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Abstract

In this article we investigate the solution of the steady-state fractional diffusion equation on
a bounded domain in IR1. From an analysis of the underlying model problem, we postulate
that the fractional diffusion operator in the modeling equations is neither the Riemann-Liouville
nor the Caputo fractional differential operators. We then find a closed form expression for the
kernel of the fractional diffusion operator which, in most cases, determines the regularity of
the solution. Next we establish that the Jacobi polynomials are pseudo eigenfunctions for the
fractional diffusion operator. A spectral type approximation method for the solution of the
steady-state fractional diffusion equation is then proposed and studied.
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1 Introduction

The history of the fractional derivative is almost as long as the history of the integer order derivative.
Notably from a 1695 letter of Leibniz to L’Hôpital referring to the question of fractional order
derivatives, “Il y a de l’apparence qu’on tirera un jour des consequences bien utiles de ces paradoxes,
car il n’y a gueres de paradoxes sans utilité, ” which translates to “It will lead to a paradox,
from which one day useful consequences will be drawn.” In recent years the fractional derivative
has received increased attention in modeling a variety of physical phenomena. Most often cited
are applications in contaminant transport in ground water flow [3], viscoelasticity [18], turbulent
flow [18, 23], and chaotic dynamics [30]. As interest in the fractional derivative has increased
so has approximation methods to solve such equations. Generally speaking (for the 1-D case),
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approximation methods which exist for integer order differential equations have been successfully
adapted to the fractional order case. Specifically, to mention a few (a complete list is beyond the
focus of this article), finite difference methods [6, 16, 19, 25, 26], finite element methods [9, 12, 17, 27],
discontinuous Galerkin methods [29], mixed methods [4], spectral methods [5, 15, 28, 31], enriched
subspace methods [11]. To date most of the approximation schemes have focused on the 1-sided
fractional diffusion equation

Lα1u(x) := −Dαu(x) = f(x), x ∈ (0, 1), u(0) = u(1) = 0 , (1.1)

for 1 < α < 2. ( A formal definition of Dαu(x) is given in the following section.)

Another interesting historical fact, a point of particular interest in this article, is the definition of the
fractional derivative. Or more precisely stated, definitions of the fractional derivative. There has
been a number of definitions of the fractional derivatives studied. Most relevant to our discussion
are the Riemann-Liouville fractional derivative and the Caputo fractional derivative. We refer the
reader to the monographs [2, 13, 20, 21] for a detailed discussion of various fractional derivatives.
Also, of particular note is the recent approach to modeling nonlocal diffusion problems using a linear
integral operator introduced by Du, Gunzburger, Lehoucq et al. (see [7]).

Motivated by our interest in physical applications, in the following section we present the Riemann-
Liouville and Caputo fractional derivatives on a finite interval, which for the sake of specificity we
take to be I := (0, 1). (In the case where a function and its (integer) derivatives vanish at the
endpoint of the interval the Riemann-Liouville and Caputo fractional derivatives agree.)

The motivation for this article was to investigate the regularity of the solution to the two-sided
fractional diffusion equation

Lαr u(x) := − (rDαu(x) + (1− r)Dα∗u(x)) = f(x), x ∈ (0, 1), u(0) = u(1) = 0 , (1.2)

for 1 < α < 2, and 0 < r < 1, which we think is a more physical model of diffusion than (1.1).
(In (1.2) diffusion occurs to both the left and right of any point in the domain.) A variational
formulation of the solution to (1.2) was studied in [9], together with a finite element error analysis.
The error analysis was based on assumptions on the regularity of the true solution u, which has
been pointed out by a number of other authors, is not justified for a general right hand side function
f . In [12] Jin et al. presented a very nice analysis and discussion of the regularity of the solution to
(1.1) for Dα interpreted as the Riemann-Liouville fractional derivative and as the Caputo fractional
derivative. In general, the solution of (1.1) has a singularity in the derivative at x = 0. Very helpful
in studying the regularity of the solution to (1.1) is the existence of an explicit inverse to Lα1 which
satisfies (Lα1 )−1 f(0) = 0. We do not have an explicit inverse for Lαr . Subsequently we have to
think more generally about the operator Lαr , and in particular the definition of Dα in the context
of diffusion problems.

Following the introduction of notation in Section 2, in Section 3 we present a discussion on the
modeling of the fractional diffusion equation. We subsequently conclude that in the context of a
diffusion operator the appropriate interpretation of the fractional derivative is neither the Riemann-
Liouville definition nor the Caputo definition. Rather, for 1 < α < 2,

Dαu(x) := DD−(2−α)Du(x) . (1.3)

The kernel of the operator Lαr , ker(Lαr ) plays a key role in determining the regularity of the solution
of (1.2). Thus the definition of Dα is central in determining the regularity of the solution to (1.2).
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In Section 4 we discuss the regularity of the solution to (1.2), using the definition of Dα given in
(1.3). Somewhat of a surprise is that the regularity of the solution depends upon r. In order to
numerically illustrate the regularity of the solution to (1.2) in Section 5 we present Finite Element
Method (FEM) computations. The experimental rates of convergence of the FEM approximations
are consistent with the regularity of the solution obtained in Section 4.

In Section 6 we establish that Jacobi polynomials are pseudo eigenfunctions for the fractional diffu-
sion operator. Specifically (see Lemmas 6.3 and 6.5) we show that

Lαr ω(x)Gn(x) = λn G∗n(x) ,

where Gn(x) and G∗n(x) are Jacobi polynomials, ω(x) is the Jacobi weight, and λn the pseudo
eigenvalue. Using this property we propose and study a spectral type approximation method for
the solution of steady-state fractional diffusion equations. Two numerical examples are given to
illustrate the performance of the method.

2 Notation and Properties

For u a function defined on (a, b), and σ > 0, we have that the left and right fractional integral
operators are defined as:
Left Fractional Integral Operator: aD

−σ
x u(x) := 1

Γ(σ)

∫ x
a (x− s)σ−1 u(s) ds .

Right Fractional Integral Operator: xD
−σ
b u(x) := 1

Γ(σ)

∫ b
x (s− x)σ−1 u(s) ds .

Then, for µ > 0, n the smallest integer greater than µ (n − 1 ≤ µ < n), σ = n − µ, and D the
derivative operator, the left and right Riemann-Liouville fractional differential operators are defined
as:
Left Riemann-Liouville Fractional Differential Operator of order µ:

RL
a Dµ

xu(x) := Dn
aD
−σ
x u(x) = 1

Γ(σ)
dn

dxn

∫ x
a (x− s)σ−1 u(s) ds .

Right Riemann-Liouville Fractional Differential Operator of order µ:
RL
x Dµ

b u(x) := (−D)nxD
−σ
b u(x) = (−1)n

Γ(σ)
dn

dxn

∫ b
x (s− x)σ−1 u(s) ds .

The Riemann-Liouville and Caputo fractional differential operators differ in the location of the
derivative operator.
Left Caputo Fractional Differential Operator of order µ:

C
aD

µ
xu(x) := aD

−σ
x Dnu(x) = 1

Γ(σ)

∫ x
a (x− s)σ−1 dn

dsnu(s) ds .

Right Caputo Fractional Differential Operator of order µ:
C
xD

µ
b u(x) := (−1)nxD

−σ
b Dnu(x) = (−1)n

Γ(σ)

∫ b
x (s− x)σ−1 dn

dsnu(s) ds .

As our interest is in the solution of fractional diffusion equations on a bounded, connected subinterval
of IR, without loss of generality we restrict our attention to the unit interval (0, 1).

For s ≥ 0 let Hs(0, 1) denote the Sobolev space of order s on the interval (0, 1), and H̃s(0, 1) the
set of functions in Hs(0, 1) whose extension by 0 are in Hs(IR). Equivalently, for u defined on
(0, 1) and ũ its extension by zero, H̃s(0, 1) is the closure of C∞0 (0, 1) with respect to the norm

‖u‖H̃s(0,1) := ‖ũ‖Hs(IR). With respect to L2 duality, for s ≥ 0 we let H−s(0, 1) :=
(
H̃s(0, 1)

)′
, the

dual space of H̃s(0, 1).
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Useful below in establishing results about the kernel of the fractional diffusion operator is the
hypergeometric function [14, 24].

Definition 1 The Gaussian three-parameter hypergeometric function 2F1 is defined by an integral
and series as follows:

2F1(a, b; c; x) =
Γ(c)

Γ(b) Γ(c− b)

∫ 1

0
zb−1(1− z)c−b−1(1 − zx)−a dz =

∞∑
n=0

(a)n (b)n x
n

(c)n n!
, (2.1)

with convergence only if Re(c) > Re(b) > 0.

In (2.1) (q)n denotes the (rising) Pochhammer symbol.

Proposition 1 (Interchange property) For Re(c) > Re(b) > 0, and Re(c) > Re(a) > 0, we have
that

2F1(a, b; c; x) = 2F1(b, a; c; x) . (2.2)

For ease of notation, we use

D−σ := 0D
−σ
x , and D−σ∗ := xD

−σ
1 .

3 Interpretation of the Fractional Derivative

In this section we discuss the interpretation of the fractional derivative for modeling diffusion phe-
nomena.

With (1.1) and (1.2) interpreted as the steady-state equation for a time dependent diffusion equation,
we begin with a review of the derivation of the 1-D heat equation. (See [10] for a more complete
derivation.)

insulation

x+ xδx

0 L

Figure 3.1: Illustration of a bar with constant cross section, insulated along its lateral surface.
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We consider a homogeneous bar (constant material parameter throughout the bar), which is insu-
lated along its lateral surface and has a constant cross-section along its length, see Figure 3.1. Let
u(x, t) and q(x, t) denote the temperature and energy flux at cross-section x at time t. Focusing on
the segment of the bar between cross-sectional segments x and x + δx, applying the principle of
conservation of energy we derive the equation∫ x+ δx

x
c ρA

∂u(ξ, t)

∂t
dξ = q(x, t)A − q(x + δx)A +

∫ x+ δx

x
ρA f̃(ξ, t) dξ , (3.1)

where c, ρ, and A denote the specific heat constant, the density, and the cross-sectional area of the
bar, respectively. The function f̃ represents an internal energy source. Rearranging (3.1), using

q(x, t) − q(x + δx) = −
∫ x+ δx

x

∂q(ξ, t)

∂ξ
dξ ,

yields ∫ x+ δx

x

(
c ρA

∂u(ξ, t)

∂t
dξ + A

∂q(ξ, t)

∂ξ
− ρA f̃(ξ, t)

)
dξ = 0 . (3.2)

With f(x, t) := ρ f̃(x, t), using the arbitrariness of x and δx leads to the pointwise equation

∂u(x, t)

∂t
+

1

c ρ

∂q(x, t)

∂x
=

1

c ρ
f(x, t) , 0 < x < L , t > 0 . (3.3)

The corresponding steady state equation is then

d

dx
q(x) = f(x) , 0 < x < L . (3.4)

In comparison of (3.4) with (1.1) and (1.2) it is important to note that the “outside” derivative
comes from the conservation of energy principle and not from the diffusion process.

Fourier’s law of thermal conduction (analogous to Fick’s law of diffusion) postulates that

q(x, t) = −k ∂u(x, t)

∂x
, for k a constant.

In [22] Schumer et al. presented an argument for the diffusion process modeled as a random walk
process, assuming a “heavy tail” distribution for the jumps, to obtain a fractional law of diffusion
given by

q(x, t) = −κ
(
r RL0 D(α−1)

x + (1− r)RLx D
(α−1)
L

)
u(x, t) , (3.5)

for κ a dispersion coefficient, 0 < r < 1 a parameter, and 1 < α < 2. With (3.5), for r = 1 the
corresponding steady-state diffusion equation with homogeneous boundary conditions becomes

−RL0 Dα
xu(x) := −D2 D−(2−α)u(x) = f(x) , 0 < x < L , (3.6)

u(0) = u(L) = 0 . (3.7)

We have that the kernel of the operator RL
0 Dα

x is ker(RL0 Dα
x ) = span{xα−2, xα−1}.

In sophomore calculus the procedure taught for determining the solution of 2nd order, linear dif-
ferential equations is to find the general solution to the homogeneous problem (i.e., determine the
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kernel of the operator), and then add to it a particular solution. Similarly, we can write the solution
to (3.6) as

u(x) = C1x
α−2 + C2x

α−1 + F (x) ,

where F (x) satisfies RL
0 Dα

xF (x) = −f(x). However, because of the singular function xα−2, the
only way for u to satisfy the boundary conditions (3.7) is if F (x) is chosen to satisfy F (0) = 0, e.g.
F (x) = −D−αf(x), and constants C1 and C2 chosen as C1 = 0, C2 = −F (L)/Lα−1.

Suppose instead that the boundary conditions associated with (3.6) are u(0) = u(L) = 1. (Thinking
of (3.6) as modeling a physical experiment, the change in boundary condition simply amounts to
the engineer performing the experiment relabeling their thermometer by adding a 1 to its values.)
Mathematically, to reduce the new problem to one with homogeneous boundary conditions, we
introduce the change of unknown v(x) = u(x) − 1, satisfying

−RL0 Dα
xv(x) = −D2D−(2−α)(u(x) − 1) = f(x) +

1

Γ(1− α)
x−α , 0 < x < L . (3.8)

Now to simulate the problem determined by v requires an infinite energy source be applied at x = 0!

In place of (3.6), consider the one-sided fractional diffusion equation given by using

q(x, t) = −
(
D−(2−α)D

)
u(x, t) .

This leads to the steady state equation

Lα1u(x) := −DD−(2−α)Du(x) = f(x) , 0 < x < L . (3.9)

The kernel of the operator Lα1 is ker(Lα1 ) = span{1, xα−1}. With (3.9) subject to homogeneous
boundary conditions, its solution corresponds to that given above.

Again, considering the case of boundary conditions u(0) = u(L) = 1. Under the change of unknown
v = u − 1, (3.9) transforms to

Lα1 v(x) := −DD−(2−α)Dv(x) = f(x) , 0 < x < L . (3.10)

The simulation of this model equation would require the same energy source as for the case u(0) =
u(L) = 0, which physically makes sense! For this reason we believe the appropriate interpretation
of Dα and Dα∗, 1 < α < 2, in diffusion problems is

Dα := DD−(2−α)D , and Dα∗ := DD−(2−α)∗D . (3.11)

Note that the definition of Dα and Dα∗ given in (3.11) differs from both the Riemann-Liouville and
Caputo definitions of Dα.

Physical interpretation of the nonlocal diffusion equation
Referring to the setting introduced at the beginning of this section, for a bar at constant temperature
at the atomic scale the particles are in constant motion. However, in relation to the model depicted
in Figure 3.1, at the macroscopic scale the “average energy flux” across any cross section is zero.

Consistent with Fourier’s law of heat conduction (also Fick’s law of diffusion), we posit that a
temperature gradient across a cross section at location s results in a macroscopic scale having a zero
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“average energy flux” at s. If we assume that there is a nonlocal effect from a flux originating at a
cross section s, proportional to 1/(distance from that point)(α−1) then the contribution to the flux
at cross section x from points to its left is given by

k

∫ x

0
(x − s)(1−α) (−)

∂u(s, t)

∂s
ds , (3.12)

where k again denotes a thermal conductivity factor. (The (−)∂u(s,t)
∂s denotes the fact that energy

flows from “hot to cold.”)

Similarly, the contribution to the flux at cross section x from points to its right is given by

k

∫ 1

x
(s − x)(1−α) ∂u(s, t)

∂s
ds . (3.13)

Proceeding in an analogous manner to the derivation given at the beginning of this section we obtain
(corresponding to (3.3)) the fractional diffusion equation

∂u(x, t)

∂t
+

k

c ρ

(
∂

∂x

∫ x

0
(x − s)(1−α) (−)

∂u(s, t)

∂s
ds +

∂

∂x

∫ 1

x
(s − x)(1−α) ∂u(s, t)

∂s
ds

)
= f(x, t) ,

for 0 < x < L , t > 0 , (3.14)

or equivalently written,

∂u(x, t)

∂t
+

k

c ρ
(Dαu(x, t) + Dα∗u(x, t)) = f(x, t) , for 0 < x < L , t > 0.

4 Kernel of the operator rDα + (1− r)Dα∗

In this section we establish the kernel for the operator

Lαr = − (rDα + (1− r)Dα∗) , (4.1)

where 1 < α < 2.

Important in the discussion is the precise definition of the operator (4.1). For our interest, arising
from fractional advection-diffusion equations, the operator (4.1) is interpreted as

Lαr u = − (rDα + (1− r)Dα∗)u := −
(
rDD−(2−α)D + (1− r)DD−(2−α)∗D

)
u . (4.2)

Remark: The definition given in (4.2) differs from the Riemann-Liouville definition for Dα, where
both integer order derivatives occur after the fractional integral. These different interpretations
represent different operators and hence they have different kernels. For example, u = constant is
in the kernel of the operator defined in (4.2). However, u = constant is not in the kernel of (4.1)
using the Riemann-Liouville definition of the fractional differential operators.
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4.1 Kernel of Lα1/2

Before discussing the general case we consider the kernel of DD−(2−α)D + DD−(2−α)∗D.

Lemma 4.1 A kernel function of the operator DD−(2−α) + DD−(2−α)∗ is

k1/2(x) := xα/2−1(1− x)α/2−1 . (4.3)

Proof : Using the definition of the fractional integral, we have

D−(2−α)k1/2(x) =
1

Γ(2− α)

∫ x

0
(x− s)1−α sα/2−1 (1− s)α/2−1 ds

(with the substitution z = s/x)

=
1

Γ(2− α)
x1−α/2

∫ 1

0
(1− z)1−α zα/2−1 (1 − zx)α/2−1 dz

=
1

Γ(2− α)
x1−α/2 Γ(α/2) Γ(2− α)

Γ(2− α/2)
2F1(1− α/2, α/2; 2− α/2; x)

=
Γ(α/2)

Γ(2− α/2)
x1−α/2

2F1(α/2, 1− α/2; 2− α/2; x)

(using Proposition 1)

=
Γ(α/2)

Γ(2− α/2)
x1−α/2 Γ(2− α/2)

Γ(1− α/2) Γ(1)

∫ 1

0
(1− z)0 z−α/2 (1 − zx)−α/2 dz

=
Γ(α/2)

Γ(1− α/2)
x1−α/2 x−(1−α/2)

∫ x

0
s−α/2 (1− s)−α/2 ds

=
Γ(α/2)

Γ(1− α/2)

∫ x

0
s−α/2 (1− s)−α/2 ds . (4.4)

Then, from (4.4),

DD−(2−α)k1/2(x) =
Γ(α/2)

Γ(1− α/2)
x−α/2 (1− x)−α/2 . (4.5)
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Next,

D−(2−α)∗k1/2(x) =
1

Γ(2− α)

∫ 1

x
(s− x)1−α sα/2−1 (1− s)α/2−1 ds

(with the substitution z = (1− s)/(1− x))

=
1

Γ(2− α)
(1− x)1−α/2

∫ 1

0
(1− z)1−α zα/2−1 (1 − z(1− x))α/2−1 dz

=
1

Γ(2− α)
(1− x)1−α/2 Γ(α/2) Γ(2− α)

Γ(2− α/2)
2F1(1− α/2, α/2; 2− α/2; 1− x)

=
Γ(α/2)

Γ(2− α/2)
(1− x)1−α/2

2F1(α/2, 1− α/2; 2− α/2; 1− x)

(using Proposition 1)

=
Γ(α/2)

Γ(2− α/2)
(1− x)1−α/2 Γ(2− α/2)

Γ(1− α/2) Γ(1)

∫ 1

0
(1− z)0 z−α/2 (1 − z(1− x))−α/2 dz

=
Γ(α/2)

Γ(1− α/2)
(1− x)1−α/2 (1− x)−(1−α/2)

∫ 1

x
s−α/2 (1− s)−α/2 ds

=
Γ(α/2)

Γ(1− α/2)

∫ 1

x
s−α/2 (1− s)−α/2 ds . (4.6)

Then, from (4.6),

DD−(2−α)∗k1/2(x) = − Γ(α/2)

Γ(1− α/2)
x−α/2 (1− x)−α/2 . (4.7)

Combining (4.5) and (4.7) we obtain (DD−(2−α) + DD−(2−α)∗)k1/2(x) = 0.

Let

K1/2(x) :=

∫ x

0
k1/2(s) ds =

2

α
xα/22F1(α/2, 1− α/2; 1 + α/2; x) . (4.8)

A plot of K1/2(x) for α = 1.6 is given in Figure 4.1.

Lemma 4.2 The kernel of Lα1/2(·), ker(Lα1/2), is given by ker(Lα1/2) = span{1,K1/2(x)}.

Proof : From above it is clear that span{1,K1/2(x)} ⊂ ker(Lα1/2). What remains is to show that

dim(ker(Lα1/2)) = 2.

With z(x) = 1+x and f(x) = −1
2

1
Γ(2−α) x

1−α + 1
2

1
Γ(2−α) (1−x)1−α, a straightforward calculation

shows that Lα1/2z(x) = f(x) on I. As K1/2(1) 6= 0 we can choose c1 and c2 such that ẑ(x) :=

z(x) + c11 + c2K1/2(x) satisfies ẑ(0) = ẑ(1) = 0 and Lα1/2ẑ(x) = f(x).

Suppose there was another linearly independent function s(x) ∈ ker(Lα1/2). Without loss of gen-

erality we may assume that s(0) = s(1) = 0. (If this was not the case we would form a linear
combination of s(x) with the other two linearly independent kernel function 1 and K1/2(x).) Then
z̃(x) := ẑ(x) + s(x) satisfies z̃(0) = z̃(1) = 0 and Lα1/2z̃(x) = f(x). However, the existence of

z̃(x) 6= ẑ(x) contradicts the uniqueness of the solution to Lα1/2u(x) = f(x), with u(0) = u(1) = 0,

[9].
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Figure 4.1: Plot of K1/2(x) for α = 1.6.

4.2 Kernel of Lαr

In the section we extend the discussion from the previous section to the operator

Lαr u = −
(
rDD−(2−α)D + (1− r)DD−(2−α)∗D

)
u . (4.9)

Lemma 4.3 With k(x) := xp (1− x)q, K(x) :=
∫ x

0 k(s) ds, we have that K(x) ∈ ker(Lαr ) if

(i) 3− α+ p+ q = 1 , (4.10)

and (ii) r sin(π(−q)) = (1− r) sin(π(−p)) . (4.11)
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Proof : Proceeding as above,

D−(2−α)k(x) =
1

Γ(2− α)

∫ x

0
(x− s)1−α sp (1− s)q ds

=
1

Γ(2− α)
x2−α+p

∫ 1

0
(1− z)1−α zp (1 − zx)q dz (using z = s/x)

=
1

Γ(2− α)
x2−α+pΓ(p+ 1) Γ(2− α)

Γ(3− α+ p)
2F1(−q, p+ 1; 3− α+ p; x)

(provided 3− α+ p > p+ 1 > 0, which is true for 1 < α < 2)

=
Γ(p+ 1)

Γ(3− α+ p)
x2−α+p

2F1(p+ 1, −q; 3− α+ p; x)

(using Proposition 1, provided 3− α+ p > −q > 0)

=
Γ(p+ 1)

Γ(3− α+ p)
x2−α+p ·

Γ(3− α+ p)

Γ(−q) Γ(3− α+ p+ q)

∫ 1

0
(1− z)2−α+p+q z−q−1 (1 − zx)−p−1 dz

=
Γ(p+ 1)

Γ(−q) Γ(3− α+ p+ q)
x2−α+p x−(2−α+p)

∫ x

0
(x− s)2−α+p+q s−q−1 (1 − s)−p−1 ds

=
Γ(p+ 1)

Γ(−q) Γ(3− α+ p+ q)

∫ x

0
(x− s)2−α+p+q s−q−1 (1 − s)−p−1 ds

=
Γ(p+ 1)

Γ(−q)
D−(3−α+p+q)x−q−1 (1 − x)−p−1 . (4.12)
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Next,

D−(2−α)∗k(x) =
1

Γ(2− α)

∫ 1

x
(s− x)1−α sp (1− s)q ds

=
1

Γ(2− α)
(1− x)2−α+q

∫ 1

0
(1− z)1−α zq (1 − z(1− x))p dz

(using z = (1− s)/(1− x))

=
1

Γ(2− α)
(1− x)2−α+qΓ(q + 1) Γ(2− α)

Γ(3− α+ q)
2F1(−p, q + 1; 3− α+ q; (1− x))

(provided 3− α+ q > q + 1 > 0, which is true for 1 < α < 2)

=
Γ(q + 1)

Γ(3− α+ q)
(1− x)2−α+q

2F1(q + 1, −p; 3− α+ q; (1− x))

(using Proposition 1, provided 3− α+ q > −p > 0)

=
Γ(q + 1)

Γ(3− α+ q)
(1− x)2−α+q ·

Γ(3− α+ q)

Γ(−p) Γ(3− α+ p+ q)

∫ 1

0
(1− z)2−α+p+q z−p−1 (1 − z(1− x))−q−1 dz

=
Γ(q + 1)

Γ(−p) Γ(3− α+ p+ q)
(1− x)2−α+q (1− x)−(2−α+q) ·∫ 1

x
(s− x)2−α+p+q s−q−1 (1− s)−p−1 ds

=
Γ(q + 1)

Γ(−p) Γ(3− α+ p+ q)

∫ 1

x
(s− x)2−α+p+q s−q−1 (1− s)−p−1 ds

=
Γ(q + 1)

Γ(−p)
D−(3−α+p+q)∗x−q−1 (1− x)−p−1 . (4.13)

Comparing (4.12) and (4.13), r DD−(2−α)k(x) + (1− r)DD−(2−α)∗k(x) = 0 if

(i) 3− α+ p+ q = 1 , (4.14)

(ii) r
Γ(p+ 1)

Γ(−q) Γ(3− α+ p+ q)
= (1− r) Γ(q + 1)

Γ(−p) Γ(3− α+ p+ q)

⇐⇒ r
Γ(p+ 1)

Γ(−q)
= (1− r)Γ(q + 1)

Γ(−p)
⇐⇒ r Γ(−p) Γ(1− (−p)) = (1− r) Γ(−q) Γ(1− (−q))

⇐⇒ r
π

sin(π(−p))
= (1− r) π

sin(π(−q))
(using Γ(1− z) Γ(z) = π/ sin(πz) , valid for z 6= 0, ±1, ±2, . . .)

⇐⇒ r sin(π (−q)) = (1− r) sin(π (−p)) . (4.15)

Corollary 4.1 The kernel of Lαr (·), ker(Lαr ), is given by ker(Lα1/2) = span{1,K(x)}, where K(x),

given in Lemma 4.3, may be written as K(x) =
∫ x

0 k(s) ds = 1
p+1x

p+1
2F1(−q, p+ 1 ; p+ 2 ; x).
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Example 2.1. The case r = 1/2. This corresponds to Lα1/2.

For r = 1/2, from (4.15), p = q. Then, using (4.14), we have p = q = α/2 − 1, which agrees with
k1/2(x) given in (4.3).

Example 2.2. The case r → 1. This corresponds to Lα1 (u) = −DD−(2−α)D(u). For this case the
kernel is span{1, xα−1}.
Now, from (4.15), as r → 1 then

sin(π(−q))→ 0 =⇒ q → 0 .

Hence from (4.14) p→ α− 2 =⇒ K(x) = xα−1 .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

r

p

Figure 4.2: p values solving (4.14) and (4.15)
for α = 1.6.

Figure 4.3: Plot of K(x) for α = 1.6 and r =
0.2764 (i.e., p = −0.1, q = −0.3).

Lemma 4.4 For 1 ≤ α < 1.5, DD−(2−α)D maps from Hα(I) onto L2(I).

Proof : We have that D : Hα(I) −→ Hα−1(I). Now, for 1 < α < 1.5, then 0 < α − 1 < 0.5,
hence Hα−1(I) = H̃α−1(I). As DD−(2−α) = RL

0 Dα−1
x , then from Theorem 3.1 [12] DD−(2−α) :

H̃α−1(I) −→ L2(I).

To establish that the mapping is onto, we have that for f ∈ L2(I), DD−(2−α)Du = f , where
u = 1

Γ(α)

∫ x
0 (x − s)α−1 f(s) ds .

Corollary 4.2 For 1 ≤ α < 1.5, r ∈ IR, Lαr maps from Hα(I) into L2(I).

Proof : An analogous argument to that given in the proof of Lemma 4.4 establishes thatDD−(2−α)∗D
maps from Hα(I) onto L2(I). The stated result then follows.
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In order to give a concise description of the range of Lαr , with domain Hα(I), let

X(1−α) := {f : f(x) = cx1−α, c ∈ IR} and X(1−α)∗ := {f : f(x) = c(1− x)1−α, c ∈ IR} .

Lemma 4.5 For 1 ≤ α < 2 Lαr maps from Hα(I) into L2(I)⊕X(1−α) ⊕X(1−α)∗.

Proof : The case for 1 ≤ α < 1.5 is covered by Corollary 4.2. For f(x) ∈ Hα(I), α ≥ 1.5, let p(x)
denote the Hermite cubic interpolating polynomial of f(x). Namely,

p(x) = (2x3 − 3x2 + 1)f(0) + (x3 − 2x2 + x)f ′(0) + (−2x3 + 3x2)f(1) + (x3 − x2)f ′(1)

= (−2(1− x)3 + 3(1− x)2)f(0) + (−(1− x)3 + (1− x)2)f ′(0)

+ (2(1− x)3 − 3(1− x)2 + 1)f(1) + (−(1− x)3 + 2(1− x)2 − (1− x))f ′(1) .

Also, let f̃(x) = f(x) − p(x) ∈ H̃α(I). From Theorem 2.1 [12], Lαr f̃(x) ∈ L2(I).

Now,

Lαr f(x) = Lαr f̃(x) + r (f(0)) Dα1 + r
(
f ′(0)

)
Dαx + r

(
−3f(0) − 2f ′(0) + 3f(1) − f ′(1)

)
Dαx2

+ r
(
2f(0) + f ′(0) − 2f(1) + f ′(1)

)
Dαx3 + (1− r) (f(1)) Dα∗1

+ (1− r)
(
−f ′(1)

)
Dα∗(1− x) + (1− r)

(
−3f(1) + 2f ′(1) + 3f(0) + f ′(0)

)
Dα∗(1− x)2

+ (1− r)
(
2f(1) − f ′(1) − 2f(0) − f ′(0)

)
Dα∗(1− x)3 .

As Dα1 = Dα∗1 = 0; Dαx2, Dαx3, Dα∗(1− x)2, Dα∗(1− x)3 ∈ L2(I), the stated result follows.

5 Convergence of the Finite Element Method Approximation

In a finite element method (FEM) approximation to (1.2) the regularity of the solution u plays
a fundamental role in the rate of convergence of the approximation uh to u. In this section we
present four numerical experiments and compare the numerical rate of convergence of the FEM
approximation to that predicted theoretically.

From [9], with X = H̃α/2(I), the weak formulation of (1.2) is: Given f ∈ H−α/2(I) determine
u ∈ X satisfying

B(u , v) = 〈f , v〉 , ∀v ∈ X , (5.1)

where, 〈· , ·〉 denotes the L2 duality pairing between H−α/2(I) and H̃α/2(I), and B(·, ·) : X×X −→
IR is defined by

B(w, v) := r
(
D−(2−α)/2Dw , D−(2−α)/2∗Dv

)
+ (1− r)

(
D−(2−α)/2∗Dw , D−(2−α)/2Dv

)
. (5.2)

For 0 = x0 < x1 < . . . < xN = 1 denoting a quasi-uniform partition of I := (0, 1), Xh ⊂ X denoting
the space of continuous, piecewise polynomials of degree ≤ k on the partition, the finite element
approximation uh ∈ Xh to u is given by

B(uh , vh) = 〈f , vh〉 ,∀vh ∈ Xh . (5.3)
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Assuming that f is sufficiently regular such that the regularity of u is determined by the kernel of
Lαr , we have the following a priori error bounds, for C > 0 a constant and any ε > 0 and δ > 0.

‖u − uh‖H̃α/2 ≤ C inf
vh∈Xh

‖u − vh‖H̃α/2

≤ C
{

h1/2−ε‖u‖Hα/2+1/2−ε , r = 1/2 ,

hmin{p,q}+3/2−α/2−ε‖u‖Hmin{p,q}+3/2−ε , r 6= 1/2 ,
(5.4)

where p and q satisfy (4.14) and (4.15).

An application of the Aubin-Nitsche trick yields the following L2 a priori error bounds.

‖u − uh‖ ≤ C

{
h1− 2ε‖u‖Hα/2+1/2−ε , r = 1/2 ,

h2(min{p,q}+3/2−α/2)− 2ε‖u‖Hmin{p,q}+3/2−ε , r 6= 1/2 .
(5.5)

For the Aubin-Nitsche trick the regularity of the associated adjoint problem is the same as that for
u (assuming f ∈ L2(I)). Hence the L2 a priori error bound is simply twice that for Hα/2.

For Examples 1 and 2 the true solution u was chosen to be x+ kerfun(x), with kerfun(x) ∈ ker(Lαr )
chosen such that u satisfies u(0) = u(1) = 0. In Examples 3 and 4 the right hand side f(x) was
chosen to be a constant. Results are reported for α = 1.4 and α = 1.6. Computations were also
performed for α = 1.2 and α = 1.8 (not included) which exhibited similar behavior. The |u−uh|Hα/2

data presented in the tables denotes the Slobodetskii semi-norm. The approximation space Xh used
was the continuous, affine functions on a uniform partition of I.

Example 1.
With α = 1.4, r = 1/2,

u(x) = x − C xα/2 2F1(α/2 , 1− α/2 ; 1 + α/2 , x) , (5.6)

where C = (2F1(α/2 , 1− α/2 ; 1 + α/2 , 1))−1.
The corresponding right hand side is

f(x) =
−1

2

1

Γ(2− α)
x1−α +

1

2

1

Γ(2− α)
(1− x)1−α . (5.7)

The numerical results are presented in Table 5.1.

h |u− uh|Hα/2(I) Cvg. rate ‖u− uh‖L2(I) Cvg. rate

1/64 4.209E-02 8.402E-04
1/128 2.962E-02 0.51 4.016E-04 1.07
1/256 2.088E-02 0.50 1.936E-04 1.05
1/512 1.475E-02 0.50 9.407E-05 1.04
1/1024 1.042E-02 0.50 4.598E-05 1.03
1/2048 7.364E-03 0.50 2.258E-05 1.03

Pred. 0.50 1.0

Table 5.1: Example 1. Convergence rates for α = 1.4 and r = 1/2.

Example 2.
With α = 1.4, p = −0.15, q = α− p− 2, r = sin(πp)/(sin(πp) + sin(πq))

u(x) = x − C x(p+1)
2F1(−q , p+ 1 ; p+ 2 , x) , (5.8)
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where C = (2F1(−q , p+ 1 ; p+ 2 , 1))−1.
The corresponding right hand side is

f(x) = −r 1

Γ(2− α)
x1−α + (1− r) 1

Γ(2− α)
(1− x)1−α . (5.9)

The numerical results are presented in Table 5.2.

h |u− uh|Hα/2(I) Cvg. rate ‖u− uh‖L2(I) Cvg. rate

1/64 1.463E-01 1.609E-03
1/128 1.146E-01 0.35 7.847E-04 1.04
1/256 8.990E-02 0.35 3.831E-04 1.03
1/512 7.052E-02 0.35 1.872E-04 1.03
1/1024 5.532E-02 0.35 9.157E-05 1.03
1/2048 4.340E-02 0.35 4.482E-05 1.03

Pred. 0.35 0.70

Table 5.2: Example 2. Convergence rates for α = 1.4 and r = 0.3149.

Example 3.
With α = 1.6, r = 1/2,

u(x) = xα/2(1− x)α/2 . (5.10)

The corresponding right hand side is

f(x) = −Γ(1 + α) cos(πα/2) . (5.11)

The numerical results are presented in Table 5.3.

h |u− uh|Hα/2(I) Cvg. rate ‖u− uh‖L2(I) Cvg. rate

1/64 3.502E-02 6.559E-04
1/128 2.461E-02 0.51 3.081E-04 1.09
1/256 1.734E-02 0.50 1.479E-04 1.06
1/512 1.224E-02 0.50 7.205E-05 1.04
1/1024 8.651E-03 0.50 3.542E-05 1.02
1/2048 6.115E-03 0.50 1.752E-05 1.02

Pred. 0.50 1.0

Table 5.3: Example 3. Convergence rates for α = 1.6 and r = 0.5.

Example 4.
With α = 1.6, p = 0.9, q = α− p, r = sin(π(p+ 1))/(sin(π(p+ 1))− sin(π(α− p)))

u(x) = xp(1− x)q . (5.12)

The corresponding right hand side is

f(x) = −(1− r) Γ(1 + α)
sin(πα)

sin(π(α− p))
. (5.13)

The numerical results are presented in Table 5.4.

The numerical results are consistent with the theoretical predictions. Of particular note is that
changing the convex combination of the adjoint operators in the definition of Lαr , i.e., the factor r,
changes the regularity of the solution, and hence the convergence rate of the FEM approximation.
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h |u− uh|Hα/2(I) Cvg. rate ‖u− uh‖L2(I) Cvg. rate

1/64 7.732E-02 7.083E-04
1/128 5.827E-02 0.41 3.216E-04 1.14
1/256 4.402E-02 0.40 1.485E-04 1.12
1/512 3.331E-02 0.40 6.947E-05 1.10
1/1024 2.522E-02 0.40 3.289E-05 1.08
1/2048 1.910E-02 0.40 1.572E-05 1.06

Pred. 0.40 0.80

Table 5.4: Example 4. Convergence rates for α = 1.6 and r = 0.2764.

6 Spectral type method for the solution of Lαr u = f

In this section we discuss a “spectral type” approximation method for the numerical solution of
Lαr u = f . Central to the method is the following two results.

Lemma 6.1 For n = 0, 1, 2, . . .,

Lα1/2 x
α/2(1− x)α/2 xn =

n∑
j=0

an,j x
j , where

an,j = (−1)(n+1) cos(π α/2) Γ(1 + α/2)
(−1)jΓ(1 + α+ j)

Γ(1 + α/2 − n+ j) Γ(1 + n− j) Γ(j + 1)
. (6.1)

Proof :
As u(x) = xα/2(1− x)α/2 xn satisfies u(0) = u(1) = 0, then

Lαr u(x) = −DD
(
D−(2−α) + D−(2−α)∗

)
u(x) .

Using Maple (see Figure .1 in the appendix),

D−(2−α)u(x) =
Γ(1 + α/2 + n)

Γ(3− α/2 + n)
xn+2−α/2

2F1(−α/2 , 1 + α/2 + n ; 3− α/2 + n ; x) , (6.2)

and

D−(2−α)∗u(x) =
Γ(−2 + α/2 − n)

Γ(−α/2 − n)
xn+2−α/2

2F1(−α/2 , 1 + α/2 + n ; 3− α/2 + n ; x)

+ (−1)n Γ(1 + α/2)

n+2∑
k=0

(−1)k csc(πα/2 + kπ) sin(πα + kπ)Γ(−1 + α+ k)

Γ(−1 + α/2 − n+ k) Γ(3 + n− k) Γ(k + 1)
xk.

(6.3)

Using the identity

Γ(1− z) =
π

sin(πz)

1

Γ(z)
, (6.4)
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with z = 1 + α/2 + n, i.e., 1− z = −α/2 − n,

Γ(−α/2 − n) =
π

sin(π(1 + α/2 + n))

1

Γ(1 + α/2 + n)
=

π

sin(πα/2) cos(π(n+ 1))

1

Γ(1 + α/2 + n)

=
(−1)(n+1) π

sin(πα/2) Γ(1 + α/2 + n)
. (6.5)

Again using (6.4) with z = 3− α/2 + n,

Γ(−2 + α/2 − n) =
π

sin(π(3− α/2 + n))

1

Γ(3− α/2 + n)
=

π

sin(−πα/2) cos(π(n+ 3))

1

Γ(3− α/2 + n)

=
(−1)(n+4) π

sin(πα/2) Γ(3− α/2 + n)
. (6.6)

In view of (6.5) and (6.6), we note that when adding D−(2−α)u(x) and D−(2−α)∗u(x) the xn+2−α/2
2F1(·)

terms cancel.

Next, using standard trigonometric identities it is straightforward to show

csc(πα/2 + kπ) sin(πα + kπ) = 2 cos(πα/2) . (6.7)

Thus,

−DD

(
1

2
D−(2−α) +

1

2
D−(2−α)∗

)
u(x)

=
1

2
(−1)(n+1) Γ(1 + α/2)

n+2∑
k=2

(−1)k k (k − 1) 2 cos(πα/2) Γ(−1 + α+ k)

Γ(−1 + α/2 − n+ k) Γ(3 + n− k) Γ(k + 1)
x(k−2)

which, after reindexing, yields (6.1).

Lemma 6.2 For 1 < α < 2, 0 ≤ β ≤ α, and r satisfying

r =
sin(πβ)

sin(π(α− β)) + sin(πβ)
, (6.8)

for n = 0, 1, 2, . . .,

Lαr xβ(1− x)α−β xn =

n∑
j=0

an,j x
j , where

an,j = (−1)(n+1)(1− r) sin(π α)

sin(π(α− β))
Γ(1 + α− β)

(−1)j Γ(1 + α+ j)

Γ(1 + α− β − n+ j) Γ(1 + n− j) Γ(j + 1)
.

(6.9)

Proof :
With u(x) = xβ(1− x)(α−β) xn using Maple (see Figure .2 in the appendix),

D−(2−α)u(x) =
Γ(1 + β + n)

Γ(3− α+ β + n)
xn+2−α+β

2F1(1 + β + n , −α+ β ; 3− α+ β + n ; x) , (6.10)
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and

D−(2−α)∗u(x) =
Γ(−2 + α− β − n)

Γ(−β − n)
xn+2−α/2

2F1(1 + β + n , −α+ β ; 3− α+ β + n ; x)

+ (−1)n Γ(1 + α− β)

n+2∑
k=0

(−1)k csc(π(α− β) + kπ) sin(πα + kπ)Γ(−1 + α+ k)

Γ(−1 + α− β − n+ k) Γ(3 + n− k) Γ(k + 1)
xk.

(6.11)

Using (6.5) with α/2 −→ β, and (6.6) with α/2 −→ (α− β), we have that

Γ(−2 + α− β − n)

Γ(−β − n)
=

− sin(πβ) Γ(1 + β + n)

sin(π(α− β)) Γ(3− α+ β + n)
. (6.12)

The coefficient of xn+2−α+β
2F1(·) in the linear combination

(
rD−(2−α) + (1− r) D−(2−α)∗)u(x)

is:

r
Γ(1 + β + n)

Γ(3− α+ β + n)
+ (1− r)Γ(−2 + α− β − n)

Γ(−β − n)

=
Γ(1 + β + n)

Γ(3− α+ β + n)

(
r + (1− r) − sin(πβ)

sin(π(α− β))

)
(using (6.12))

= 0 ,

provided r is given by (6.8).

Using standard trigonometric identities it is straightforward to show

csc(π(α− β) + kπ) sin(πα + kπ) =
sin(πα)

sin(π(α− β))
.

Thus,

−DD
(
rD−(2−α) + (1− r)D−(2−α)∗

)
u(x)

= (−1)(n+1)(1− r) Γ(1 + α− β)
n+2∑
k=2

(−1)k k (k − 1) sin(πα)
sin(π(α−β)) Γ(−1 + α+ k)

Γ(−1 + α− β − n+ k) Γ(3 + n− k) Γ(k + 1)
x(k−2)

which, after reindexing, yields (6.9).

Jacobi polynomial play a key role in the approximation schemes. We briefly review their definition
and properties central to the method [1, 24].

Usual Jacobi Polynomials, P
(α,β)
n (x), on (−1 , 1).

Definition: P
(α,β)
n (x) :=

∑n
m=0 pn,m (x− 1)(n−m)(x+ 1)m, where

pn,m :=
1

2n

(
n+ α
m

) (
n+ β
n−m

)
. (6.13)
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Orthogonality:∫ 1

−1
(1− x)α(1 + x)β P

(α,β)
j (x)P

(α,β)
k (x) dx =

{
0, k 6= j ,

|‖P (α,β)
j |‖2 , k = j .

where |‖P (α,β)
j |‖ =

(
2(α+β+1)

(2j + α + β + 1)

Γ(j + α+ 1) Γ(j + β + 1)

Γ(j + 1) Γ(j + α+ β + 1)

)1/2

. (6.14)

Jacobi Polynomials, Gn(p, q, x), on (0 , 1).
Definition: Gn(p, q, x) :=

∑n
j=0 gn,j x

j , where

gn,j := (−1)(n−j) Γ(q + n)

Γ(p+ 2n)

Γ(n+ 1)

Γ(j + 1) Γ(n− j + 1)

Γ(p+ n+ j)

Γ(q + j)
. (6.15)

Orthogonality:∫ 1

0
x(q−1)(1− x)(p−q)Gj(p, q, x)Gk(p, q, x) dx =

{
0, k 6= j ,

|‖G(p,q)
j |‖2 , k = j .

where |‖G(p,q)
n |‖ =

(
Γ(n+ 1) Γ(n+ q) Γ(n+ p) Γ(n+ p− q + 1)

(2n+ p) Γ2(2n+ p)

)1/2

. (6.16)

Note that Gn(p, q, x) = Γ(n+1) Γ(n+p)
Γ(2n+p) P

(p−q , q−1)
n (2x− 1).

The weighted L2(0, 1) spaces, L2
ρ(0, 1).

The weighted L2(0, 1) spaces are convenient for analyzing the convergence of the spectral type
methods presented below. For ρ(x) > 0, x ∈ (0, 1), let

L2
ρ(0, 1) := {f(x) :

∫ 1

0
ρ(x) f(x)2 dx < ∞} .

Associated with L2
ρ(0, 1) is the inner product, 〈·, ·〉ρ, and norm, ‖ · ‖ρ, defined by

〈f , g〉ρ :=

∫ 1

0
ρ(x) f(x) g(x) dx , and

‖f‖ρ := (〈f , f〉ρ)1/2 .

6.1 Spectral type method approximation to Lα1/2u = f

In this section we discuss the approximation of Lα1/2u = f , subject to u(0) = u(1) = 0, using

Jacobi polynomials on (0, 1). For 1 < α < 2 (fixed), for convenience of notation, we let Gn(x) :=
Gn(1 + α , 1 + α/2 , x), and let Pn(x) denote the vector space of polynomials of degree ≤ n. Let

ω(x) = xα/2(1− x)α/2,

and λn = − cos(π α/2)
Γ(n+ 1 + α)

Γ(n+ 1)
.
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We have that

‖Gn‖2ω =

∫ 1

0
xα/2(1− x)α/2Gn(x)Gn(x) dx = |‖G(1+α , 1+α/2)

n |‖2 .

Additionally, {Gj(x)}∞j=0 is an orthogonal basis for L2
ω(0, 1).

Using Stirling’s formula we have that

lim
n→∞

Γ(n+ µ)

Γ(n)nµ
= 1 , for µ ∈ IR. (6.17)

Thus λn > 0 for all n = 0, 1, 2, . . ., and as n→∞ λn ∼ − cos(π α/2) (n+ 1)α.

Remark: Note that f ∈ L2
ω(0, 1) may be expressed as f(x) =

∑∞
i=0

fi
‖Gi‖2ω

Gi(x), where fi is given

by

fi :=

∫ 1

0
ω(x)Gi(x) f(x) dx . (6.18)

We begin with the following important extension of Lemma 6.1.

Lemma 6.3 For n = 0, 1, 2, . . .,

Lα1/2 ω(x)Gn(x) = λnGn(x) . (6.19)

Proof : We have that, up to a constant multiplier, Gn(x) is characterized by

0 = (ω(x)Gn(x) , p(x)) , ∀ p(x) ∈ Pn−1(x) ,

=

∫ 1

0
ω(x)Gn(x) p(x) dx .

Now, given p(x) ∈ Pn−1(x), from Lemma 6.1, there exists p̂(x) ∈ Pn−1(x) satisfying

p̂(x) = Lα1/2 ω(x) p(x) .

Then, noting that Lα1/2 is self adjoint,(
ω(x)Lα1/2 ω(x)Gn(x) , p(x)

)
=
(
Lα1/2 ω(x)Gn(x) , ω(x) p(x)

)
=
(
ω(x)Gn(x) , Lα1/2 ω(x) p(x)

)
= (ω(x)Gn(x) , p̂(x))

= 0 ,

which implies that Lα1/2 ω(x)Gn(x) = C Gn(x), for C ∈ IR.

As the coefficient of xn in Gn(x) is 1, then from Lemma 6.1,

C = an,n = − cos(π α/2)
Γ(1 + α+ n)

Γ(n+ 1)
= λn .
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With fi defined in (6.18), let

uN (x) := ω(x)
N∑
j=0

cj Gj(x) , where cj =
1

λj ‖Gj‖2ω
fj . (6.20)

Theorem 6.1 Let f(x) ∈ L2
ω(0, 1) and uN (x) be as defined in (6.20). Then, u(x) := limN→∞ uN (x) =

ω(x)
∑∞

j=0 cj Gj(x) ∈ L2
ω−1(0, 1). In addition, Lα1/2u(x) = f(x).

Proof : For fN (x) =
∑N

i=0
fi
‖Gi‖2ω

Gi(x), we have that f(x) = limN→∞ fN (x), and {fN (x)}∞N=0

is a Cauchy sequence in L2
ω(0, 1). A straightforward calculation shows that uN (x) ∈ L2

ω−1(0, 1).
Then, (without loss of generality, assume M > N)

‖uN (x) − uM (x)‖2ω−1 =

ω−1(x) ω(x)

M∑
j=N+1

cj Gj(x) , ω(x)

M∑
j=N+1

cj Gj(x)


=

ω(x)

M∑
j=N+1

fj
λj ‖Gj‖2ω

Gj(x) ,
M∑

j=N+1

fj
λj ‖Gj‖2ω

Gj(x)


=

M∑
j=N+1

f2
j

λ2
j ‖Gj‖2ω

≤ C

ω(x)

M∑
j=N+1

fj
‖Gj‖2ω

Gj(x) ,

M∑
j=N+1

fj
‖Gj‖2ω

Gj(x)


(using λj ’s are bounded away from zero)

= C ‖fN (x) − fM (x)‖2ω .

Hence {uN (x)}∞N=0 is a Cauchy sequence in L2
ω−1(0, 1). As L2

ω−1(0, 1) is closed,
u(x) := limN→∞ uN (x) ∈ L2

ω−1(0, 1).

Next, as fN (x) → f(x) in L2
ω(0, 1), given ε > 0 there exists Ñ such that for N > Ñ , ‖f(x) −

fN (x)‖ω < ε. Then, for N > Ñ , using Lemma 6.3

‖f(x) − Lα1/2uN (x)‖ω = ‖f(x) − Lα1/2

ω(x)
N∑
j=0

fj
λj ‖Gj‖2ω

Gj(x)

 ‖ω
= ‖f(x) −

N∑
j=0

fj
‖Gj‖2ω

Gj(x)‖ω

= ‖f(x) − fN (x)‖ω < ε .

Hence, f(x) = Lα1/2u(x).

Using Lemma 6.3 and B(·, ·) defined in (5.2), we have the following connection between the spectral
type approximation and the Galerkin approximation.
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Lemma 6.4 Let f(x) ∈ L2
ω(0, 1) and XN :=

{
h(x) : h(x) = ω(x) h̃(x) , h̃(x) ∈ PN (x)

}
. Then,

uN (x) ∈ XN satisfying B(uN , v) = 〈f, v〉 ∀v ∈ XN , is given by (6.20).

Remark: Note that the factor ω(x) = xα/2(1−x)α/2 explicitly incorporates the endpoint singular
behavior of the operator into the approximation space XN .

Proof : The set {Gi(x)}Ni=0 forms a basis for PN (x). With uN (x) = ω(x)
∑N

j=0 cj Gj(x), v(x) =
ω(x)Gi(x), from (6.18) (using (6.19)) we obtain

fi = (ω(x)Gi(x) , f(x)) = 〈f , v〉

= B(uN , v) =

Lα1/2 ω(x)
N∑
j=0

cj Gj(x) , ω(x)Gi(x)


=

 N∑
j=0

cj λj Gj(x) , ω(x)Gi(x)


= ci λi ‖Gi‖2ω .

Hence, ci = fi/(λi ‖Gi‖2ω).

6.1.1 A priori error estimate for u − uN

We have the following statement for the error between u − uN .

Theorem 6.2 For f(x) ∈ L2
ω(0, 1) and uN (x) given by (6.20), there exists C > 0 such that

‖u − uN‖ω−1 ≤
1

λN+1
‖f‖ω ≤ C (N + 2)−α ‖f‖ω. (6.21)
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Proof : With the definition of the ‖ · ‖ω−1 norm, and (6.17)

‖u − uN‖2ω−1 =

∫ 1

0
ω−1(x)

(
ω(x)

∞∑
i=0

fi
(λi ‖Gi‖2ω)

Gi(x) − ω(x)
N∑
i=0

fi
(λi ‖Gi‖2ω)

Gi(x)

)2

dx

≤ max
N+1≤ i

(
1

λ2
i

) ∫ 1

0
ω(x)

∞∑
i=N+1

(
fi
‖Gi‖2ω

Gi(x)

)2

dx

≤ 1

λ2
N+1

∫ 1

0
ω(x)

∞∑
i= 0

(
fi
‖Gi‖2ω

Gi(x)

)2

dx

≤
(

1

− cos(π α/2)

Γ(N + 2)

Γ(N + 2 + α)

)2 ∫ 1

0
ω(x)

∞∑
i= 0

(
fi
‖Gi‖2ω

Gi(x)

)2

dx

=

(
1

− cos(π α/2)

Γ(N + 2)

Γ(N + 2 + α)

)2 ∫ 1

0
ω(x) f(x)2 dx

≤
(

1

− cos(π α/2)

Γ(N + 2)

Γ(N + 2 + α)

)2

‖f‖2ω

≤ C (N + 2)−2α ‖f‖2ω .

Corollary 6.1 For f(x) ∈ L2
ω(0, 1) and uN (x) given by (6.20), there exists C > 0 such that

‖u − uN‖Hα/2(0,1) ≤
1√
λN+1

‖f‖ω ≤ C (N + 2)−α/2 ‖f‖ω , and (6.22)

‖u − uN‖ ≤
1

λN+1
‖f‖ω ≤ C (N + 2)−α ‖f‖ω . (6.23)

Proof : With 〈· , ·〉 denoting the L2-duality pairing, and using the coercivity of B(·, ·) (see [9]), there
exists C0 > 0 such that

C0 ‖u − uN‖2Hα/2(0,1)
≤ B(u− uN , u− uN )

= 〈Lα1/2 ω(x)
∞∑

j=N+1

fj
λj ‖Gj‖2ω

Gj(x) , ω(x)

∞∑
j=N+1

fj
λj ‖Gj‖2ω

Gj(x)〉

=

 ∞∑
j=N+1

fj
λj ‖Gj‖2ω

λj Gj(x) , ω(x)

∞∑
j=N+1

fj
λj ‖Gj‖2ω

Gj(x)


=

∞∑
j=N+1

f2
j

λj ‖Gj‖2ω

≤ max
N+1≤ j

(
1

λj

) ∞∑
j= 0

f2
j

‖Gj‖2ω

≤ 1

λN+1
‖f‖2ω

≤ C (N + 2)−α ‖f‖2ω ,
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where in the last step we use the bound for λN+1 obtained in the proof of Theorem 6.2.

The bound (6.23) for the L2 error in the approximation follows from (6.21) and the observation
that, as ω(x) = xα/2(1− x)α/2 < 1, for 0 < x < 1, ‖u − uN‖ ≤ ‖u − uN‖ω−1 .

6.2 Spectral type method approximation to Lαr u = f

For the general case Lαr u = f , r 6= 1/2, the operator Lαr · is not symmetric. Hence the singular
behavior of the adjoint problem (Lαr )∗ · = Lα1−r· does not match that of Lαr ·. In order to conveniently
present the approximation method and its properties, in this section we use the following notation.

For 1 < α < 2 and r given, and β determined by (6.8),

Lαr u = r Dαu + (1− r)Dα∗u Lα∗r u = r Dα∗u + (1− r)Dαu

ω(x) = xβ (1− x)α−β ω∗(x) = xα−β (1− x)β (6.24)

Gn(x) = Gn(α+ 1 , β + 1 , x) G∗n(x) = Gn(α+ 1 , α− β + 1 , x)

λn = −(1− r) sin(π α)

sin(π(α− β))

Γ(n+ 1 + α)

Γ(n+ 1)
λ∗n = −r sin(π α)

sin(π(α− β))

Γ(n+ 1 + α)

Γ(n+ 1)

From (6.16) we have the following orthogonality properties∫ 1

0
ω(x)Gj(x)Gk(x) dx = 0 , k 6= j ,

∫ 1

0
ω∗(x)G∗j (x)G∗k(x) dx = 0 , k 6= j ,

and,

‖Gn‖2ω = ‖Gn(α+ 1 , β + 1 , x)‖2ω

=
Γ(n+ 1) Γ(n+ α+ 1) Γ(n+ β + 1) Γ(n+ α− β + 1)

(2n + α + 1) Γ2(2n + α + 1)

= ‖Gn(α+ 1 , α− β + 1 , x)‖2ω∗
= ‖G∗n‖2ω∗ . (6.25)

Corresponding to Lemma 6.3 we have the following.

Lemma 6.5 For n = 0, 1, 2, . . .,

Lαr ω(x)Gn(x) = λn G∗n(x) , (6.26)

Lα1−r ω∗(x)G∗n(x) = λ∗n Gn(x) . (6.27)

Proof : Up to a multiplicative constant, Gn(x) and G∗n(x) are, respectively, determined by
(Gn(x) , p(x))ω = 0 and (G∗n(x) , p(x))ω∗ = 0, for all p(x) ∈ Pn−1(x).

Let p(x) ∈ Pn−1(x). Then, from Lemma 6.2 there exists p̂(x) ∈ Pn−1(x) such that Lα1−rω∗(x) p(x) =
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p̂(x). Then,

(Lαr (ω(x)Gn(x)) , p(x))ω∗ =

∫ 1

0
ω∗(x)Lαr (ω(x)Gn(x)) p(x) dx

=

∫ 1

0
Lαr (ω(x)Gn(x)) ω∗(x) p(x) dx

=

∫ 1

0
ω(x)Gn(x)Lα1−r (ω∗(x) p(x)) dx

=

∫ 1

0
ω(x)Gn(x) p̂(x) dx

= 0 .

Hence, Lαr ω(x)Gn(x) = C G∗n(x), for C ∈ IR.

As the coefficient of xn in Gn(x) and G∗n(x) is 1, then from Lemma 6.2,

C = −(1− r) sin(π α)

sin(π(α− β))

Γ(n+ 1 + α)

Γ(n+ 1)
= λn .

An analogous argument to the above establishes (6.27).

Remark: Note that f(x) ∈ L2
ω∗(0, 1) may be expressed as f(x) =

∑∞
i=0

f∗i
‖G∗i ‖2ω∗

G∗i (x), where f∗i is

given by

f∗i :=

∫ 1

0
ω∗(x) f(x)G∗i (x) dx . (6.28)

With f∗i defined in (6.28), let

uN (x) = ω(x)

N∑
i=0

ci Gi(x) , where ci =
1

λi ‖G∗i ‖2ω∗
f∗i . (6.29)

Theorem 6.3 Let f(x) ∈ L2
ω∗(0, 1) and uN (x) be as defined in (6.29). Then, u(x) := limN→∞ uN (x) =

ω(x)
∑∞

j=0 cj Gj(x) ∈ L2
ω−1(0, 1). In addition, Lαr u(x) = f(x).

Proof : Using (6.25), the proof follows in a similar manner to that for Theorem 6.1.

6.2.1 Invertibility of Lαr · on L2(0, 1)

We return to the question eluded to by Lemmas 4.4 and 4.5 in Section 4, namely the invertibility
of Lαr · on L2(0, 1). Theorem 6.3, together with (6.29) and (6.28) (see also Theorem 6.1, together
with (6.20) and (6.18)) gives an explicit inverse for Lαr · on L2

ω∗(0, 1) ⊃ L2(0, 1). Hence we have the
following.
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Corollary 6.2 For 1 < α < 2, 0 < r < 1, β chosen such that (6.8) is satisfied, ω and ω∗ as
in (6.24), given f ∈ L2(0, 1) there exists a unique solution u ∈ L2

ω−1(0, 1) such that Lαr u = f and
u(0) = u(1) = 0. (For a solution to the nonhomogeneous boundary condition problem: Lαr unh = f
subject to unh(0) = A, unh(1) = B, the homogeneous boundary condition for u is combined with a
suitable function chosen from the kernel of Lαr · (see Corollary 4.1)).

6.2.2 A priori error estimate for u − uN

We have the following statement for the error between u − uN .

Theorem 6.4 For f(x) ∈ L2
ω∗(0, 1) and uN (x) given by (6.29), there exists C > 0 such that

‖u − uN‖ω−1 ≤
1

λN+1
‖f‖ω∗ ≤ C (N + 2)−α ‖f‖ω∗ . (6.30)

Proof : The proof follows in a similar manner to that for Theorem 6.2.

Corollary 6.3 For f(x) ∈ L2
ω∗(0, 1) and uN (x) given by (6.29), there exists C > 0 such that

‖u − uN‖ ≤
1

λN+1
‖f‖ω∗ ≤ C (N + 2)−α ‖f‖ω∗ . (6.31)

Proof : As ω(x) = xβ(1− x)α−β < 1, for 0 < x < 1, then ‖u − uN‖ ≤ ‖u − uN‖ω−1 . Hence the
bound (6.31) follows immediately from (6.30) .

6.3 Numerical Examples

In this section we demonstrate the spectral type approximation methods discussed in Sections 6.1
and 6.2 on Examples 1 and 2 presented in Section 5.

Example 1. cont.

For this example α = 1.4 and r = 1/2. Hence we have (from Section 6.1) that ω(x) = xα/2(1 −
x)α/2 = x0.7(1− x)0.7, and from (6.18) and (6.20)

uN (x) = x0.7(1− x)0.7
N∑
j=0

fj
λj ‖Gj‖2w

Gj(x) .

Presented in Figure 6.1 is a plot of the true solution given in (5.6). Figure 6.2 contains a plot of the
error, u(x) − u8(x), which exhibits a Gibbs type phenomena at the endpoints. Presented in Figure
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Figure 6.1: Solution of Example 1, u(x) given
in (5.6).

Figure 6.2: Plot of u(x) − u8(x) for Exam-
ple 1.
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Figure 6.3: L2
ω and L2 errors for Example 1.

Figure 6.4: Solution of Example 2, u(x) given
in (5.8).

6.3 is a plot of the L2
ω and L2 errors for the approximations. The convergence of the approximations

is consistent with the theoretical results given in (6.21) and (6.23).

Example 2. cont.
For this example α = 1.4, r = 0.3149, p = −0.15 and q = −0.45. For these values the corresponding
value for β = 0.85 (see (6.8)). From Section 6.2, (6.24), ω(x) = xβ(1−x)α−β = x0.85(1−x)0.55, and
from (6.28) and (6.29)

uN (x) = x0.85(1− x)0.55
N∑
j=0

f∗j
λj ‖G∗j‖2w∗

Gj(x) .

Presented in Figure 6.4 is a plot of the true solution given in (5.8). Figure 6.5 contains a plot of the
error, u(x) − u8(x). Presented in Figure 6.6 is a plot of the L2

ω and L2 errors for the approximations.
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The convergence of the approximations is consistent with the theoretical results given in (6.30) and
(6.31).

Figure 6.5: Plot of u(x) − u8(x) for Exam-
ple 2.
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Figure 6.6: L2
ω and L2 errors for Example 2.
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Appendix

> > 

> > 

> > 
> > 

> > 

> > 

> > 

(2)(2)

> > 

> > 

> > 

(1)(1)

> > 

> > 

> > 

assume(x,'real'):
additionally(x < 1):
additionally(x > 0) :
about(x) ;

Originally x, renamed x~:
  is assumed to be: RealRange(Open(0),Open(1))

assume(alpha,'real'):
additionally(alpha < 2):
additionally(alpha > 1):
about(alpha) ;

Originally alpha, renamed alpha~:
  is assumed to be: RealRange(Open(1),Open(2))

assume(n::integer) :
additionally(n >= 0) :
about(n) ;

Originally n, renamed n~:
  is assumed to be: AndProp(integer,RealRange(0,infinity))

w3 := integrate((x - s)^(1-alpha) * s^(alpha/2) * (1 - s)^(alpha/2)
* s^(n) , s = 0 .. x)/GAMMA(2-alpha) ;

w3 :=
1

G 3K
1
2

 a~C n~
x~

2 K
1
2

 a~C n~
 hypergeom K

1
2

 a~, 1C
1
2

 a~C n~ , 3

K
1
2

 a~C n~ , x~  G 1C
1
2

 a~C n~

w4 := integrate((s - x)^(1-alpha) * s^(alpha/2) * (1 - s)^(alpha/2)
* s^(n) , s = x .. 1)/GAMMA(2-alpha) ;

w4 := G
1
2

 a~C 1  x~ 
1
x~

K1 n~ >
_k1 = 0

2 C n~

K1 _k1 x~_k1 csc
1
2

 a~ pC p _k1  sin p _k1C p a~  G K1Ca~C _k1

G K1C
1
2

 a~K n~C _k1  G 3C n~K _k1  G _k1C 1

C
1

G K
1
2

 a~K n~  G
1
2

 a~C 1
x~

1 K
1
2

 a~C n~
 hypergeom K

1
2

 a~, 1C
1
2

 a~

C n~ , 3K
1
2

 a~C n~ , x~  G K2C
1
2

 a~K n~

Figure .1: Maple computation for Lemma 6.1

30



> > 

> > 

> > 

> > 
> > 

> > 

> > 

> > 

> > 

> > 

> > 
> > 

(2)(2)

> > 

> > 

> > 

> > 

(1)(1)

> > assume(x,'real'):
additionally(x < 1):
additionally(x > 0) :
about(x) ;

Originally x, renamed x~:
  is assumed to be: RealRange(Open(0),Open(1))

assume(alpha,'real'):
additionally(alpha < 2):
additionally(alpha > 1):
about(alpha) ;

Originally alpha, renamed alpha~:
  is assumed to be: RealRange(Open(1),Open(2))

assume(n::integer) :
additionally(n >= 0) :
about(n) ;

Originally n, renamed n~:
  is assumed to be: AndProp(integer,RealRange(0,infinity))

assume(beta,'real'):
additionally(beta > 0 ) :
additionally(beta < 1 ) :
about(beta) ;

Originally beta, renamed beta~:
  is assumed to be: RealRange(Open(0),Open(1))

w3 := integrate((x - s)^(1-alpha) * s^(beta+n) * (1 - s)^(alpha - 
beta) , s = 0 .. x)/GAMMA(2-alpha) ;

w3 :=
1

G 3Ka~C b~C n~
x~2 K a~C b~C n~ hypergeom 1C b~C n~, Ka~C b~ , 3

Ka~C b~C n~ , x~  G 1C b~C n~
w4 := integrate((s - x)^(1-alpha) * s^(beta+n) * (1 - s)^(alpha - 
beta) , s = x .. 1)/GAMMA(2-alpha) ;

w4 := G a~K b~C 1  x~ 
1
x~

K1 n~ >
_k1 = 0

2 C n~

K1 _k1 x~_k1 csc p _k1C p a~K p b~  sin p _k1C p a~  G K1Ca~C _k1
G K1K b~K n~Ca~C _k1  G 3C n~K _k1  G _k1C 1

C
1

G Kb~K n~  G a~K b~C 1
x~b~C n~C 1 K a~ hypergeom 1C b~C n~,

Ka~C b~ , 3Ka~C b~C n~ , x~  G K2Ca~K b~K n~

Figure .2: Maple computation for Lemma 6.2
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