf{u}_{h}^{s}+\mathbf{b}|)\mathbf{\Lambda}, \mathbf{E}\right) \leq \beta_{max} \|\mathbf{\Lambda}\| \|\mathbf{E}\| \leq \epsilon_{1} \|\mathbf{E}\|^{2} + \frac{1}{4\epsilon} \beta_{max}^{2} \|\mathbf{\Lambda}\|^{2}.$$
(3.20)

$$- \left(\left(\beta(|\mathbf{u}^{s} + \mathbf{b}|) - \beta(|\mathbf{u}_{h}^{s} + \mathbf{b}|)\right)\mathbf{u}, \mathbf{E}\right) \leq \|\left(\beta(|\mathbf{u}^{s} + \mathbf{b}|) - \beta(|\mathbf{u}_{h}^{s} + \mathbf{b}|)\right)\mathbf{u}\|\|\mathbf{E}\|$$

$$\leq C_{\beta}\sqrt{d}\|\mathbf{u}^{s} - \mathbf{u}_{h}^{s}\|_{L^{\infty}(\Omega)}\|\mathbf{u}\|\|\mathbf{E}\|$$

$$\leq C_{\beta}\sqrt{d}\left(\|\mathbf{u}^{s} - \tilde{\mathbf{u}}_{h}^{s}\|_{L^{\infty}(\Omega)} + \|\tilde{\mathbf{u}}_{h}^{s} - \mathbf{u}_{h}^{s}\|_{L^{\infty}(\Omega)}\right)\|\mathbf{u}\|\|\mathbf{E}\|$$

$$\leq C_{\beta}\sqrt{d}\left(C_{s}\|\mathbf{u} - \mathbf{u}_{h}\| + \|\tilde{\mathbf{u}}_{h}^{s} - I_{h}\tilde{\mathbf{u}}_{h}^{s}\|_{L^{\infty}(\Omega)}\right)\|\mathbf{u}\|\|\mathbf{E}\|$$

$$\leq C_{\beta}\sqrt{d}\left(C_{s}(\|\mathbf{A}\| + \|\mathbf{E}\|) + \|\tilde{\mathbf{u}}_{h}^{s} - I_{h}\tilde{\mathbf{u}}_{h}^{s}\|_{L^{\infty}(\Omega)}\right)\|\mathbf{u}\|\|\mathbf{E}\|$$

$$\leq C_{\beta}\sqrt{d}C_{s}\|\mathbf{u}\|\|\mathbf{E}\|^{2} + \epsilon_{2}\|\mathbf{E}\|^{2} + \frac{1}{2\epsilon_{2}}C_{\beta}^{2}d\|\mathbf{u}\|^{2}\left(C_{s}^{2}\|\mathbf{A}\|^{2} + \|\tilde{\mathbf{u}}_{h}^{s} - I_{h}\tilde{\mathbf{u}}_{h}^{s}\|_{L^{\infty}(\Omega)}^{2}\right)(3.21)$$

A similar bound to that given in (3.21) holds for the third term on the right hand side of (3.18). Combining the estimates (3.19)-(3.21) with (3.18) we have

$$\left(\beta_{min} - \epsilon_1 - C_\beta \sqrt{d} C_s \left(\|\mathbf{u}\| + \|\mathbf{b}\| \right) - 2\epsilon_2 \right) \|\mathbf{E}\|^2 \leq \left(\frac{1}{4\epsilon_1} \beta_{max}^2 + \frac{1}{2\epsilon_2} C_\beta^2 dC_s^2 \left(\|\mathbf{u}\|^2 + \|\mathbf{b}\|^2 \right) \right) \|\mathbf{\Lambda}\|^2 + \frac{1}{2\epsilon_2} C_\beta^2 d \left(\|\mathbf{u}\|^2 + \|\mathbf{b}\|^2 \right) \left\| \tilde{\mathbf{u}}_h^s - I_h \tilde{\mathbf{u}}_h^s \right\|_{L^{\infty}(\Omega)}^2.$$

$$(3.22)$$

Hence, in view of the stated hypothesis (3.13), there exists C > 0 such that $\|\mathbf{E}\| \leq C (\|\mathbf{\Lambda}\| + \|\tilde{\mathbf{u}}_h^s - I_h \tilde{\mathbf{u}}_h^s\|_{L^{\infty}(\Omega)})$. Finally, from the triangle inequality and (3.6) we have that

$$\|\mathbf{u} - \mathbf{u}_h\|_X = \|\mathbf{u} - \mathbf{u}_h\| \le \|\mathbf{\Lambda}\| + \|\mathbf{E}\| \le C \left(h^{k+1} \|\mathbf{u}\|_{H^{k+1}(\Omega)} + C_{\mathbf{u}} h^{l+1}\right).$$
(3.23)

To obtain the error estimate for the pressure, let $P \in Q_h$. Then, from (3.5) we have that there exists $\mathbf{v} \in X_h$ such that

$$c_0 \|P - p_h\| \leq \frac{(P - p_h, \nabla \cdot \mathbf{v})}{\|\mathbf{v}\|_X} = \frac{(P, \nabla \cdot \mathbf{v}) - (p_h, \nabla \cdot \mathbf{v})}{\|\mathbf{v}\|_X}.$$

Using (3.8) and (2.1) we obtain

$$\begin{aligned} c_0 \|\mathbf{v}\|_X \|P - p_h\| &\leq (P, \nabla \cdot \mathbf{v}) + (\mathbf{f}, \mathbf{v}) - (\beta(|\mathbf{u}_h^s + \mathbf{b}|)\mathbf{u}_h, \mathbf{v}) - (\beta(|\mathbf{u}_h^s + \mathbf{b}|)\mathbf{b}, \mathbf{v}) \\ &= (P, \nabla \cdot \mathbf{v}) - (p, \nabla \cdot \mathbf{v}) + (\beta(|\mathbf{u}^s + \mathbf{b}|)\mathbf{u}, \mathbf{v}) + (\beta(|\mathbf{u}^s + \mathbf{b}|)\mathbf{b}, \mathbf{v}) \\ &- (\beta(|\mathbf{u}_h^s + \mathbf{b}|)\mathbf{u}_h, \mathbf{v}) - (\beta(|\mathbf{u}_h^s + \mathbf{b}|)\mathbf{b}, \mathbf{v}) \\ &= (P - p, \nabla \cdot \mathbf{v}) + (\beta(|\mathbf{u}_h^s + \mathbf{b}|) (\mathbf{u} - \mathbf{u}_h), \mathbf{v}) + ((\beta(|\mathbf{u}^s + \mathbf{b}|) - \beta(|\mathbf{u}_h^s + \mathbf{b}|)) \mathbf{u}, \mathbf{v}) \\ &+ ((\beta(|\mathbf{u}^s + \mathbf{b}|) - \beta(|\mathbf{u}_h^s + \mathbf{b}|)) \mathbf{b}, \mathbf{v}) \\ &\Rightarrow c_0 \|P - p_h\| &\leq \|P - p\| + \beta_{max} \|\mathbf{u} - \mathbf{u}_h\| \\ &+ C_\beta \sqrt{d} \left(C_s \|\mathbf{u} - \mathbf{u}_h\| + \|\tilde{\mathbf{u}}_h^s - I_h \tilde{\mathbf{u}}_h\|_{L^{\infty}(\Omega)} \right) (\|\mathbf{u}\| + \|\mathbf{b}\|). \end{aligned}$$

Using the triangle inequality, (2.4), (3.7), (3.11) and (3.23) we obtain the stated estimate for $||p - p_h||$.

Remark: The $L^{\infty}(\Omega)$ norm used for the term $(\tilde{\mathbf{u}}_{h}^{s} - I_{h}\tilde{\mathbf{u}}_{h}^{s})$ and the $L^{2}(\Omega)$ norm used for \mathbf{u} and \mathbf{b} in (3.22) may be interchanged, assuming that the functions \mathbf{u} and \mathbf{b} are sufficiently regular.

4 Numerical Computations

In this section we present a numerical example to demonstrate the numerical approximation scheme (3.8)-(3.9), and investigate the a priori error estimate (3.14).

Let $\Omega = (-1, 1) \times (0, 1)$, $\beta(s) = v_{\infty} + (v_0 - v_{\infty})/(1 + ks^{2-r})$, with parameters $v_{\infty} = 1$, $v_0 = 5$, k = 1, and r = 1/2. ($\beta(\cdot)$ represents the Cross model for the effective viscosity for a generalized Newtonian fluid.) The true solution **u** and *p* are taken to be

$$\mathbf{u}(x,y) = \begin{bmatrix} \sin(\pi x) \cos(\pi y) \\ \cos(\pi x) \sin(\pi y) \end{bmatrix}, \quad p(x,y) = xy.$$
(4.1)

For this choice of \mathbf{u} , $\nabla \cdot \mathbf{u} \neq 0$, hence a right hand side function is added to (3.9). The boundary conditions used are $\mathbf{u} \cdot \mathbf{n}$ along $\{1\} \times (0, 1), (-1, 1) \times \{1\}, \{-1\} \times (0, 1), \text{ with } p = 0$ weakly imposed along $(-1, 1) \times \{0\}$. A computation mesh corresponding to mesh parameter h = 1/4 is presented in Figure 4.1. Plots of $\beta(|\mathbf{u}|)$, \mathbf{u} and p are given in Figures 4.2, 4.3 and 4.4, respectively.

Example 1.

For \mathbf{u}_h^s , the interpolate of $\tilde{\mathbf{u}}_h^s$ (the smoothed function of \mathbf{u}_h), we compute a continuous, piecewise quadratic, velocity by taking a simple average of \mathbf{u}_h at the nodal points of \mathbf{u}_h^s . Computations were performed using $RT_0 - discP_0$, $RT_1 - discP_1$, and $RT_2 - discP_2$ elements for the velocity and pressure. (By RT_k we are referring to Raviart-Thomas elements of degree k, and $discP_k$ refers to the space of discontinuous scalar functions which are polynomials of degree less that or equal to k on each triangle in the triangulation.) The results, together with the experimental convergence rates are presented in Table 4.1. The experimental convergence rates are consistent with those predicted by (3.14) for l = 2. (Regarding the $O(h^4)$ experimental convergence rate for the pressure using $RT_2 - discP_2$ elements, note that the true solution for the pressure lies in the $discP_2$ approximation space.)

Example 2.

In order to investigate the dependence of the approximation on the interpolant of the smoother,

Figure 4.1: Computational mesh for h = 1/4.

Figure 4.3: Plot of the velocity flow field **u**.

Figure 4.2: Plot of $\beta(|\mathbf{u}|)$.

Figure 4.4: Plot of the pressure function p.

in this case we take \mathbf{u}_h^s to be a continuous, piecewise linear function, obtained by taking a simple average of $\tilde{\mathbf{u}}_h^s$ at the vertices of the triangles in the triangulations. The results obtained using RT1 - discP1, and RT2 - discP2 approximating elements are presented in Table 4.2. In this case (l = 1) we observe optimal convergence for RT1 - discP1 (and RT0 - discP0, results not included). However, the experimental convergence rates for the RT2 - discP2 approximation is limited to 2 for the velocity and pressure, consistent with (3.14).

A Example of a local smoothing function

In this section we give an example of a local smoothing function which satisfies properties $Au^{s}1$ and $Au^{s}2$ presented in Section 2. The smoothing function is a simple averaging operator. We use the term *domain* to refer to an open connected set in \mathbb{R}^{n} .

For simplicity we present the case for a scalar function $u(\mathbf{x})$. For a vector valued function the smoother is simply applied to each of the coordinate functions.

h	$\ \mathbf{u}-\mathbf{u}_h\ _{L^2(\Omega)}$	Cvg. rate	$\ abla \cdot (\mathbf{u} - \mathbf{u}_h)\ _{L^2(\Omega)}$	Cvg. rate	$\left\ p-p_{h}\right\ _{L^{2}(\Omega)}$	Cvg. rate		
$X_h = RT_0 \qquad Q_h = discP_0$								
1/4	3.543E-01	0.98	1.274E + 00	0.97	9.212E-2	1.29		
1/6	2.376E-01	0.98	8.589E-01	0.99	5.464E-2	1.10		
1/8	1.790E-01	1.00	6.468E-01	0.99	3.981E-2	1.08		
1/10	1.433E-01	1.00	5.184E-01	0.99	3.131E-2	1.05		
1/12	1.195E-01		4.325E-01		2.588E-2			
Pred.		1.0		1.0		1.0		
$X_h = RT_1 \qquad Q_h = discP_1$								
1/4	5.645 E-02	1.94	2.020E-01	1.97	5.680E-03	2.80		
1/6	2.574 E-02	1.98	9.089E-02	1.99	1.824E-03	2.44		
1/8	1.456E-02	1.99	5.134E-02	1.99	9.049E-04	2.30		
1/10	9.344E-03	1.99	3.292 E- 02	1.99	5.419E-04	2.21		
1/12	6.495 E- 03		2.289E-02		3.619E-04			
Pred.		2.0		2.0		2.0		
$X_h = RT_2 \qquad Q_h = discP_2$								
1/4	6.661 E- 03	3.09	2.268 E-02	2.97	9.877E-04	3.98		
1/6	1.905E-03	3.06	6.788 E-03	2.99	1.966E-04	3.94		
1/8	7.905E-04	3.02	2.874E-03	2.99	6.328E-05	4.02		
1/10	4.028E-04	3.02	1.474E-03	3.00	2.578 E-05	3.98		
1/12	2.321E-04		8.537 E-04		1.247 E-05			
Pred.		3.0		3.0		3.0		

Table 4.1: Example 1, \mathbf{u}_h^s a quadratic interpolant of $\tilde{\mathbf{u}}_h^s.$

h	$\ \mathbf{u}-\mathbf{u}_h\ _{L^2(\Omega)}$	Cvg. rate	$\ abla \cdot (\mathbf{u} - \mathbf{u}_h)\ _{L^2(\Omega)}$	Cvg. rate	$\left\ p-p_{h}\right\ _{L^{2}(\Omega)}$	Cvg. rate		
$X_h = RT_1 \qquad Q_h = discP_1$								
1/4	6.744 E-2	1.88	2.020E-01	1.97	2.420E-2	1.99		
1/6	3.150E-2	1.93	9.089E-02	1.99	1.079E-2	2.06		
1/8	1.808E-2	1.95	5.134E-02	1.99	5.960E-3	2.01		
1/10	1.170E-2	1.97	3.292 E- 02	1.99	3.802E-3	2.01		
1/12	8.169E-3		2.289E-02		2.634E-3			
Pred.		2.0		2.0		2.0		
$X_h = RT_2 \qquad Q_h = discP_2$								
1/4	3.635E-2	1.84	2.268E-02	2.97	2.770E-2	1.17		
1/6	1.727E-2	1.97	6.788 E-03	2.99	1.727E-2	3.15		
1/8	9.804E-3	1.97	2.874E-03	2.99	6.984E-3	2.00		
1/10	6.310E-3	1.97	1.474E-03	3.00	4.473E-3	2.00		
1/12	4.404E-3		8.537 E-04		3.107 E-3			
Pred.		2.0		2.0		2.0		

Table 4.2: Example 2, \mathbf{u}_h^s a linear interpolant of $\tilde{\mathbf{u}}_h^s$.

Let Ω denote a bounded domain in \mathbb{R}^n and $\mathcal{L}(\Omega)$ the Lebesgue measurable sets in Ω . Let $\delta > 0$ denote the (fixed) volume measure over which we average a function to obtain its *smoothed* value.

For $\mathbf{x} \in \Omega$ the typical averaging volume which comes to mind is $B(\mathbf{x}, r_{\delta})$, where $B(\mathbf{x}, r_{\delta})$ denotes the ball centered at \mathbf{x} of radius r_{δ} having volume δ . As δ is fixed the difficulty in using $B(\mathbf{x}, r_{\delta})$ arises for points whose distance from $\partial\Omega$ is less that r_{δ} . This requires us to consider averaging volumes other than balls. Namely, for each point $\mathbf{x} \in \Omega$ we associate a domain $V(\mathbf{x})$ having a volume of δ . We require that the association of \mathbf{x} with $V(\mathbf{x})$ be continuous. This continuity is formally described in the next paragraph.

Let ν denote the Lebesgue measure in \mathbb{R}^n . For $S_1, S_2 \in \mathcal{L}(\Omega)$, introduce the metric $d(S_1, S_2)$ defined by

$$d(S_1, S_2) := \nu(S_1 \triangle S_2), \text{ where } S_1 \triangle S_2 := (S_1 \backslash S_2) \cup (S_2 \backslash S_1).$$
(A.1)

Now, let $V : \overline{\Omega} \longrightarrow \mathcal{L}(\Omega)$ satisfy: (i) $V(\mathbf{x})$ is a domain with $\nu(V(\mathbf{x})) = \delta$ for all $\mathbf{x} \in \Omega$, and (ii) $d(V(\mathbf{x}), V(\mathbf{y})) = \nu(V(\mathbf{x}) \bigtriangleup V(\mathbf{y})) \le C_V |\mathbf{x} - \mathbf{y}|$ for all $\mathbf{x}, \mathbf{y} \in \Omega$, where C_V a fixed constant. For convenience we denote the domain $V(\mathbf{x})$ as $V_{\mathbf{x}}$.

Definition: Local Smoothing Operator

For $u \in L^2(\Omega)$, define u^s as

$$u^{s}(\mathbf{x}) = \frac{1}{\delta} \int_{V_{\mathbf{x}}} u(\mathbf{z}) \, d\Omega \,. \tag{A.2}$$

We have the following properties for $u^{s}(\mathbf{x})$.

Lemma A.1 For $u \in L^2(\Omega)$, u^s defined by (A.2) satisfies the following properties. (i) $\|u^s\|_{L^{\infty}(\Omega)} \leq \delta^{-1/2} \|u\|_{L^2(\Omega)}$.

(ii) $u^s : \overline{\Omega} \longrightarrow \mathbb{R}$ is uniformly continuous.

(iii) Suppose that $\{u_n\}_{n=1}^{\infty} \subset L^2(\Omega)$ and that u_n converges weakly to $u \in L^2(\Omega)$. Then $\{u_n^s\}_{n=1}^{\infty}$ converges to u^s in $L^{\infty}(\Omega)$.

Proof: Let $1_S \in L^2(\Omega)$ denote the characteristic function of the domain S. From (A.2), for $\mathbf{x} \in \Omega$

$$u^{s}(\mathbf{x}) = \frac{1}{\delta} \int_{V_{\mathbf{x}}} u(\mathbf{z}) d\Omega = \frac{1}{\delta} \int_{\Omega} 1_{V_{\mathbf{x}}} u(\mathbf{z}) d\Omega$$

$$\leq \frac{1}{\delta} \left(\int_{\Omega} (1_{V_{\mathbf{x}}})^{2} d\Omega \right)^{1/2} \left(\int_{\Omega} u(\mathbf{z})^{2} d\Omega \right)^{1/2}$$

$$= \delta^{-1/2} \|u\|_{L^{2}(\Omega)},$$

which establishes (i).

For $\mathbf{x}, \mathbf{y} \in \Omega$,

$$\begin{aligned} |u^{s}(\mathbf{x}) - u^{s}(\mathbf{y})| &\leq \frac{1}{\delta} \int_{\Omega} \left| 1_{V_{\mathbf{x}}} - 1_{V_{\mathbf{y}}} \right| |u(\mathbf{z})| \, d\Omega \\ &= \frac{1}{\delta} \left(\int_{\Omega} \left(1_{V_{\mathbf{x}}} - 1_{V_{\mathbf{y}}} \right)^{2} \, d\Omega \right)^{1/2} \left(\int_{\Omega} u(\mathbf{z})^{2} \, d\Omega \right)^{1/2} \\ &= \frac{1}{\delta} \| u \|_{L^{2}(\Omega)} \, d(V(\mathbf{x}) \, , \, V(\mathbf{y}))^{1/2} \\ &= \frac{C_{V}^{1/2}}{\delta} \| u \|_{L^{2}(\Omega)} \, |\mathbf{x} - \mathbf{y}|^{1/2} \, , \end{aligned}$$

which establishes the uniform continuity of u^s . As u^s is bounded on Ω then u^s can be continuously extended to $\partial\Omega$.

To establish (iii), as $\{u_n\}$ converges weakly, let $\sup_n ||u_n|| = M < \infty$. In addition, for $\epsilon > 0$, $\sigma = \left(\epsilon/(6 M C_V^{1/2})\right)^2$, let $\{\mathbf{z}_i\}_{i=1}^N$ denote a σ -net of $\overline{\Omega}$, i.e., for all $\mathbf{x} \in \Omega$ there exists an $i_{\mathbf{x}} \in \{1, 2, \dots, N\}$ such that $|\mathbf{x} - \mathbf{z}_{i_{\mathbf{x}}}| < \sigma$.

Now,

$$\begin{aligned} |u_n^{s}(\mathbf{x}) - u^{s}(\mathbf{x})| &= \left| \int_{V_{\mathbf{x}}} \left(u_n(\mathbf{y}) - u(\mathbf{y}) \right) d\Omega \right| \\ &= \left| \int_{V_{\mathbf{z}_{i_{\mathbf{x}}}}} \left(u_n(\mathbf{y}) - u(\mathbf{y}) \right) d\Omega + \int_{V_{\mathbf{x}} \setminus V_{\mathbf{z}_{i_{\mathbf{x}}}}} \left(u_n(\mathbf{y}) - u(\mathbf{y}) \right) d\Omega \right| \\ &\leq \left| \int_{V_{\mathbf{z}_{i_{\mathbf{x}}}}} \left(u_n(\mathbf{y}) - u(\mathbf{y}) \right) d\Omega \right| + \int_{V_{\mathbf{x}} \triangle V_{\mathbf{z}_{i_{\mathbf{x}}}}} |u_n(\mathbf{y}) - u(\mathbf{y})| d\Omega. \quad (A.3) \end{aligned}$$

Since $\{u_n\}$ converges weakly to u in $L^2(\Omega)$, for all $w \in L^2(\Omega)$ there exists N_w such that for $n > N_w$

$$\left| \int_{\Omega} \left(u_n - u \right) \, w \, d\Omega \right| \, < \, \frac{\epsilon}{3} \, . \tag{A.4}$$

Let $N_{\star} = \max_{i=1,2,\dots,N} \left\{ N_{1_{V_{\mathbf{z}_i}}} \right\}$. Then, for $n > N_{\star}$

$$\left| \int_{V_{\mathbf{z}_{i_{\mathbf{x}}}}} \left(u_n(\mathbf{y}) - u(\mathbf{y}) \right) \, d\Omega \right| = \left| \int_{\Omega} \left(u_n(\mathbf{y}) - u(\mathbf{y}) \right) \, \mathbf{1}_{V_{\mathbf{z}_i}} \, d\Omega \right| < \frac{\epsilon}{3}$$

For the second term on the right hand side of (A.3) we have

$$\int_{V_{\mathbf{x}} \bigtriangleup V_{\mathbf{z}_{i_{\mathbf{x}}}}} |u_{n}(\mathbf{y}) - u(\mathbf{y})| \, d\Omega \leq \left(\int_{V_{\mathbf{x}} \bigtriangleup V_{\mathbf{z}_{i_{\mathbf{x}}}}} |u_{n}(\mathbf{y}) - u(\mathbf{y})|^{2} \, d\Omega \right)^{1/2} \left(\int_{V_{\mathbf{x}} \bigtriangleup V_{\mathbf{z}_{i_{\mathbf{x}}}}} 1 \, d\Omega \right)^{1/2} \\
\leq 2M \, \nu (V_{\mathbf{x}} \bigtriangleup V_{\mathbf{z}_{i_{\mathbf{x}}}})^{1/2} \\
\leq 2M \, C_{V}^{1/2} \, |\mathbf{x} - \mathbf{z}_{i_{\mathbf{x}}}|^{1/2} \leq 2M \, C_{V}^{1/2} \, \sigma^{1/2} \\
= \frac{\epsilon}{3} \, .$$
(A.5)

Thus, from (A.3)-(A.5) it follows that for all $\mathbf{x} \in \Omega$, for $n > N_{\star}$

$$|u_n^s(\mathbf{x}) - u^s(\mathbf{x})| < \frac{2}{3}\epsilon, \quad \text{i.e., } \|u_n^s - u^s\|_{L^\infty(\Omega)} < \frac{2}{3}\epsilon < \epsilon.$$

A.1 Regularity of u^s (for $u \in L^{\infty}(\Omega)$)

If, in place of $u \in L^2(\Omega)$, we have $u \in L^{\infty}(\Omega)$ then u^s defined by (A.2) is a $H^1(\Omega)$ function. To establish this regularity result we begin by citing a characterization of the $W^{1,p}(\mathbb{R}^n)$ function space.

Theorem A.1 ([18], Theorem 2.1.6) Let $1 . Then <math>u \in W^{1,p}(\mathbb{R}^n)$ if and only if $u \in L^p(\mathbb{R}^n)$ and

$$\left(\int_{\mathbf{R}^n} \left| \frac{u(\mathbf{x} + \mathbf{h}) - u(\mathbf{x})}{|\mathbf{h}|} \right|^p d\mathbf{x} \right)^{1/p} = |\mathbf{h}|^{-1} \|u(\mathbf{x} + \mathbf{h}) - u(\mathbf{x})\|_{L^p(\mathbf{R}^n)}$$
(A.6)

remains bounded for all $\mathbf{h} \in \mathbb{R}^n$.

Theorem A.2 If $u \in L^{\infty}(\Omega)$ then, for u^s defined by (A.2), $u^s \in H^1(\Omega)$.

Proof: In order to apply Theorem A.1 we need to define an extension of u to \mathbb{R}^n . Let

$$\widetilde{u}(\mathbf{x}) = \begin{cases} u(\mathbf{x}), & \mathbf{x} \in \Omega \\ 0, & \mathbf{x} \notin \Omega \end{cases}, \quad \text{and } \widetilde{V} : \mathbb{R}^n \longrightarrow \mathcal{L}(\mathbb{R}^n)$$

denote an extension of V satisfying properties (i) and (ii) (with Ω replaced by \mathbb{R}^n), and additionally that there exists constants $C_1 > 0$ and $C_2 \ge 0$ such that (iii) diameter($\widetilde{V}(\mathbf{z})$) $\le C_1$ for all $\mathbf{z} \in \mathbb{R}^n$, and (iv) $\sup_{\mathbf{z} \in \mathbb{R}^n} \inf_{\mathbf{y} \in \widetilde{V}(\mathbf{z})} |\mathbf{z} - \mathbf{y}| \le C_2$.

Let Ω_B denote the bounded set, $\Omega_B := \{ \mathbf{x} \in \mathbb{R}^n : \inf_{\mathbf{y} \in \Omega} |\mathbf{x} - \mathbf{y}| < 1 + C_1 + C_2 \} \supset \operatorname{support}(\tilde{u}^s)$. Note that for $\mathbf{x} \in \mathbb{R}^n \setminus \Omega_B$ and $|\mathbf{h}| < 1$, $\tilde{u}^s(\mathbf{x} + \mathbf{h}) = 0$.

Now, for $|\mathbf{h}| \ge 1$,

$$\int_{\mathbf{I\!R}^{n}} \left| \frac{\tilde{u}^{s}(\mathbf{x} + \mathbf{h}) - \tilde{u}^{s}(\mathbf{x})}{|\mathbf{h}|} \right|^{2} d\mathbf{x} \leq \frac{2}{|\mathbf{h}|^{2}} \left(\int_{\mathbf{I\!R}^{n}} (\tilde{u}^{s}(\mathbf{x} + \mathbf{h}))^{2} d\mathbf{x} + \int_{\mathbf{I\!R}^{n}} (\tilde{u}^{s}(\mathbf{x}))^{2} d\mathbf{x} \right) \\
\leq \frac{4}{|\mathbf{h}|^{2}} \int_{\mathbf{I\!R}^{n}} (\tilde{u}^{s}(\mathbf{x}))^{2} d\mathbf{x} \leq \frac{4}{|\mathbf{h}|^{2}} \|\tilde{u}^{s}\|_{L^{\infty}(\Omega_{B})}^{2} \nu(\Omega_{B}) \\
\leq 4 \nu(\Omega_{B}) \|\tilde{u}\|_{L^{\infty}(\mathbf{I\!R}^{n})}^{2} = 4 \nu(\Omega_{B}) \|u\|_{L^{\infty}(\Omega)}^{2}.$$
(A.7)

For $|\mathbf{h}| < 1$,

$$\begin{split} \int_{\mathbf{R}^{n}} \left| \frac{\tilde{u}^{s}(\mathbf{x} + \mathbf{h}) - \tilde{u}^{s}(\mathbf{x})}{|\mathbf{h}|} \right|^{2} d\mathbf{x} &= \frac{1}{|\mathbf{h}|^{2}} \int_{\Omega_{B}} |\tilde{u}^{s}(\mathbf{x} + \mathbf{h}) - \tilde{u}^{s}(\mathbf{x})|^{2} d\mathbf{x} \\ &= \frac{1}{|\mathbf{h}|^{2}} \int_{\Omega_{B}} \left| \frac{1}{\delta} \int_{\Omega_{B}} \tilde{u}(\mathbf{z}) \left(1_{\widetilde{V}_{\mathbf{x}+\mathbf{h}}}(\mathbf{z}) - 1_{\widetilde{V}_{\mathbf{x}}}(\mathbf{z}) \right) d\mathbf{z} \right|^{2} d\mathbf{x} \\ &\leq \frac{1}{|\mathbf{h}|^{2}} \frac{1}{\delta^{2}} |\|\tilde{u}\|_{L^{\infty}(\Omega_{B})}^{2} \int_{\Omega_{B}} \left(\int_{\Omega_{B}} \left| 1_{\widetilde{V}_{\mathbf{x}+\mathbf{h}}}(\mathbf{z}) - 1_{\widetilde{V}_{\mathbf{x}}}(\mathbf{z}) \right| d\mathbf{z} \right)^{2} d\mathbf{x} \\ &= \frac{1}{|\mathbf{h}|^{2}} \frac{1}{\delta^{2}} \|\|\tilde{u}\|_{L^{\infty}(\Omega_{B})}^{2} \int_{\Omega_{B}} d(\widetilde{V}_{\mathbf{x}+\mathbf{h}}, \widetilde{V}_{\mathbf{x}})^{2} d\mathbf{x} \\ &\leq \frac{1}{|\mathbf{h}|^{2}} \frac{1}{\delta^{2}} \|\|\tilde{u}\|_{L^{\infty}(\Omega_{B})}^{2} C_{V}^{2} |\mathbf{h}|^{2} \nu(\Omega_{B}) \\ &= \frac{1}{\delta^{2}} C_{V}^{2} \nu(\Omega_{B}) \|\|\tilde{u}\|_{L^{\infty}(\Omega_{B})}^{2} = \frac{1}{\delta^{2}} C_{V}^{2} \nu(\Omega_{B}) \|u\|_{L^{\infty}(\Omega)}^{2}. \end{split}$$
(A.8)

From (A.7) and (A.8), together with Theorem A.1, we obtain that $\tilde{u}^s \in H^1(\mathbb{R}^n)$. As $u^s = \tilde{u}^s|_{\Omega}$, it then follows that $u^s \in H^1(\Omega)$.

B Example of a differential smoothing function

As an alternative to the local averaging filter discussed in Section A, in this section we present a differential smoothing filter.

Let
$$X^s = H_0^1(\Omega) = \{ \mathbf{v} \in H^1(\Omega) : \mathbf{v} = \mathbf{0} \text{ on } \partial\Omega \} \subset X.$$
 (B.9)

Definition: Differential Smoothing Operator For $\mathbf{u} \in L^2(\Omega)$, define $\mathbf{u}^s \in X^s$ as

$$(\nabla \mathbf{u}^s, \nabla \mathbf{v}) = (\mathbf{u}^s, \mathbf{v}), \ \forall \mathbf{v} \in X^s.$$
(B.10)

The well posedness of \mathbf{u}^s follows from an application of the Lax-Milgram theorem. Next we show that this smoothing operation satisfies properties $\mathbf{Au^s1}$ and $\mathbf{Au^s2}$ presented in Section 2.

Lemma B.2 For $\mathbf{u} \in L^2(\Omega)$, \mathbf{u}^s defined by (B.10) satisfies the following properties. (i) $\|\mathbf{u}^s\|_{L^{\infty}(\Omega)} \leq C \|\mathbf{u}\|_{L^2(\Omega)}$. (ii) Suppose that $\{\mathbf{u}_n\}_{n=1}^{\infty} \subset L^2(\Omega)$, and that \mathbf{u}_n converges weakly to $\mathbf{u} \in L^2(\Omega)$. The $\{\mathbf{u}_n^s\}$ converges to \mathbf{u}^s in $L^{\infty}(\Omega)$.

Proof: From (B.10) we have that $\mathbf{u}^s \in X^s$, and as $\mathbf{u} \in L^2(\Omega)$, from the *shift theorem* (together with a sufficiently smooth $\partial\Omega$), it follows that

$$\mathbf{u}^{s} \in H^{2}(\Omega) \cap X^{s}, \quad \text{with} \quad \|\mathbf{u}^{s}\|_{H^{2}(\Omega)} \leq C\|\mathbf{u}\|.$$
(B.11)

Using the embedding of $H^2(\Omega)$ in $L^{\infty}(\Omega)$ we establish (i).

Let $\mathcal{W} : L^2(\Omega) \longrightarrow H^2(\Omega) \cap X^s$, $\mathcal{W}(\mathbf{u}) := \mathbf{u}^s$, denote the filter mapping. Then from (B.11) \mathcal{W} is a bounded (linear) transformation from $L^2(\Omega) \longrightarrow H^2(\Omega) \cap X^s$.

Let $\mathcal{W}^* : (H^2(\Omega) \cap X^s)^* \longrightarrow L^2(\Omega)$ denote the adjoint operator of \mathcal{W} . (The existence of \mathcal{W}^* follows immediately from the Riesz Representation Theorem.)

Now, for $\boldsymbol{\eta} \in \left(H^2(\Omega) \cap X^s\right)^*$

$$\begin{aligned} \langle \mathbf{u}_n^s - \mathbf{u}^s , \boldsymbol{\eta} \rangle_{H^2, (H^2)^*} &= \langle \mathcal{W}(\mathbf{u}_n) - \mathcal{W}(\mathbf{u}) , \boldsymbol{\eta} \rangle_{H^2, (H^2)^*} &= \langle \mathcal{W}(\mathbf{u}_n - \mathbf{u}) , \boldsymbol{\eta} \rangle_{H^2, (H^2)^*} \\ &= (\mathbf{u}_n - \mathbf{u} , \mathcal{W}^*(\boldsymbol{\eta})) \\ &\longrightarrow 0 \text{ as } n \to \infty, \end{aligned}$$

as \mathbf{u}_n converges weakly in $L^2(\Omega)$ to \mathbf{u} . Hence as $H^2(\Omega) \cap X^s$ is compactly embedded in $L^{\infty}(\Omega) \cap X^s$, then \mathbf{u}_n^s converges to \mathbf{u}^s strongly in $L^{\infty}(\Omega)$.

References

[1] G. Allaire. Homogenization of the Navier-Stokes equations with a slip boundary condition. Comm. Pure Appl. Math., 44(6):605–641, 1991.

- [2] M. Azaïez, F. Ben Belgacem, C. Bernardi, and N. Chorfi. Spectral discretization of Darcy's equations with pressure dependent porosity. *Appl. Math. Comput.*, 217(5):1838–1856, 2010.
- [3] S.C. Brenner and L.R. Scott. The mathematical theory of finite element methods, volume 15 of Texts in Applied Mathematics. Springer-Verlag, New York, second edition, 2002.
- [4] F. Brezzi and M. Fortin. Mixed and hybrid finite element methods. Springer-Verlag, New York, 1991.
- [5] M. Bulíček, P. Gwiazda, J. Málek, and A. Świerczewska-Gwiazda. On steady flows of incompressible fluids with implicit power-law-like rheology. Adv. Calc. Var., 2(2):109–136, 2009.
- [6] L. Diening, C. Kreuzer, and E. Süli. Finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology. SIAM J. Numer. Anal., 51(2):984–1015, 2013.
- [7] V.J. Ervin, E.W. Jenkins, and S. Sun. Coupled generalized nonlinear Stokes flow with flow through a porous medium. SIAM J. Numer. Anal., 47(2):929–952, 2009.
- [8] V.J. Ervin, E.W. Jenkins, and S. Sun. Coupling nonlinear Stokes and Darcy flow using mortar finite elements. Appl. Numer. Math., 61(11):1198–1222, 2011.
- [9] J. Galvis and M. Sarkis. Non-matching mortar discretization analysis for the coupling Stokes-Darcy equations. *Electron. Trans. Numer. Anal.*, 26:350–384, 2007.
- [10] G.N. Gatica, R. Oyarzúa, and F.-J. Sayas. A twofold saddle point approach for the coupling of fluid flow with nonlinear porous media flow. *IMA J. Numer. Anal.*, 32(3):845–887, 2012.
- [11] V. Girault, F. Murat, and A. Salgado. Finite element discretization of Darcy's equations with pressure dependent porosity. M2AN Math. Model. Numer. Anal., 44(6):1155–1191, 2010.
- [12] A. Hirn, M. Lanzendörfer, and J. Stebel. Finite element approximation of flow of fluids with shear-rate- and pressure-dependent viscosity. IMA J. Numer. Anal., 32(4):1604–1634, 2012.
- [13] J. Málek, J. Nečas, and K.R. Rajagopal. Global analysis of the flows of fluids with pressuredependent viscosities. Arch. Ration. Mech. Anal., 165(3):243–269, 2002.
- [14] K. R. Rajagopal. On a hierarchy of approximate models for flows of incompressible fluids through porous solids. *Math. Models Methods Appl. Sci.*, 17(2):215–252, 2007.
- [15] L. Traverso, T.N. Phillips, and Y. Yang. Mixed finite element methods for groundwater flow in heterogeneous aquifers. *Computers & Fluids*, 88:60–80, 2013.
- [16] S. Whitaker. Flow in porous media I. A theoretical derivation of Darcy's law. Transp. Porous Media, 1:3–25, 1986.
- [17] E. Zeidler. Applied functional analysis, volume 108 of Applied Mathematical Sciences. Springer-Verlag, New York, 1995. Applications to mathematical physics.
- [18] W.P. Ziemer. Weakly differentiable functions, volume 120 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation.