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Abstract

In this work we investigate a filtration process whereby particulate is deposited in the flow
domain, causing the porosity of the region to decrease. The fluid flow is modeled as a coupled
Stokes-Darcy flow problem and the deposition (in the Darcy domain) is modeled using a nonlin-
ear equation for the porosity. Existence and uniqueness of a solution to the governing equations
is established. Additionally, the nonnegativity and boundedness of the porosity is shown. A
finite element approximation scheme that preserves the nonnegativity and boundedness of the
porosity is investigated. Accompanying numerical experiments support the analytical findings.
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1 Introduction

Applications of filtration abound in our everyday lives. From the routine activities such as: the
preparation of espresso coffee in the morning [13], the water we drink from the faucet [29], and the
car we drive to work [26]. To the less obvious but not less important such as: The absorption of
nutrients in the small intestine [22], the cleansing of blood in the kidneys [21], and the prevention of
postoperative infections [23]. All these phenomena rely on the separation of some solid from a fluid
by means of a medium that is permeable to the fluid but (mostly) impermeable to the solid.

In this work we investigate a filtration process whereby particulate is deposited in the flow domain,
causing the porosity of the region to decrease. The fluid flow is modeled as a coupled Stokes-Darcy
flow problem and the deposition (in the Darcy domain) is modeled using a nonlinear equation for
the porosity. (See Figure 1.) The model considered in this paper extends the work presented in [11]
where the analysis was restricted to the filtration domain.

The addition of the upstream flow domain introduces into the model a different set of flow
equations which must be suitable coupled across the interface (Γ) between the two subdomains.
The coupling equations, given in (2.6) represent the conservation of mass across Γ (see (2.6a)) , the
conservation of the normal component of stress across Γ (see (2.6b)) , and an equation (the Beavers-
Joseph-Saffman condition (2.6c)) for the tangential component of the stress vector on the Stokes
domain.
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Figure 1: Coupled Stokes-Darcy flow domain. A fluid in the Stokes domain Ω2 flows across the
interface Γ towards the filtration (porous) region Ω1, where the Darcy equations are applicable.

As a first step in analyzing this coupled model we use the quasi static Stokes equations (i.e.,
neglect the ∂u2

∂t
) to model the fluid flow in the upstream domain Ω2. For the filtration process we

assume that the rate of change of the porosity (η), caused by the particulate deposition, is only
dependent upon the porosity and the magnitude of the fluid velocity, i.e.,

∂η

∂t
= −dep (η , |u1|) , (1.1)

where u1 denotes the fluid velocity in the filter, Ω1. As a first approximation, we assume that the
deposition function is a separable function of |u1| and η, i.e., dep (η , |u1|) = g(|u1|)h(η). (The
specific assumptions we make on g(·) and h(·) are given by A1 and A2 below.

Following the seminal work of Discacciati, Miglio and Quarteroni in [8], and Layton, Schieweck
and Yotov in [25], much work has been done on the numerical approximation of the coupled Stokes-
Darcy fluid flow problem. These investigations have covered different variational formulations of the
modeling equations, different discretization schemes, and different solution algorithms for the dis-
cretized system of equations. A recent overview of this work is summarized in the Introduction of [3].
The coupled Stokes-Darcy fluid flow system has been extended to model other challenging physical
problems. In particular we mention the incorporation of a two phase fluid into the Stokes-Darcy
setting to yield the Cahn-Hilliard-Stokes-Darcy system [18, 19, 5, 7], and the dual-porosity Stokes-
Darcy model [20] where the Darcy domain is assumed to be made up of a matrix and microfracture
components. Also related, and much studied, are fluid-structure interaction (FSI) problems.

In [16] the authors investigated a model for contaminate transport coupled to a Stokes-Darcy
fluid flow problem. Different from the filtration problem, the contaminate transport equation is a
convection-diffusion equation defined across the entire flow domain and with the property that the
transported contaminate does not influence the fluid flow.

A similar model to that studied herein in the filtration domain, Ω1, arises in the study of single-
phase, miscible displacement of one fluid by another in a porous medium. For this problem η would
denote a fluid concentration, and the hyperbolic deposition equation (1.1) is replaced by a parabolic
transport equation. Existence and uniqueness for this problem has been investigated and established
by Feng [14], Chen and Ewing [6], and Çeşmelioğlu and Rivière [4]. Because of the connection of this
model to oil extraction, numerical approximation schemes for this problem have been well established.
A summary of these methods is discussed in the recent papers by Bartels, Jensen and Müller [1], and
Riviére and Walkington [27].
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Following a discussion of the notation and assumptions in Section 2, the existence of a solution to
the modeling equations is established in Sections 3 and 4. Subsequently, we show that the porosity
function η is nonnegative and bounded. An approximation scheme for the filtration model is presented
in Section 6. Also in Section 6 we show that the computed approximation for the discrete porosity
is nonnegative and bounded. Three numerical experiments are presented whose results support the
theoretical findings.

2 Notation and assumptions

Throughout this manuscript, the symbol C indicates a generic constant independent of the discretiza-
tion parameters, whose value may change from line to line. The symbol µ denotes the dynamic vis-
cosity in the fluid domain Ω2. We let u, p and η denote the velocity, pressure and porosity throughout
Ω, respectively, and use a subscript i = 1, 2 to indicate if a variable corresponds to the Darcy (i = 1)
or Stokes (i = 2) domain. Moreover, for a generic function fi supported on Ωi, we extend fi to the
whole Ω by setting fi ≡ 0 on Ω \ Ωi. We omit the subscript whenever it is clear over which region
the function is evaluated. We partition the boundary of Ω = Ω1 ∪ Ω2 into three disjoint pieces: The
interface or connecting boundary Γ = ∂Ω1 ∩ ∂Ω2, the Darcy boundary Γ1 = ∂Ω1 \ Γ and the Stokes
boundary Γ2 = ∂Ω2 \ Γ. We use the notation

(f, g)U =

∫
U

f(x) · g(x) dx, ‖f‖2
U = (f, f)U ,

to denote the L2 inner product and norm on U ⊂ Ω, where the dot product is replaced with the
Frobenius product in the case of tensors, and

〈f, g〉Γ =

∫
Γ

f · g dS

to indicate either a surface integral along the interface Γ, or the duality pairing between f and g. We
omit the subscript whenever it is clear from the context over which region we compute the integral.
The function | · | represents the Euclidean norm for vectors, the Frobenius norm for tensors and the
Lebesgue measure for sets. The relevant function spaces in the following derivations are: The Darcy
and Stokes velocity spaces

X1 = {v1 ∈ Hdiv(Ω1) |v1 · n = 0 on Γ1} , X2 =
{
v2 ∈ H1(Ω2)d |v2 = 0 on Γ2

}
,

the Darcy and Stokes pressure spaces, Q1 = L2(Ω1) and Q2 = L2(Ω2), the porosity space L2(Ω1),
the space of Lagrange multipliers Λ = H1/2(Γ), and the space of continuous functions on Ω1, C0(Ω1).
The corresponding norms in the velocity spaces are, for u1 ∈ X1 and u2 ∈ X2:

‖u1‖X1 =
(
‖u1‖2 + ‖∇ · u1‖2

)1/2
, ‖u2‖X2 =

√
2µ ‖D(u2)‖.

Furthermore, we introduce the spaces Q =
{
q ∈ L2(Ω)

∣∣ (q, 1)Ω = 0
}

,

X =
{
v ∈ L2(Ω)d

∣∣v1 ∈ X1 and v2 ∈ X2

}
,

its continuous dual X′, and the norm

‖u‖X =
(
‖u‖2

X1
+ ‖u‖2

X2

)1/2
. (2.1)

The following definition introduces the concept of a smoothing operator in Ω1.
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Definition 2.1. We say that the linear operator S : L2(Ω1)→ C0(Ω1) is smoothing if:

S1: There exists a constant Cs = Cs(Ω1) such that ‖S(u)‖L∞(Ω1) ≤ Cs‖u‖L2(Ω1) for all u ∈ L2(Ω1),
and

S2: if {un}∞n=1 ⊂ L2(Ω1) such that un ⇀ u in L2(Ω1), then S(un)→ S(u) in L∞(Ω1), i.e., S trans-
forms a weakly convergent sequence in L2(Ω1) into a strongly convergent sequence in L∞(Ω1).

Examples of smoothing operators can be found in [12]. For the rest of the article we adopt the
convention of indicating the action of S on η as ηs.

The full system is now restated for ease of reference. For T ∈ R+ denoting the time horizon of
the filtration process, we consider

β(ηs)u +∇p = f in Ω1 × (0, T ),

∇ · u = 0 in Ω1 × (0, T ), (2.2)

∂η

∂t
+ g(|u|)h(η) = 0 in Ω1 × (0, T ), (2.3)

η = η0 in Ω1 × {0} ,
−∇ · T(u, p) = f in Ω2 × (0, T ),

∇ · u = 0 in Ω2 × (0, T ), (2.4)

where T(u, p) = −2µD(u)+Ip is the stress tensor, D(u) = (∇u+(∇u)T )/2 is the deformation tensor,
and I is the identity tensor. Furthermore, system (2.2)-(2.4) is complemented by the boundary data

u · n = 0 on Γ1 × (0, T ), (2.5a)

u = 0 on Γ2 × (0, T ), (2.5b)

and the interface conditions

(u2 − u1) · n = 0 on Γ× (0, T ), (2.6a)

n · T(u2, p2) · n = p1 on Γ× (0, T ), (2.6b)

Pt(T(u2, p2) · n) = Ψ(η)Pt(u2) on Γ× (0, T ), (2.6c)

where Pt(v(p)) is the projection of v onto the tangent plane at the point p on Γ, and Ψ(η) the
proportionality function in the Beavers-Joseph-Saffman condition relating the tangential component
of the normal stress in the Stokes domain to its tangential velocity.

We make the following assumptions:

A1: The functions

β( · ) : R+ → R+, g( · ) : R+ ∪ {0} → R+ ∪ {0} ,
Ψ( · ) : R+ → R+, h( · ) : R+ ∪ {0} → R+ ∪ {0} ,

satisfy the following bounds:

0 < βmin ≤ β( · ) ≤ βmax, g( · ) ≤ gmax,

0 < Ψmin ≤ Ψ( · ) ≤ Ψmax, h( · ) ≤ hmax.
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A2: β( · ), g( · ), h( · ), Ψ( · ) are Lipschitz continuous with Lipschitz constants βLip, gLip, hLip and
ΨLip, respectively.

A3: η0 ∈ L∞(Ω1) and η0(x) ≥ 0 for a.e. x in Ω1.

A4: f ∈ C0(0−, T ; L2(Ω)) defined as C0(0− δ, T ; L2(Ω)) ∩ L∞(0, T ;L2(Ω)) for some δ > 0.

A discussion of the filtration model and assumptions is presented in [11].

Remark 2.1. Note that since ηs is the result of S(η), the Beavers-Joseph-Saffman condition (2.6c)
is well-defined in view that ηs ∈ C0(Ω1).

Additional notation that we need in the subsequent analysis is: For u,v ∈ X, q ∈ Q, η ∈ L2(Ω1)
and ν ∈ Λ, define

a1(η; u,v) := (β(ηs) u,v)Ω1
, a2(u,v) :=

(
2µD(u),D(v)

)
Ω2

,

b(v, q) := −(∇ · v, q)Ω, c(v, ν) := 〈(v2 − v1) · n, ν〉Γ , `(v) := (f ,v)Ω,

d(η; u,v) := 〈Ψ(ηs)Pt(u2), Pt(v2)〉Γ . (2.7)

Remark 2.2. Owing to assumption A4, the operator ` : X→ R introduced in (2.7) is a continuous
linear functional. Thus, ` ∈ X′.

In the next section we investigate the well-posedness of the weak form corresponding to system
(2.2)-(2.5).

3 Existence and uniqueness of the solution

Multiplying (2.2)-(2.4) by the corresponding test functions and incorporating conditions (2.6)-(2.5),
the resulting weak form is: Given η0 ∈ L2(Ω1) and f ∈ C0(0−, T ; L2(Ω)), find u ∈ L2(0, T ; X),
p ∈ L2(0, T ;Q), λ ∈ L2(0, T ; Λ) and η ∈ H1(0, T ; L2(Ω1)), satisfying η(·, 0) = η0 a.e. in Ω1, and for
a.e. t ∈ (0, T )

a1(η; u,v) + a2(u,v) + b(v, p) + c(v, λ) + d(η; u,v) = `(v) ∀v ∈ X, (3.1)

b(u, q) = 0 ∀q ∈ Q, (3.2)

c(u, ν) = 0 ∀ν ∈ Λ, (3.3)

(
∂η

∂t
, ξ)Ω1 +

(
g(|u|)h(η), ξ

)
Ω1

= 0 ∀ξ ∈ L2(Ω1). (3.4)

To simplify the analysis, we introduce the space

V =

{
v ∈ X

∣∣∣∣ c(v, ν) = 0 ∀ν ∈ Λ, and b(v, q) = 0 ∀q ∈ Q
}
.

In order to restrict the analysis to V, we require the following inf-sup condition.

Lemma 3.1. There exists a positive constant γ such that

γ < inf
0 6=(q,ν)∈Q×Λ

sup
0 6=v∈X

b(v, q) + c(v, ν)

‖v‖X ‖(q, ν)‖Q×Λ

, (3.5)

where ‖(q, ν)‖2
Q×Λ = ‖q‖2

L2(Ω) + ‖ν‖2
Λ.
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Proof. The result follows from Proposition 4.7 and Remark 4.8 in [15].

There are two steps in establishing the existence and uniqueness of a solution to (3.1)-(3.4). The
fist step, presented in Section 3.1, establishes that given η, (3.1)-(3.3) is uniquely solvable for u, p,
and λ (in terms of η). For η given, we denote the solution to u as u(t) = P(η, t). Step 2, in Section
3.2, then considers (3.4) with u(t) replaced by P(η, t), thereby yielding a first order initial value
problem for η(t). Existence and uniqueness for η(t) is obtained using the Picard-Lindelöf theorem.

3.1 Unique solvability of (3.1)-(3.3)

In view of the definition of V and Lemma 3.1, assuming η ∈ L2(Ω1) and f ∈ C0(0−, T ;L2(Ω)) are
given, system (3.1)-(3.3) is equivalent to: Find u ∈ L2(0, T ; V) satisfying

a(η; u,v) := a1(η; u,v) + a2(u,v) + d(η; u,v) = `(v) ∀v ∈ V. (3.6)

Lemma 3.2. Let η ∈ L2(Ω1) be given. Then, the problem: Find u ∈ V satisfying for all v ∈ V

a(η; u,v) = `(v), (3.7)

has a unique solution. We call (η,u) a solution pair to (3.7).

Proof. In view of assumption A1 and the continuity of the trace map with norm CT , it follows that

a(η; u,v) ≤ βmax ‖u‖X1 ‖v‖X1 + 2µ ‖u‖X2 ‖v‖X2 + ΨmaxC
2
T ‖u‖X2 ‖v‖X2

≤ max
{
βmax, 2µ, ΨmaxC

2
T
}
‖u‖X ‖v‖X. (3.8)

Now observe that owing to A1 and the nonnegativity of d(η,u,u),

a(η; u,u) ≥ βmin ‖u‖2
X1

+ ‖u‖2
X2
≥ min {βmin, 1} ‖u‖2

X. (3.9)

Finally, since ‖v‖H1(Ω2) ≤ CK ‖v‖X2 for some positive constant CK , we obtain

`(v) = (f ,v)Ω1 + (f ,v)Ω2 ≤ ‖f‖L2(Ω1) ‖v‖L2(Ω1) + ‖f‖H−1(Ω2) ‖v‖H1(Ω2)

≤ ‖f‖L2(Ω1) ‖v‖L2(Ω1) + ‖f‖L2(Ω2) CK ‖v‖X2 ≤ max {1, CK} ‖f‖ ‖v‖X. (3.10)

Consequently, from (3.8), (3.9) and (3.10), the existence of a unique solution to (3.7) follows by the
Lax-Milgram lemma.

The next corollary provides an estimate for the norm of the solution to problem (3.7).

Corollary 3.1. Define

Cβ =
1

min {βmin, 1} , Cb = max {1, CK} Cβ, Cf = Cb ‖f‖L∞(0,T ;L2(Ω)), (3.11)

and let u ∈ V be the solution to the problem stated in Lemma 3.2. Then,

‖u‖X(t) ≤ Cf . (3.12)

Proof. This is a direct consequence of (3.9) and (3.10).

The following result is related to the continuity of the solution u as a function of the porosity η.
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Lemma 3.3. Let (η1,u1), (η2,u2) ∈ L2(Ω1) × V be solution pairs to problem (3.7). Then, there
exists a positive constant CLip such that

‖u2 − u1‖2
X(t) ≤ CLip ‖η1 − η2‖L2(Ω1)(t). (3.13)

Proof. For clarity of exposition, we suppress the dependence of the functions on t. First note that

a1(η1; u1,v)− a1(η2; u2,v) =
(
β(η1,s) (u1 − u2),v

)
Ω1

+
((
β(η1,s)− β(η2,s)

)
u2,v

)
Ω1
. (3.14)

Similarly for d( · , · , · ) and a2( · , · ),

d(η1; u1,v)− d(η2; u2,v) =
〈
Ψ(η1,s)Pt(u

1
2 − u2

2), Pt(v2)
〉

Γ

+
〈(

Ψ(η1,s)−Ψ(η2,s)
)
Pt(u

2
2), Pt(v2)

〉
Γ
, (3.15)

a2(u1,v)− a2(u2,v) =
(
2µD(u1 − u2),D(v)

)
Ω2
. (3.16)

Now observe that

a(η1; u1,v)− a(η2; u2,v) = a1(η1; u1,v)− a1(η2; u2,v)

+ a2(u1,v)− a2(u2,v) + d(η1; u1,v)− d(η2; u2,v) = 0. (3.17)

Adding (3.14) , (3.15) and (3.16), and using (3.17), yields(
β(η1,s) (u2 − u1),v

)
Ω1

+
〈
Ψ(η1,s)Pt(u

2
2 − u1

2), Pt(v2)
〉

Γ

+
(
2µD(u2 − u1),D(v)

)
Ω2

=
〈(

Ψ(η1,s)−Ψ(η2,s)
)
Pt(u

2
2), Pt(v2)

〉
Γ

+
((
β(η1,s)− β(η2,s)

)
u2,v

)
Ω1
. (3.18)

Setting v = u2 − u1 in (3.18) and using assumptions A1, A2, and the trace theorem, we obtain

βmin ‖u2 − u1‖2
X1

+ ‖u2 − u1‖2
X2

≤ ΨLip ‖η1,s − η2,s‖L∞(Ω1) C
2
T ‖u2‖X2 ‖u2 − u1‖X2

+ βLip ‖η1,s − η2,s‖L∞(Ω1) ‖u2‖X1 ‖u2 − u1‖X1 . (3.19)

Applying Corollary 3.1 to bound ‖u‖Xi
for i = 1, 2 and Young’s inequality in (3.19), yields

βmin ‖u2 − u1‖2
X1

+ ‖u2 − u1‖2
X2
≤ 1

4ε2

Ψ2
Lip ‖η1,s − η2,s‖2

L∞(Ω1) C
4
T C

2
f

+ ε2 ‖u2 − u1‖2
X2

+
1

4ε1

β2
Lip ‖η1,s − η2,s‖2

L∞(Ω1)C
2
f + ε1‖u2 − u1‖2

X1
. (3.20)

Finally, setting ε1 = βmin

2
and ε2 = 1/2 in (3.20), we obtain (using property S1 of the smoother)

βmin‖u2 − u1‖2
X1

+ ‖u2 − u1‖2
X2
≤ ‖η1,s − η2,s‖2

L∞(Ω1)C
2
f

(
Ψ2

LipC
4
T +

β2
Lip

βmin

)
≤ C2

s ‖η1 − η2‖2
L2(Ω1)C

2
f

(
Ψ2

LipC
4
T +

β2
Lip

βmin

)
. (3.21)

Estimate (3.13) follows from (3.21).
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The next lemma shows that for a given porosity η, the solution u to (3.7) depends continuously
on the forcing term f .

Lemma 3.4. Let η ∈ L2(Ω1) be given and let u1,u2 be the solutions to (3.7) corresponding to the
linear functionals `1 and `2, respectively. Then,

‖u1 − u2‖X(t) ≤ Cβ ‖`1 − `2‖X′(t).

Proof. Consider the problems

a(η,u1,v) = `1(v) ∀v ∈ V, (3.22)

a(η,u2,v) = `2(v) ∀v ∈ V. (3.23)

Subtracting (3.22) from (3.23) and proceeding in a similar manner as in Lemma 3.3 (see (3.19)), we
obtain the bound

βmin ‖u2 − u1‖2
X1

+ ‖u2 − u1‖2
X2
≤ ‖`2 − `1‖X′ ‖u2 − u1‖X. (3.24)

From (3.24), the result follows.

The next corollary is a generalization of Lemma 3.3 and Lemma 3.4.

Corollary 3.2. Let (η1,u1), (η2,u2) ∈ L2(Ω1)×V be solution pairs to

a(η1,u1,v) = `1(v) ∀v ∈ V,

a(η2,u2,v) = `2(v) ∀v ∈ V.

Then,

‖u2 − u1‖2
X(t) ≤ 2Cβ CLip ‖η2 − η1‖2

L2(Ω1)(t) + 4C2
β ‖`2 − `1‖2

X′(t). (3.25)

Proof. Following the same steps that lead to (3.20) and (3.24), and applying Young’s inequality,
yields

βmin ‖u2 − u1‖2
X1

+ ‖u2 − u1‖2
X2
≤ 1

4ε2

Ψ2
Lip ‖S(η1 − η2)‖2

L∞(Ω1)C
4
T C

2
f

+ ε2 ‖u2 − u1‖2
X2

+
1

4ε1

β2
Lip ‖S(η1 − η2)‖2

L∞(Ω1) C
2
f + ε1‖u2 − u1‖2

X1

+ ε3‖`2 − `1‖2
X′ +

1

4ε3

‖u2 − u1‖X. (3.26)

Setting ε1 = βmin

2
, ε2 = 1/2, ε3 = Cβ in (3.26) and replacing the L∞(Ω) norm of the smoothed

variables with the L2(Ω1) norm of the original variables, we obtain

βmin ‖u2 − u1‖2
X1

+ ‖u2 − u1‖2
X2
≤ CLip ‖η2 − η1‖2

L2(Ω1)(t) + 2Cβ ‖`2 − `1‖2
X′

+
C−1
β

2
‖u2 − u1‖X. (3.27)

From (2.1) and (3.11) we have

C−1
β ‖u2 − u1‖2

X ≤ βmin‖u2 − u1‖2
X1

+ ‖u2 − u1‖2
X2
,

which together with (3.27) leads to (3.25).
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3.2 Unique solvability of (3.4)

We proceed to define two operators. One outputs the Darcy velocity as a function of the porosity η
and the other describes the deposition function in terms of η.

Definition 3.1. Let P : L2(Ω1)× (0, T )→ V be given by

P(η, t) = u(t),

where u(t) is defined through the solution pair (η,u) of the problem introduced in (3.7), and define
F : L2(Ω1)× (0, T )→ L2(Ω1) by

F(η, t) = g (|P(η, t)|) h(η).

Remark 3.1. The time dependency of P is due the forcing term f(t).

The following properties of P and F are used in the main result of this section.

Lemma 3.5. The operator P( · , t) is Lipschitz continuous for every t ∈ (0, T ), and P(η, · ) is
continuous for every η ∈ L2(Ω1).

Proof. The Lipschitz continuity of P( · , t) is a direct consequence of Lemma 3.3. To establish the
continuity of P(η, · ), let t ∈ (0, T ), ε > 0, and η ∈ L2(Ω1) be given. With reference to Lemma 3.4,
define the linear functionals `1(v) = (f(t),v)Ω and `2(v) = (f(t + h),v)Ω for some h ∈ R, and let
u1 = P(η, t), u2 = P(η, t+ h) be the corresponding solutions, respectively. Then, by Lemma 3.4,

‖u1 − u2‖X ≤ Cβ ‖f(t)− f(t+ h)‖. (3.28)

Owing to assumption A4, we can find an open ball B ⊂ R centered at zero of radius δ > 0 such that
for all h ∈ B,

‖f(t)− f(t+ h)‖ ≤ ε. (3.29)

Hence, combining (3.28) and (3.29) the result follows.

Lemma 3.6. The operator F( · , t) is Lipschitz continuous for every t ∈ R+, and F(η, · ) is contin-
uous for every η ∈ L2(Ω1).

Proof. In view that the composition of Lipschitz continuous functions is Lipschitz and the product of
bounded Lipschitz continuous functions is Lipschitz, assumptions A1 and A2 together with Lemma
3.5 imply that F( · , t) is Lipschitz continuous. Now note that owing to assumption A2 and Lemma
3.5, the function g (|P(η, ·)|) is continuous. Hence, F(η, · ) is continuous.

Remark 3.2. In view of A1, the operator F(·, ·) is uniformly bounded in L2(Ω1) × (0, T ) by the
constant CF = gmax hmax. Thus,

‖F(·, ·)‖L2(Ω1) ≤ CF |Ω1|1/2 .

Remark 3.3. With an additional assumption on f , we can strengthen Lemma 3.5 to obtain Lipschitz
continuity with respect to the variable t and, additionally, Lipschitz continuity on the whole domain
L2(Ω1)× (0, T ). This idea is explored in Section 4.

Before introducing the main theorem of this section, we restate the Picard-Lindelöf theorem.
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Theorem 3.1 ([17], Theorem I.3.1). Let I denote a domain in R containing the point t0, Y a Banach
space and f : Y × R → Y . Suppose that f is locally Lipschitz continuous in its first variable and
continuous in its second variable. Then, there exists ε > 0 such that the initial value problem

u′ = f(u, t),

u(t0) = u0,

has a unique solution in C0(t0 − ε, t0 + ε;Y ).

Theorem 3.2. Under assumptions A1-A4 and S1-S2, there exists a unique solution u ∈ L2(0, T ; V),
p ∈ L2(0, T ;Q), λ ∈ L2(0, T ; Λ) and η ∈ H1(0, T ; L2(Ω1)) satisfying (3.1)-(3.4) for a.e. t ∈ (0, T ).

Proof. First, we focus on computing the porosity. In view of (3.4) and using Definition 3.1, we
consider the problem: Find η ∈ C0(0, T ) such that

∂η

∂t
= −g(|P(η, t)|)h(η) = −F(η, t) ∀t ∈ (0, T ). (3.30)

Let t ∈ (0, T ) be given. Owing to Theorem 3.1, Lemma 3.5 and Lemma 3.6, there exists ε > 0
and an interval (t− ε, t+ ε) where the existence of a unique η is guaranteed. From Lemma 3.3 and
Remark 3.2, the Lipschitz constant CLip and the bound for ‖F( · , · )‖L2(Ω1) are independent of η0

and t. Hence, one can extend the solution to the whole interval (0, T ). Next, we use η in Lemma
3.2 to obtain the velocity u. Finally, owing to the inf-sup condition in Lemma 3.1, the existence and
uniqueness of p and λ follow.

A simple consequence of Theorem 3.2 is the next corollary, which upgrades the regularity of η.

Corollary 3.3. The porosity function η given by Theorem 3.2 is Lipschitz continuous on (0, T ).

Proof. In view of Lemma 3.5 and Lemma 3.6, F( · , · ) is continuous. Furthermore, owing to Theorem

3.2, the obtained solution η is continuous on (0, T ). Thus, from (3.30), it follows that
∂η

∂t
is continuous.

Consequently η is C1(0, T ) and therefore Lipschitz continuous on the same interval.

Notation 3.1. We denote the Lipschitz constant of η in Corollary 3.3 by ηLip.

In the next section we aim to extend the regularity of η and u in Theorem 3.2 by upgrading the
regularity of f .

4 Additional regularity of the solution

The key ingredient in the subsequent derivations is to assume that the function f in (2.2) and (2.4)
is Lipschitz continuous. At the end of this section we conclude that u is Lipschitz continuous and
η ∈ H2(0, T ;L2(Ω1)).

Notation 4.1. We denote the Lipschitz constant of f by fLip.

Lemma 4.1. Assume f : (0, T ) → L2(Ω) is Lipschitz continuous. Then, the operator P( · , · ) is
Lipschitz continuous on L2(Ω1)× (0, T ).
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Proof. Let η1, η2 ∈ L2(Ω1) be given. Using similar notation to that introduced in the proof of Lemma
3.5, and owing to Corollary 3.2, we obtain the bound

‖u2 − u1‖2
X ≤ 2CLip ‖η2 − η1‖2

L2(Ω1) + 4Cβ ‖f(t)− f(t+ h)‖2, (4.1)

where u1 = P(η1, t), u2 = P(η2, t + h). Define t1 = t and t2 = t + h. Making use of the Lipschitz
continuity of f in (4.1), yields

‖P(η2, t2)− P(η1, t1)‖2
X = ‖u2 − u1‖2

X ≤ 2CLip ‖η2 − η1‖2
L2(Ω1) + 4Cβ f2

Lip |t2 − t1|2 |Ω| . (4.2)

Hence, the Lipschitz continuity of P( · , · ) follows from (4.2).

Similar to Lemma 4.1, we can upgrade the regularity of F by means of the additional regularity
of f .

Corollary 4.1. Assume f : (0, T ) → L2(Ω) is Lipschitz continuous. Then, the operator F( · , · ) is
Lipschitz continuous on L2(Ω1)× (0, T ).

Proof. This is a direct consequence of Lemma 4.1 and the arguments given in the proof of Lemma
3.6.

To close this section, we prove two results that improve the regularity of u and
∂η

∂t
.

Corollary 4.2. Assume f : (0, T ) → L2(Ω) is Lipschitz continuous. Then, the velocity u given by
Theorem 3.2 is Lipschitz continuous on (0, T ).

Proof. Using the same notation introduced in Lemma 4.1, let u1 = u(t1), u2 = u(t2) and η1 = η(t1),
η2 = η(t2). Then, owing to the Lipschitz continuity of f and (4.2), we obtain

‖u(t2)− u(t1)‖2
X ≤ 2CLip ‖η(t2)− η(t2)‖2

L2(Ω1) + 4Cβ f2
Lip |t2 − t1|2 |Ω| . (4.3)

Finally, a direct application of Corollary 3.3 in (4.3) yields

‖u(t2)− u(t1)‖2
X ≤ 2CLip η

2
Lip |t2 − t1|2 |Ω1|+ 4Cβ f2

Lip |t2 − t1|2 |Ω| ,
proving the claim.

Corollary 4.3. Assume f : (0, T )→ L2(Ω) is Lipschitz continuous. Then, the function
∂η

∂t
given in

(3.30) is Lipschitz continuous on (0, T ). In particular
∂2η

∂t2
∈ L∞(0, T ;L2(Ω1)).

Proof. Combining Corollary 4.1 and Corollary 3.3, it follows that the right hand side of (3.30) is

Lipschitz continuous. Hence,
∂η

∂t
is Lipschitz and consequently, by Rademacher’s theorem, differen-

tiable almost everywhere. Moreover, the Lipschitz continuity of
∂η

∂t
: (0, T ) → L2(Ω1) implies that

‖∂
2η

∂t2
‖L2(Ω1)(t) is bounded in (0, T ). Hence

∂2η

∂t2
∈ L∞(0, T ;L2(Ω1)), concluding the proof.

We summarize the last two propositions in the following remark.

Remark 4.1. Under the additional regularity assumption

A5: The forcing term f : (0, T )→ L2(Ω) is Lipschitz continuous,

it follows that u : (0, T ) → X is Lipschitz continuous and
∂2η

∂t2
∈ L∞(0, T ; L2(Ω1)). In particular

η ∈ H2(0, T ;L2(Ω1)).

The next section further extends the properties of η and shows that η is a nonnegative bounded
function. This is relevant in view that, physically, the porosity is always between zero and one.
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5 Nonnegativity of the porosity

Having established the existence and uniqueness of a solution to (3.1)-(3.4), in this section we show
that the porosity function η remains nonnegative a.e. in Ω1. A brief outline of how this is achieved
follows. First, we introduce some notation and discretize in time the deposition equation (3.30).
Subsequently, we show that the discretized problem is well-posed and exhibit the boundedness and
nonnegativity of the discrete porosity function. Then, we proceed to construct sequences of func-
tions that approximate the continuous porosity and show that they converge to a (weak) common
limit. Finally, we prove that under assumption A5, the discrete porosity converges to the continuous
porosity as the time step goes to zero.

First, we discretize the interval [0, T ] into M + 1 uniformly spaced times tk = k∆t, k = 0, 1, . . . ,M ,
where ∆t = T/M and consider the following problem.

Lemma 5.1. Define uk = u(tk) ∈ X, where u is the solution obtained in Theorem 3.2. Then, the
problem: Given η0 ∈ L2(Ω1), find ηk ∈ L2(Ω1), for k = 1, . . . ,M such that for all ξ ∈ L2(Ω1)(

ηk − ηk−1

∆t
, ξ

)
Ω1

+
(
g(|uk|)h(ηk), ξ

)
Ω1

= 0 (5.1)

has a unique solution, provided ∆t < gmax hLip.

Proof. Assume η0, . . . , ηk−1 have already been computed. Define the operator A : L2(Ω1) → L2(Ω1)
by y = Ax, where y satisfies(

y − ηk−1

∆t
, ξ

)
Ω1

+
(
g(|uk|)h(x), ξ

)
Ω1

= 0 ∀ξ ∈ L2(Ω1). (5.2)

Let x1, x2 ∈ L2(Ω1) and define y1 = Ax1, y2 = Ax2. Then, from (5.2), it follows that

(y1 − y2, ξ)Ω1 = −∆t
(
g(|uk|) (h(x1)− h(x2)) , ξ

)
Ω1

∀ξ ∈ L2(Ω1). (5.3)

Thus, setting ξ = y1 − y2 in (5.3), using Cauchy-Schwarz and assumptions A1 and A2, yields

‖y1 − y2‖L2(Ω1) ≤ ∆t gmax hLip ‖x1 − x2‖L2(Ω1),

implying that, as ∆t < gmax hLip, A is a contraction in L2(Ω1). Consequently, owing to Banach’s
fixed point theorem, it follows that A has a unique fixed point, proving the existence of a unique
solution to (5.1). The result follows by induction.

Definition 5.1. We use the notation ηM to denote the tuple (η0, η1, . . . , ηM), where the ηk, k =
1, . . . ,M are defined through Lemma 5.1.

Lemma 5.2. Let m ∈ Z+ be given with m ≤ M . The solution ηk given in Lemma 5.1 satisfies the
estimate

‖ηm‖2
L2(Ω1) +

m∑
k=1

‖ηk − ηk−1‖2
L2(Ω1) ≤ exp (4T gmax hmax |Ω1|) ‖η0‖2

L2(Ω1), (5.4)

provided

∆t <
1

4 gmax hmax |Ω1|
.
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Proof. Let ξ = ηk in (5.1) and use assumption A1, to obtain

‖ηk‖2
L2(Ω1) − ‖ηk−1‖2

L2(Ω1) + ‖ηk − ηk−1‖2
L2(Ω1) ≤ 2∆t gmax hmax |Ω1| ‖ηk‖L2(Ω1). (5.5)

Summing (5.5) from k = 1 to k = m, yields

‖ηm‖2
L2(Ω1) +

m∑
k=1

‖ηk − ηk−1‖2
L2(Ω1) ≤ ‖η0‖2

L2(Ω1) + C ∆t
m∑
k=1

‖ηk‖L2(Ω1), (5.6)

where C = 2 gmax hmax |Ω1|. Finally, from a discrete version of Gronwall’s lemma (see [24] pg. 167),
we obtain

‖ηm‖2
L2(Ω1) +

m∑
k=1

‖ηk − ηk−1‖2
L2(Ω1) ≤ exp

(
mC ∆t

1− C ∆t

)
‖η0‖2

L2(Ω1).

Bounding m∆t with M ∆t = T , and observing that 1−C ∆t < 1/2, estimate (5.4) now follows.

Lemma 5.3. Let ηk−1 ∈ L2(Ω1) be given with ηk−1 ≥ 0 a.e. in Ω1. Then, the solution ηk given in
Lemma 5.1 is nonnegative a.e. in Ω1.

Proof. Define η−k = max {0,−ηk}, i.e., the negative part of ηk. Let ξ = −η−k in (5.1) and define h( · )
to be zero for negative arguments. Thus, we obtain

‖η−k ‖2
L2(Ω1) = −

(
ηk−1, η

−
k

)
Ω1

+ ∆t
(
g(|uk|)h(ηk), η

−
k

)
Ω1

= −
(
ηk−1, η

−
k

)
Ω1
≤ 0.

Consequently, η−k is zero a.e. in Ω1, implying the nonnegativity of ηk.

Lemma 5.4. Let ηk−1 ∈ L2(Ω1) be given. Then, the solution ηk given in Lemma 5.1 satisfies
ηk ≤ ηk−1 a.e. in Ω1. Equivalently stated, ηk is monotonically decreasing.

Proof. Define (ηk − ηk−1)+ = max {0, ηk − ηk−1}. Setting ξ = (ηk − ηk−1)+ in (5.1), yields

‖(ηk − ηk−1)+‖2
L2(Ω1) =

(
ηk − ηk−1, (ηk − ηk−1)+

)
Ω1

= −∆t
(
g(|uk|)h(ηk), (ηk − ηk−1)+

)
Ω1

≤ 0.

Therefore, (ηk − ηk−1)+ is zero a.e. in Ω1, implying that ηk ≤ ηk−1 a.e. in Ω1.

Corollary 5.1. Let ηk−1 ∈ L2(Ω1) be given with 0 ≤ ηk−1 ≤ η0 a.e. in Ω1. Then, the solution ηk
given in Lemma 5.1 is also bounded above by η0 a.e. in Ω1.

Proof. This is a direct consequence of Lemma 5.4.

Remark 5.1. In view of assumption A3, Lemma 5.3 and Corollary 5.1, it follows that ηk ∈ L∞(Ω1)
for k = 0, . . . ,M .

Now that we have established some relevant properties of the functions in the vector ηM , it
remains to exhibit that the continuous solution η possesses the same properties. We achieve this by
constructing a sequence of interpolants using ηM and showing that they converge to η.
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Definition 5.2. Let ∆t > 0 and η0 ∈ L2(Ω1) be given. Then, the piecewise constant and piecewise
linear interpolants η∗∆t, η

∗∗
∆t : [0, T ]→ L2(Ω1) are given by

η∗∆t(t) =

{
η0, t = 0,
ηk, (k − 1) ∆t < t ≤ k∆t

η∗∗∆t(t) =

(
ηk − ηk−1

∆t

)
(t− (k − 1)∆t) + ηk−1, (k − 1) ∆t ≤ t ≤ k∆t,

for k = 1, . . . ,M . Similarly, we define u∗∆t : [0, T ]→ X by

u∗∆t(t) =

{
u(0), t = 0,
u(tk), (k − 1) ∆t < t ≤ k∆t

for k = 1, . . . ,M , where u is the solution found in Theorem 3.2.

Remark 5.2. In view of Definition 5.2 and Lemma 5.1, η∗∗∆t, η
∗
∆t and u∗∆t satisfy for all ξ ∈ L2(Ω1)

and for all t ∈ (0, T ) (
∂η∗∗∆t
∂t

, ξ

)
Ω1

+
(
g(|u∗∆t|)h(η∗∆t), ξ

)
Ω1

= 0. (5.7)

The following lemma establishes norm estimates that we use to extract weakly convergent subse-
quences.

Lemma 5.5. There exists a positive constant C, independent of ∆t, such that:

‖∂η
∗∗
∆t

∂t
‖L2(0,T ;L2(Ω1)) ≤ C, (5.8)

‖η∗∆t‖L∞((0,T )×Ω1), ‖η∗∗∆t‖L∞((0,T )×Ω1) ≤ C, (5.9)

‖η∗∆t − η∗∗∆t‖L2(0,T ;L2(Ω1)) ≤ C
√

∆t, (5.10)

‖η∗∗∆t‖H1(0,T ;L2(Ω1)) ≤ C. (5.11)

Proof. First note that

‖∂η
∗∗
∆t

∂t
‖2
L2(0,T ;L2(Ω1)) =

M∑
k=1

∫ tk

tk−1

‖∂η
∗∗
∆t

∂t
(s)‖2

L2(Ω1) ds

=
M∑
k=1

∫ tk

tk−1

‖ηk − ηk−1

∆t
‖2
L2(Ω1) ds =

1

∆t

M∑
k=1

‖ηk − ηk−1‖2
L2(Ω1). (5.12)

Setting ξ = ηk − ηk−1 in (5.1), we obtain

1

∆t
‖ηk − ηk−1‖L2(Ω1) ≤ ‖g(|uk|)h(ηk)‖L2(Ω1) ≤ |Ω1|1/2 gmax hmax. (5.13)

Thus, squaring (5.13), multiplying by ∆t and summing from k = 1 to k = M , yields

1

∆t

M∑
k=1

‖ηk − ηk−1‖2
L2(Ω1) ≤ |Ω1| g2

max h
2
max T. (5.14)
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Combining (5.12) and (5.14), (5.8) follows. Estimate (5.9) is a direct consequence of Definition 5.2
and Remark 5.1. Also owing to Definition 5.2 and Lemma 5.2,

‖η∗∆t − η∗∗∆t‖2
L2(0,T ;L2(Ω1)) =

M∑
k=1

∫ k∆t

(k−1) ∆t

‖η∗∆t(t)− η∗∗∆t(t)‖2
L2(Ω1) dt

=
M∑
k=1

‖ηk − ηk−1‖2
L2(Ω1)

∫ k∆t

(k−1) ∆t

(
t− k∆t

∆t

)2

dt ≤ ∆t

3
C,

where C is given by the right hand side of (5.4). Hence (5.10) holds. Finally, (5.11) is a direct
consequence of (5.8) and (5.9).

With the aim of letting ∆t → 0, we consider the sequence of functions {η∗∗n }∞n=1 and {η∗n}∞n=1,
where η∗∗n = η∗∗∆t, η

∗
n = η∗∆t and ∆t = 1/n.

Lemma 5.6. Assume η∗n → η1 weak-∗ in L∞((0, T )×Ω1) and η∗∗n → η2 weak-∗ in L∞((0, T )×Ω1).
Then, η1 = η2 almost everywhere.

Proof. Let φ ∈ L2(0, T ;L2(Ω1)) ⊂ L1((0, T )× Ω1). Then,〈
η1 − η2, φ

〉
=
〈
η1 − η∗n, φ

〉
+ 〈η∗n − η∗∗n , φ〉+

〈
η∗∗n − η2, φ

〉
(5.15)

Taking the limit n→∞ in (5.15), using the weak-∗ convergence of η∗n, η∗∗n , and Cauchy-Schwarz, we
obtain ∣∣〈η1 − η2, φ

〉∣∣ ≤ lim
n→∞

‖η∗n − η∗∗n ‖L2(0,T ;L2(Ω1)) ‖φ‖L2(0,T ;L2(Ω1)). (5.16)

Owing to (5.10) and (5.16), it follows that 〈η1 − η2, φ〉 = 0 for all φ ∈ L2(0, T ;L2(Ω1)). Hence
‖η1 − η2‖L2(0,T ;L2(Ω1)) = 0, implying that η1 = η2 almost everywhere.

The following lemma is used in the analysis below.

Lemma 5.7. Let X and Y be normed vector spaces with X ′ and Y ′ its corresponding duals. Let
T : X → Y be a bounded linear operator and let {xn}∞n=1 be a sequence in X such that xn ⇀ x. Then,
T (xn) ⇀ T (x).

Proof. Let y∗ ∈ Y ′. Define the bounded linear functional f ∈ X ′ by f = y∗ ◦ T . Owing to the
fact that xn ⇀ x, it follows that f(xn) → f(x), i.e., y∗(T (xn)) → y∗(T (x)). Observing that y∗ is
arbitrary, the proposition follows.

We are now in position to show that η∗n and η∗∗n weak-∗ converge to a common limit.

Lemma 5.8. There exists a subsequence of
{
ηM
}
M≥1

and a function η∗ ∈ L∞((0, T ) ×Ω1), such
that

η∗n → η∗ weak-∗ in L∞((0, T )× Ω1), (5.17)

η∗∗n → η∗ weak-∗ in L∞((0, T )× Ω1), (5.18)

η∗∗n → η∗ weakly in H1(0, T ;L2(Ω1)), (5.19)

∂η∗∗n
∂t
→ ∂η∗

∂t
weakly in L2(0, T ;L2(Ω1)). (5.20)
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Proof. For the sake of simplicity, all the subsequences that we derive in the analysis are labeled as
the original sequences. In view of (5.9), it follows from the Banach-Alaoglu theorem the existence
of a subsequence of

{
ηM
}

and a function η∗ ∈ L∞((0, T ) × Ω1) such that (5.17) is satisfied. By
the same token, there exists a subsequence of η∗∗n and a function η̃ ∈ L∞((0, T ) × Ω1) such that
η∗∗n → η̃ weak-∗ in L∞((0, T ) × Ω1). From Lemma 5.6 it follows that η̃ = η∗, establishing (5.18).
Now observe that (5.11) and the Banach-Alaoglu theorem yield a further subsequence and a function
η̂ ∈ H1(0, T ;L2(Ω1)), such that

η∗∗n → η̂ weakly in H1(0, T ;L2(Ω1)). (5.21)

From the continuous embedding H1(0, T ) ↪→ L∞(0, T ), it follows that

η∗∗n → η̂ weak-∗ in L∞(0, T ;L2(Ω1)). (5.22)

Moreover, owing to (5.18) and the fact that L∞((0, T )× Ω1) ⊂ L∞(0, T ;L2(Ω1)), we obtain

η∗∗n → η∗ weak-∗ in L∞(0, T ;L2(Ω1)). (5.23)

Thus, in view of (5.22), (5.23) and the uniqueness of weak-∗ limits, it follows that η̂ = η∗. This
establishes (5.19). Finally, in view of Lemma 5.7 and the fact that the time derivative is a bounded
linear operator from H1(0, T ) to L2(0, T ), expression (5.20) follows from (5.19).

The following lemma gives an error estimate in the L2 norm for a first order approximation of the
time derivative. We use this result in the next proposition, where we establish that the L2 difference
between the continuous function η and its discrete analog ηk is proportional to ∆t. Its proof is easily
established using Taylor’s theorem.

Lemma 5.9. Let f ∈ H2(0, T ;L2(Ω)) and let ∆t > 0 be given. Then,

‖∂f
∂t

(tk)−
f(tk)− f(tk−1)

∆t
‖2
L2(Ω) ≤

∆t

3

∫ tk

tk−1

‖∂
2f

∂t2
(s)‖2

L2(Ω) ds,

for (tk−1, tk) ⊂ (0, T ).

Lemma 5.10. Assume
∂2η

∂t2
∈ L2(0, T ;L2(Ω1)). Let M,n ∈ Z+ and ∆t ∈ R+ be such that ∆t =

T/M = 1/n and ∆t < 1
2
(1 + 2 gmax hLip). Define ek = η(tk)− ηk for k = 0, . . . ,M , where η(t) is the

solution found in Theorem 3.2 and ηk is an element of ηM (see Definition 5.1). Then,

‖ek‖L2(Ω1) ≤ C1 ∆t, where (5.24)

C2
1 = exp

(
2T (1 + 2 gmax hLip)

)(1

3
‖∂

2η

∂t2
‖2
L2(0,T ;L2(Ω1))

)
,

and

‖η − η∗n‖L2(0,T ;Ω1) ≤ C2 ∆t for C2
2 = 2‖∂η

∂t
‖2
L2(0,T ;Ω1) + 2T C2

1. (5.25)

Proof. From (3.4), we obtain(
η(tk)− η(tk−1)

∆t
, ξ

)
Ω1

+
(
g(|u(tk)|)h(η(tk)), ξ

)
Ω1

=

(
η(tk)− η(tk−1)

∆t
− ∂η

∂t
(tk), ξ

)
Ω1

(5.26)
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Subtracting (5.1) from (5.26), yields(
ek − ek−1

∆t
, ξ

)
Ω1

+
(
g(|u(tk)|)

(
h(η(tk))− h(ηk)

)
, ξ
)

Ω1

=

(
η(tk)− η(tk−1)

∆t
− ∂η

∂t
(tk), ξ

)
Ω1

. (5.27)

Setting ξ = ek in (5.27), and using assumptions A1 and A2, we obtain

1

2∆t

(
‖ek‖2

L2(Ω1) − ‖ek−1‖2
L2(Ω1) + ‖ek − ek−1‖2

L2(Ω1)

)
≤ gmax hLip ‖ek‖2

L2(Ω1) +

(
η(tk)− η(tk−1)

∆t
− ∂η

∂t
(tk), ek

)
Ω1

. (5.28)

Applying Young’s inequality and Lemma 5.9 to (5.28), yields

‖ek‖2
L2(Ω1) − ‖ek−1‖2

L2(Ω1) + ‖ek − ek−1‖2
L2(Ω1)

≤ ∆t (1 + 2 gmax hLip) ‖ek‖2
L2(Ω1) +

(∆t)2

3

∫ tk

tk−1

‖∂
2η

∂t2
(s)‖2

L2(Ω1) dt. (5.29)

Let m ∈ Z+, with m ≤ M . Summing (5.29) from k = 1 to k = m, and using a discrete version of
Gronwall’s lemma (see [24] pg. 167), we obtain

‖em‖2
L2(Ω1) +

m∑
k=1

‖ek − ek−1‖2
L2(Ω1)

≤ exp
(

2T (1 + 2 gmax hLip)
)((∆t)2

3
‖∂

2η

∂t2
‖2
L2(0,T ;L2(Ω1))

)
. (5.30)

Statement (5.24) follows from (5.30).
To prove (5.25), recall that η∗n is a piecewise constant interpolant such that η∗n(s) = ηk for s ∈
((k − 1)∆t, k∆t]. Hence, owing to (5.24),∫ T

0

‖η − η∗n‖2
L2(Ω1)(t) dt =

M∑
k=1

∫ k∆t

(k−1)∆t

‖η(t)− ηk‖2
L2(Ω1) dt

≤ 2
M∑
k=1

∫ k∆t

(k−1)∆t

‖η(t)− η(tk)‖2
L2(Ω1) + ‖η(tk)− ηk‖2

L2(Ω1) dt

≤ 2
M∑
k=1

∫ k∆t

(k−1)∆t

‖η(t)− η(tk)‖2
L2(Ω1) + C2

1 (∆t)2 dt. (5.31)

Now note that for t ∈ ((k − 1)∆t, k∆t] and Cauchy-Schwarz

‖η(tk)− η(t)‖2
L2(Ω1) =

∫
Ω1

(∫ tk

t

∂η

∂t
(s) ds

)2

dΩ1

≤
∫

Ω1

(∫ tk

t

(
∂η

∂t
(s)

)2

ds

∫ tk

t

1 ds

)
dΩ1 ≤ ∆t

∫ tk

tk−1

‖∂η
∂t
‖2
L2(Ω1) ds. (5.32)
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Thus, substituting (5.32) in (5.31), we obtain∫ T

0

‖η − η∗n‖2
L2(Ω1)(t) dt ≤ 2

M∑
k=1

∫ k∆t

(k−1)∆t

(
∆t

∫ tk

tk−1

‖∂η
∂t

(s)‖2
L2(Ω1) ds+ C2

1 (∆t)2

)
dt

= 2(∆t)2

∫ T

0

‖∂η
∂t

(s)‖2
L2(Ω1) ds+ 2T C2

1 (∆t)2

= (∆t)2

(
2‖∂η
∂t
‖2
L2(0,T ;Ω1) + 2T C2

1

)
. (5.33)

Statement (5.25) follows from (5.33).

We now state the main result of this section.

Lemma 5.11. Let assumption A5 hold. Then, η = η∗, where η is the solution found in Theorem
3.2 and η∗ is the weak limit introduced in Lemma 5.8.

Proof. Remark 4.1 readily yields
∂2η

∂t2
∈ L2(0, T ;L2(Ω1)). Let φ ∈ L2(0, T ; Ω1) ⊂ L1(0, T ; Ω1). Then,

owing to Cauchy-Schwarz,

〈η − η∗, φ〉 = 〈η − η∗n, φ〉+ 〈η∗n − η∗, φ〉
≤ ‖η − η∗n‖L2(0,T ;Ω1)‖φ‖L2(0,T ;Ω1) + 〈η∗n − η∗, φ〉 . (5.34)

Hence, in view of the second statement of Lemma 5.10, the weak-∗ convergence of η∗n to η∗ (see
(5.17)), and the fact that 1/n = ∆t, it follows from (5.34) that

〈η − η∗, φ〉 ≤ lim
n→∞

‖η − η∗n‖L2(0,T ;Ω1)‖φ‖L2(0,T ;Ω1) + lim
n→∞

〈η∗n − η∗, φ〉 = 0. (5.35)

We conclude that η = η∗ almost everywhere in (0, T )× Ω1.

We summarize the results of the last two sections in the next theorem.

Theorem 5.1. Let the assumptions A1-A5 and S1-S2 hold. Let η0 ∈ L2(Ω1) be given with η0

nonnegative and bounded a.e. in Ω1. Then, there exist a unique solution u ∈ H1(0, T ; X), p ∈
H1(0, T ;Q), λ ∈ H1(0, T ; Λ) and η ∈ H2(0, T ;L2(Ω1)), that satisfy the system (3.1)-(3.4) for a.e.
t ∈ (0, T ) with η(0) = η0. Moreover, 0 ≤ η(x, t) ≤ η0(x) for a.e. (t,x) ∈ (0, T )× Ω1.

6 Finite element approximation

In this section we investigate the finite element approximation to (3.1)-(3.4), for the specific choice
h(η) = η. This simple choice enables us to illustrate the approximation method, while avoiding the
additional (minor) complication of handling a nonlinear h(η).

Remark 6.1. With minor modifications, the following discussion can be extended to include parti-
tions composed of triangles in 2D or tetrahedra in 3D.

Let Ω1,Ω2 ⊂ Rd, d ∈ {2, 3}, denote convex domains where Ω1 denotes the Darcy or porous domain,
and Ω2 denotes the Stokes or fluid domain. Moreover, let Γ = Ω1 ∩ Ω2 ⊂ Rd−1 be the interface
that connects them. We decompose Ωi, i = 1, 2, into either quadrilaterals in 2D or hexahedra
in 3D to obtain a partition T ih , where h is defined below. Hence, the computational domain is
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Ω = Ω1 ∪ Ω2 ∪ Γ, with Ωi =
⋃
K∈T i

h
K. We assume that for each partition there exist constants

c1, c2 such that c1h ≤ hK ≤ c2ρK , where hK is the diameter of the cell K, ρK is the diameter of
the largest sphere included in K, and h = maxK∈T i

h
hk. Moreover, we assume that the partitions

match along Γ, i.e., if F is a face on Γ of a cell in the Stokes domain, then it is also a face of a cell
in the Darcy domain. For k ∈ N, K a cell of a triangulation, and FK : K̂ → K a C1(K̂) mapping

from the reference cell K̂ (the unit square in 2D or the unit cube in 3D) to the cell K, define the
(k + 1)d-dimensional polynomial space

PQk = span{xα1
1 x

α2
2 . . . xαd

d : 0 ≤ α1, α2, . . . , αd ≤ k},

and let Pk(K) = {f : f |K = f̂ ◦F−1, where f̂ ∈ PQk }. For F a face of K, the space Pk(F ) is defined
similarly. The notation RTk(T 1

h ) is used the denote the Raviart-Thomas space of order k on Ω1 [2].
We use the following finite element spaces:

X1,h = X1 ∩RTk(T 1
h ), Qi,h =

{
q ∈ L2(Ωi) : q|K ∈ Pk(K), ∀K ∈ T ih

}
,

X2,h = X2 ∩ Pk+1(K)d, Zh = {v ∈ X1,h : (q,∇ · v)Ω1 = 0, ∀q ∈ Q1,h} ,
Xh = X1,h ×X2,h, Q0

i,h = {q ∈ Qi,h : (q, 1)Ωi
= 0} ,

Qh = {(q1, q2) ∈ Q1,h ×Q2,h : (q1, 1)Ω1 + (q2, 1)Ω2 = 0} ,
Λh = {f ∈ Λ : f |F ∈ Pk+1(F ), ∀F ∈ Γ} ,
Rh =

{
r ∈ L2(Ω1) : r|K ∈ Pm(K), ∀K ∈ T 1

h

}
,

Rh,0 =
{
r ∈ L2(Ω1) : r|K ∈ P0(K), ∀K ∈ T 1

h

}
,

Rs
h =

{
r ∈ C0(Ω1) : r|K ∈ Pmax{1,m}(K), ∀K ∈ T 1

h

}
. (6.1)

Notation 6.1. For Fi a face on Γ, let Wh,i be a local partition of Fi, i.e., Fi = ∪S∈Wh,i
S. Note that

in 2D, each of the Fi is divided into line segments while in 3D it is divided into quadrilaterals. The
collection of all these partitions is denoted by Wh. Furthermore, define the space

Λh,0 =
{
f ∈ L2(Γ) : f ∈ P0(S), ∀S ∈ Wh

}
.

Notation 6.2. For U denoting either T 1
h , T 2

h , Γ, or Wh, we define the space of continuous nodal
Lagrange elements

Qk(U) =
{
f ∈ C0(U) : f ∈ Pk(K), ∀K ∈ U

}
,

and the space of discontinuous nodal Lagrange elements

discQk(U) =
{
f ∈ L2(U) : f ∈ Pk(K), ∀K ∈ U

}
.

We omit the dependency on U whenever it is clear from the context.

Remark 6.2. Note that as ∇ · X1,h = Q1,h, for v ∈ Zh we have that ‖∇ · v‖L2(Ω1) = 0. Thus,
‖v‖X1 = ‖v‖L2(Ω1).

For N given, let ∆t = T/N , and tn = n∆t, n = 0, 1, . . . , N . Additionally, define

dtf
n =

fn − fn−1

∆t
, f

n
=
fn + fn−1

2
, f̃n = fn−1 +

1

2
fn−2 − 1

2
fn−3.

Initialization of the approximation scheme

The approximation scheme described and analyzed below is a three-level scheme. To initialize the
procedure suitable approximations are required for u1

h, u2
h and η2

h. Here we state our assumptions on
these initial approximates. (An initialization procedure is discussed in [11].)

‖un − unh‖2
X + ‖ηn − ηnh‖2

L2(Ω1) ≤ C(∆t)4 + C
(
h2k+2 + h2m+2

)
for n = 0, 1, 2. (6.2)
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Approximation scheme

The approximation scheme we investigate is: Given η0 ∈ Rh, for n = 3, . . . , N , determine (unh, pnh,
λnh, ηnh) ∈ Xh ×Qh × Λh ×Rh satisfying :

Scheme 6.1.

a1(unh,v) + b(pnh,v) + 〈λnh,v · n1〉 = (fn,v) ∀v ∈ X1,h, (6.3)

b(q,unh) = 0 ∀q ∈ Q1,h, (6.4)

a2(unh,v) + b(pnh,v) + d(unh,v) + 〈λnh,v · n2〉 = (fn,v) ∀v ∈ X2,h, (6.5)

b(q,unh) = 0 ∀q ∈ Q2,h, (6.6)

〈u1 · n1 + u2 · n2, ν〉 = 0 ∀ν ∈ Λh, (6.7)

(dtη
n
h , r) + (g(|ũnh|)ηnh, r) = 0 ∀r ∈ Rh. (6.8)

As mentioned in [11], regarding ηn,sh , note that applying a smoother, S, to a function ηnh ∈ Rh

(typically) does not result in ηn,sh ∈ Rs
h. Therefore, we let S(ηnh) ∈ Hm+1(Ω) ∩ C0(Ω) denote the

result of the smoother applied to ηnh , and define

ηn,sh (x) = IhS(ηnh)(x) , (6.9)

where Ih : C0(Ω) −→ Rs
h denotes an interpolation operator.

We assume that the smoothed porosity S(ηnh) is sufficiently regular such that there exists a
constant dependent on S( · ), CS such that

‖S(ηnh) − IhS(ηnh)‖L∞(Ω) = ‖S(ηnh) − ηn,sh ‖L∞(Ω) ≤ CSh
m+1 . (6.10)

The precise dependence of CS on S( · ) will depend on the particular smoother used. Now we
focus on the computability of Scheme 6.1. First, we prove that the porosity ηnh can be computed
from previous approximations and derive some of its properties.

Lemma 6.1. Given ηn−1
h , un−3

h , un−2
h and un−1

h , there exists a unique solution (unh, p
n
h, λ

n
h, η

n
h) ∈

Xh ×Qh × Λh ×Rh satisfying (6.3)-(6.8).

Proof. Firstly, the existence and uniqueness of ηnh follows directly from Lemma 4.1 in [11]. Then, the
existence and uniqueness of unh, pnh, and λnh can be established as done in [25] (see also [10]).

Nonnegativity of the discrete porosity

In this subsection we give conditions under which the discrete porosity ηh is nonnegative and bounded
above by the initial porosity η0. These results are consistent with the properties derived for the
continuous porosity and mirror the propositions derived in Section 5. The key assumption in this
section is that the finite element space for the discrete porosity is composed of piecewise constant
functions, i.e., we replace Rh in (6.8) with Rh,0.

Lemma 6.2. Let ηn−1
h ∈ Rh,0 be given with ηn−1

h ≥ 0 in Ω1. Furthermore, assume ∆t < 2/gmax.
Then, the solution ηnh ∈ Rh,0 given in Lemma 6.1 is nonnegative in Ω1.

Proof. Assume there exists K ∈ T 1
h such that ηnh |K < 0. Substituting r = ηnh χK ∈ Rh,0 into (6.8),

where χK is the indicator function of the cell K yields

(ηnh , η
n
h)K +

∆t

2
(g(|ũnh|) ηnh , ηnh)K =

(
ηn−1
h

(
1− ∆t

2
g(|ũnh|)

)
, ηnh

)
K

. (6.11)
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Owing to the nonnegativity of g( · ), and the nonnegativity of ηn−1
h , it follows that the left hand side

of (6.11) is positive while the right hand side is nonpositive. This is a contradiction. Hence, no such
cell K can exist. We conclude that ηnh is nonnegative in Ω1.

Lemma 6.3. Let ηn−1
h ∈ Rh,0 be given, with ηn−1

h ≥ 0 in Ω1. Furthermore, assume ∆t < 2/gmax.
Then, the solution ηnh ∈ Rh,0 given in Lemma 6.1 satisfies ηnh ≤ ηn−1

h in Ω1.

Proof. Assume there existsK ∈ T 1
h such that

(
ηnh − ηn−1

h

)∣∣
K
> 0. Substituting r =

(
ηnh − ηn−1

h

)
χK ∈

Rh,0 into (6.8), we obtain(
ηnh − ηn−1

h , ηnh − ηn−1
h

)
K

= −∆t

2

(
g(|ũnh|)

(
ηnh + ηn−1

h

)
, ηnh − ηn−1

h

)
K
. (6.12)

Observe that the left hand side of (6.12) is positive. Moreover, owing to Lemma 6.2, the nonnega-
tivity of g( · ) and the nonnegativity of ηn−1

h , the right hand side of (6.12) is nonpositive. This is a
contradiction. Thus, no such cell K exists, and ηnh ≤ ηn−1

h in Ω1.

Corollary 6.1. Let ηn−1
h ∈ Rh,0 be given with 0 ≤ ηn−1

h ≤ η0 in Ω1. Furthermore, assume ∆t <
2/gmax. Then, the solution ηnh ∈ Rh,0 given in Lemma 6.1 is also bounded above by η0 in Ω1.

Proof. This is a direct consequence of Lemma 6.3.

Although the porosity ηnh can be computed, the Stokes and Darcy problems are still coupled
through the interfacial pressure λnh. Our objective is to decouple them in order to take advantage
of the robust and efficient solvers that are available for each individual problem. We achieve the
decoupling by treating λ as a given quantity, and proceed to demonstrate that we can systematically
compute a sequence of approximations {λk}∞k=1 ⊂ Λh, such that (6.7) is satisfied. In the discussion
that follows we assume that ηh is known.

Decoupling the problems

As mentioned in the previous paragraph, once the porosity ηnh has been computed, we can decouple
the Stokes and Darcy problems by assuming an interfacial pressure λ. However, this choice for λ may
not satisfy the flux condition (6.7). Hence, we treat the Stokes and Darcy velocities as functions of λ
and restate (6.7) as a least squares problem. Concretely, we define the operator G : Λh → Λh,0 × Λh

given by

G(λ) =

(
ρ (u1,h(λ); u2,h(λ))

δλ

)
,

where ρ : X1 ×X2 × Γ→ R is the piecewise constant function

ρ (u1,h(λ); u2,h(λ)) (x) =
∑
S∈Wh

χS(x)

|S|

∫
S

u1,h(λ) · n1 + u2,h(λ) · n2 dΓ, (6.13)

χS is the indicator function of the set S, δ ∈ (0, 1) is a penalization parameter, and consider the
minimization problem

min
λ∈Λh

‖G(λ)‖2
L2(Γ)×Λ. (6.14)

A thorough discussion of (6.14) and a computational algorithm (CG-LSQ) to approximate the min-
imum can be found in [9]. We now describe a typical iteration of Scheme 6.1.
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Algorithm 6.1 One iteration of Scheme 6.1

Stokes

Darcy

λ

un

ηn CG-LSQ

ũ

1. Use the previously computed approximations un−3
h , un−2

h , and un−1
h to obtain ũnh.

2. Use ũnh and ηn−1
h to compute the porosity ηnh .

3. Smooth ηnh to obtain ηn,sh .

4. Use ηn,sh and Algorithm 4.4 in [9] to obtain λnh.

5. Compute uni,h(λ
n
h) and pni,h(λ

n
h).

We conclude this section stating an a priori error estimate for Scheme 6.1.

Conjecture 6.1. Let (u, p, η) satisfy (3.1)-(3.4) with h(η) = η and (unh, p
n
h, η

n
h) satisfy (6.3)-(6.8).

Furthermore, assume CS(ηnh ) given in (6.10) is bounded by CS‖ηn‖m+1. Then, for ∆t sufficiently small
there exists C > 0 independent of h and ∆t, such that for n = 1, 2, . . . , N ,

‖un − unh‖X + ‖pn − pnh‖+ ‖ηn − ηnh‖ ≤ C
(
(∆t)2 + hk+1 + hm+1

)
. (6.15)

In particular, for k = m = 1, we obtain second order convergence in space and time.

In the next section we give a numerical study of Scheme 6.1.

7 Numerical experiments

This section is divided into three experiments. Experiment 7.1 and Experiment 7.2 illustrate that
the convergence properties of Scheme 6.1 are consistent with Conjecture 6.1. Finally, Experiment
7.3 shows that the numerical approximations for the porosity remain nonnegative if the conditions
of Lemma 6.2 are satisfied.

Experiment 7.1 Consider the physical parameters

β(η) = η2 + 0.1, Ψ(η) = 1, µ = 1/2, g(|u|) = |u|2 + 1, (7.1)

and let Ω1 = (0, 1) × (0, 1), Ω2 = (0, 1) × (1, 2) and Γ = (0, 1) × {1}. We partition Ωi into square
cells. On Ω2 we use the Taylor-Hood element pair, i.e., Q2 elements for the velocity and Q1 elements
for the pressure. On Ω1 we use the Raviart-Thomas element of degree 1, RT1 for the velocity and
discQ1 elements for the pressure. The interfacial pressure λ is approximated on Γ using Q2 elements
and the porosity η is approximated using discQ1 elements.

Remark 7.1. To compute ρ( · , · ) (see (6.13) and Notation 6.1), every face Fi on the interface Γ is
uniformly refined twice so that |Wh,i| = 16.
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The boundary conditions for the Darcy problem are imposed weakly, i.e., through the weak form,
while the boundary conditions for the Stokes problem are imposed strongly. We consider successively
finer meshes Th and smaller time-steps ∆t, ∆t ∝ h, and compute the error between the exact solution

η = 0.8− δ π2 t2 sin (πx) sin (πy)− 1

2
t2 sin (πx) sin (πy) ,

u1 =
(
−x(sin(y) exp(1) + 2(y − 1)),− cos(y) exp(1) + (y − 1)2

)T
cos(t),

p1 =
(
− sin(y) exp(1) + cos(x) exp(y) + y2 − 2y + 1

)
cos(t),

u2 =
(
(y − 1)2x3,− exp(1) cos(y)

)T
cos(t),

p2 =
(
cos(x) exp(y) + y22y + 1

)
cos(t),

and the numerical approximations under different discrete norms for a time horizon T = 0.5. The
smoothed porosity is approximated using Q1 elements by solving the boundary value problem: Find
ηsh ∈ Rs

h satisfying

(δ∇ηsh,∇ϕ) + (ηsh, ϕ) = (ηh, ϕ) ∀ϕ ∈ Rs
h,

ηsh = ηh on ∂Ω1, (7.2)

where δ = 0.05. The corresponding exact smoothed porosity is

ηs(x, t) = 0.8− 1

2
t2 sin (πx) sin (πy) .

For ‖ · ‖U a norm on some generic space U and fnh a generic numerical approximation to f(tn),
n = 0, . . . , N , the discrete norm under consideration is defined as follows,

|||f − fh|||L2(0,T ;U) =

(
N∑
k=0

‖f(tk)− fkh‖2
U ∆t

)1/2

.

Moreover, for h1 and h2 two different mesh parameters, the numerical convergence rates are computed
using the formula

log

(
|||f − fh1|||L2(0,T ;U)

|||f − fh2|||L2(0,T ;U)

)
/ log

(
h1

h2

)
.

The results are summarized in Table 1. A graphical depiction of Table 1 can be found in Figure 2.
The average number of iterations of Algorithm 6.1 as a function of ∆t for two different meshes is
shown in Figure 3. Note that the numerical convergence rates are in agreement with Conjecture 6.1.

Experiment 7.2 For this experiment we validate our numerical implementation in 3D. In view
that Experiment 7.1 supports the correctness of the time-stepping scheme and the spatial dis-
cretization in 2D, it remains to verify the implementation of the spatial discretization in 3D. Let
Ω1 = (0, 1)× (0, 1)× (0, 1) , Ω2 = (0, 1)× (0, 1)× (1, 2) and Γ = (0, 1)× (0, 1)×{1}. We consider the
same finite element spaces of Experiment 7.1 and the spatial parameters given in (7.1). The domains
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Table 1: Numerical results for Experiment 7.1.

Stokes domain
h ∆t |||u− uh|||L2(0,T ;H1(Ω2)) Rate |||p− ph|||L2(0,T ;L2(Ω2)) Rate

0.354 5.00 · 10−2 6.38 · 10−3 − 1.23 · 10−2 −
0.177 2.50 · 10−2 1.54 · 10−3 2.05 3.00 · 10−3 2.03
0.088 1.25 · 10−2 3.78 · 10−4 2.02 7.42 · 10−4 2.01
0.044 6.25 · 10−3 9.37 · 10−5 2.01 1.85 · 10−4 2.00
0.022 3.13 · 10−3 2.33 · 10−5 2.01 4.62 · 10−5 2.00

Expected rate 2 2

Darcy domain
h ∆t |||u− uh|||L2(0,T ;Hdiv(Ω1)) Rate |||p− ph|||L2(0,T ;L2(Ω1)) Rate

0.354 5.00 · 10−2 8.67 · 10−2 − 8.55 · 10−3 −
0.177 2.50 · 10−2 2.60 · 10−2 1.74 2.11 · 10−3 2.02
0.088 1.25 · 10−2 7.27 · 10−3 1.84 5.28 · 10−4 2.00
0.044 6.25 · 10−3 1.97 · 10−3 1.88 1.33 · 10−4 1.99
0.022 3.13 · 10−3 5.19 · 10−4 1.93 3.34 · 10−5 1.99

Expected rate 2 2

Porosity Divergence in Ω1

h ∆t |||η − ηh|||L2(0,T ;L2(Ω1)) Rate |||∇ · uh|||L2(0,T ;L2(Ω1))

0.354 5.00 · 10−2 1.68 · 10−2 − 2.01 · 10−11

0.177 2.50 · 10−2 5.64 · 10−3 1.58 4.57 · 10−11

0.088 1.25 · 10−2 1.66 · 10−3 1.77 1.40 · 10−10

0.044 6.25 · 10−3 4.56 · 10−4 1.86 3.83 · 10−10

0.022 3.13 · 10−3 1.20 · 10−4 1.92 1.09 · 10−9

Expected rate 2
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2nd order

Figure 2: Convergence rates for Experiment 7.1. For vector arguments, the norm ||| · |||D corre-
sponds to the discrete L2(0, T ; Hdiv(Ω1)) norm. For scalar inputs the norm ||| · |||D is the discrete
L2(0, T ;L2(Ω1)) norm. Similarly, the norm ||| · |||S is the L2(0, T ;H1(Ω2)) for vector arguments and
the L2(0, T ;L2(Ω2)) for scalar inputs.

Figure 3: Average number of iterations of Algorithm 6.1 in Experiment 7.1. The number of iterations
depend upon the step-size ∆t, and the mesh refinement level. Mesh parameter h = 0.044 (left) and
h = 0.022 (right).
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Table 2: Numerical results for Experiment 7.2.

Stokes domain
h ‖u− uh‖H1(Ω2) Rate ‖u− uh‖L2(Ω2) Rate ‖p− ph‖L2(Ω2) Rate

0.433 8.00 · 10−1 − 3.09 · 10−2 − 3.94 · 10−2 −
0.217 2.02 · 10−1 1.99 3.89 · 10−3 2.99 4.07 · 10−3 3.27
0.108 5.06 · 10−2 2.00 4.88 · 10−4 3.00 7.97 · 10−4 2.35

Expected rate 2 3 2

Darcy domain
h ‖u− uh‖Hdiv(Ω1) Rate ‖p− ph‖L2(Ω1) Rate ‖∇ · u‖L2(Ω1)

0.433 1.65 · 10−2 − 1.51 · 10−2 − 1.63 · 10−10

0.217 3.94 · 10−3 2.07 2.82 · 10−3 2.42 3.67 · 10−10

0.108 9.68 · 10−4 2.03 6.85 · 10−4 2.04 1.39 · 10−9

Expected rate 2 2

Ωi are partitioned into hexahedra. To compute the convergence rates we use

ηs = 0.8− cos(y) exp(x) sin(z),

u1 =

 −x(sin(y) exp(z) + 2(y − 1))
y2 − 2yz − cos(y) exp(z) + exp(x)

− exp(y)x+ (z − 1)2

 ,

p1 = (y − 1)2 + exp(y) cos(x)− exp(z) sin(y),

u2 =

 exp(2z) cos(y) sin(x)− 0.5 exp(y)z − 0.25 exp(y)
−0.5 exp(y)xz − 0.25 exp(y)x+ cos(x) exp(y + 2z)

exp(y)xz

 ,

p2 = exp(y)z cos(x)− exp(y)x+ (y − 1)2 − exp(1) sin(y).

The results are summarized in Table 2. Observe that the numerical convergence rates are consistent
with expectations.

Experiment 7.3 Let Ω1 = (0, 1)×(0, 1) denote the Darcy domain, Ω2 = (0, 1)×(1, 2) denote the
Stokes domain, and Γ = (0, 1)×{1} their common interface. Furthermore, define the inflow boundary
Γin = (0, 1)×{2}, the outflow boundary Γout = (0, 1)×{0}, the Darcy boundary Γ1 = ∂Ω1\(Γ∪Γout),
and the Stokes boundary Γ2 = ∂Ω2 \ (Γ ∪ Γin). A graphical depiction of the computational domain
is given in Figure 1. We partition Ωi into 256 square cells and use, save for the porosity, the same
finite element spaces as in Experiment 7.1. The smooth porosity is computed with the differential
filter (7.2) using Q1 elements and δ = 10−8.

The physical parameters are given by:

β(η) = Cβ
(1− η)2

η3
, Ψ(η) = 1, µ = 1/2, g(|u|) = |u| . (7.3)

In (7.3), the expression for β( · ) arises from the well-known Kozeny-Carman equation [28], applicable
for laminar flow through a bed packed with spherical particles. The constant Cβ typically depends
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Figure 4: Initial profile of the smoothed porosity in Experiment 7.3. The arrows indicate the direction
of the flow in the porous domain Ω1. The colorbar denotes the magnitude of the porosity.

upon the viscosity of the fluid and the mean diameter of the particles in the porous media. In this
experiment we assume that Cβ = 1 and the viscosity in the fluid (Stokes) domain is µ = 0.5. For the
initial porosity profile, we consider a vertical channel in the porous medium given by

channel(y) = 0.5 + 0.35 sin (2π y) ,

and assume the porosity attains a maximum ηmax = 0.9 along the channel and decreases at an
exponential rate τ = 7.5, proportional to the horizontal distance to the channel. We further assume
the minimum porosity is given by ηmin = 0.5. The expression for η0 satisfying the aforementioned
characteristics is

η0(x, y) = ηmin + (ηmax − ηmin) exp (−τ |channel(y)− x|) .
A graphical depiction of η0 is given in Figure 4. We impose zero flux boundary conditions on Γ1

and homogeneous Dirichlet boundary conditions on Γ2. On the inflow boundary Γin we impose the
parabolic profile uin = (0, 4x(x−1))T , and enforce weakly the condition p = 0 on the outflow bound-
ary Γout. We set the computational parameters T = 20, ∆t = 0.045, and approximate the porosity
using both discQ0 and discQ1 elements.

In both cases, throughout the time horizon T = 20, the magnitude of the Darcy velocity u1 never
exceeds the value of 4. Hence, g(|u1(t)|) ≤ gmax := 4 and ∆t < 2/gmax for t ≤ 20. This implies
that the bound for ∆t stated in Lemma 6.2 is satisfied. The results are summarized in Figure 5.
We note that in agreement with Lemma 6.2, when the porosity is computed using discQ0 elements
the numerical approximation remain nonnegative. Moreover, observe that the results suggest that
Lemma 6.2 can not be trivially extended to include discQ1 elements.

Conclusion

In this work we considered a generalization of the filtration model discussed in [11]. The new system
of equations coupled the previously analyzed augmented nonlinear Darcy problem to the Stokes equa-
tions. Well-posedness of the coupled system with appropriate boundary and interfacial conditions
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Figure 5: Comparison of the temporal evolution of the minimum of the porosity in Experiment 7.3
using discQ1 and discQ0 elements. The function θ is given by θ(t) = max {z(t),−0.25 sign(z(t))},
where z(t) = minx∈Ω1 {ηh(x, t)}. Note that, in agreement with Lemma 6.2, the porosity remains
nonnegative for ηh ∈ Rh,0. In the case where ηh ∈ discQ1, the porosity becomes negative at t = 8.505.
The negative values are of the order of 10−5.

was established. Moreover, consistent with the physics, the porosity was shown to be nonnegative
and bounded above by the initial porosity. Thereafter, we introduced a numerical scheme for the
coupled problem capable of preserving the nonnegativity and boundedness of the porosity. Numerical
experiments followed, showing that the numerical approximations for the porosity are indeed non-
negative under the derived conditions. Furthermore, the computations showed that the numerical
convergence rates in space and time for the coupled problem are in agreement with the conjectured
estimates.
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