
PARTITIONED PENALTY METHODS FOR THE TRANSPORT EQUATION IN THE
EVOLUTIONARY STOKES-DARCY-TRANSPORT PROBLEM
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Abstract. There has been a surge of work on models for coupling surface-water with groundwater flows which is at
its core the Stokes-Darcy problem, as well as methods for uncoupling the problem into subdomain, subphysics solves. The
resulting (Stokes-Darcy) fluid velocity is important because the flow transports contaminants. The numerical analysis and
algorithm development for the evolutionary transport problem has, however, focused on a quasi-static Stokes-Darcy model and
a single domain (fully coupled) formulation of the transport equation. This report presents a numerical analysis of a partitioned
method for contaminant transport for the fully evolutionary system. The algorithm studied is unconditionally stable with one
subdomain solve per step. Numerical experiments are given using the proposed algorithm, that investigate the effects of the
penalty parameters on the convergence of the approximations.
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1. Introduction. The Stokes-Darcy problem describes the (slow) flow of a fluid across an interface I
separating a saturated porous medium Ωp and a free flowing fluid region Ωf . Such flow is important because
it transports contaminants between surface and groundwater [BC10], [PC06], nutrients and oxygen between
capillaries and tissue [AZ11], [QVZ01] and material in industrial filtration systems [EJS09], [HWN06]. It also
arises (at higher transport velocities) in modern fuel cells, porous combustors, advanced heat exchangers, the
flow of air in the lungs and in the atmospheric boundary layer over vegetation. This report develops parti-
tioned time-stepping methods (non-iterative domain decomposition methods) for the contaminant transport
problem. There has been a substantial amount of work on uncoupling the (linear) Stokes-Darcy problem.
The Stokes-Darcy-transport problem involves solving one additional (nonlinear) convection-diffusion problem
with the Stokes-Darcy velocity passed from a Stokes-Darcy partitioned method. However, this introduces
new difficulties into the approximation of the transport problem, (1.1), due to the error in the convecting
velocity and its non-zero divergence (∇ · u 6= 0 in Ωp) when S0 6= 0.

We therefore consider the equation for the concentration c(x, t) of a transported contaminant with source
s(x, t)

βct +∇ · (−D∇c+ uc) = s in Ω := Ωf ∪ Ωp ∪ I. (1.1)

Here the fluid region’s velocity and pressure are uf and p; the porous media’s pressure head and velocity are
φ and up. The transport velocity u in the concentration equation (1.1) is u = uf in Ωf and u = up in Ωp.
These satisfy, with appropriate boundary, interface (including zero normal jump on I, [u · n̂] = 0) and initial
conditions,

uf,t − ν∆uf +∇p = ff and ∇ · uf = 0 in Ωf , (1.2)

S0φt −∇ · (K∇φ) = fp and up = −β−1K∇φ in Ωp. (1.3)
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The physical parameters are

S0 = specific storage ν = kinematic viscosity
K = hydraulic conductivity tensor (SPD) D = dispersion tensor
β = volumetric porosity ff/p, s = body forces and sources

For the concentration c(x, t), on the exterior boundary, ∂Ω, we impose homogeneous Dirichlet boundary con-
ditions (for clarity in the analysis), an initial condition, and across the interface, I, continuity of concentration
and fluxes,

c = 0 on ∂Ω , c(x, 0) = c0(x) in Ω ,

[c] = 0 and [(−D∇c+ uc) · n̂] = 0 on I , (Jumps)

where n̂ denotes a unit normal on I pointing from Ωf into Ωp. Since the conservation of mass for the fluid
flow implies [u · n̂] = 0, the second jump condition can be simplified to [D∇c · n̂] = 0.

Interface conditions on the concentration are not needed in a single domain formulation of (1.1) since such
a formulation imposes continuity of concentration and fluxes as natural interface conditions.The structure of
(1.1), (1.2), (1.3) is such that a partitioned method for the Stokes-Darcy system (1.2), (1.3) can be applied
to find a velocity uf in Ωf , up in Ωp which is then passed to the concentration equation (1.1). Thus, we
focus on partitioned methods for the concentration equation (1.1) where the transport velocity u is known
approximately.

There are four general methods for relaxing of interfacial couplings in a partitioned method: penalties
[A99], Lagrange multipliers and mortar elements [GS07], and methods based on discretizing in time the
coupling conditions explicitly. To uncouple (1.1) into subdomain solves we impose the coupling across I
weakly using penalties. This replaces a conservation condition (a skew symmetric coupling) with a dissipative
coupling (deviation from conservation is strongly damped). Sections 3 and 4 give a stability and error analysis
of this penalty approximation. The concentration equation can be diffusion dominated, convection dominated
or any intermediate state. We therefore develop and analyze in Section 5 a time partitioning algorithm that
can be used for differing variational formulations in space, appropriate for the various cases.

The full transport model presents several computational and analytical difficulties. The first is an active
nonlinearity in the transport problem. Taking the L2 inner product of the transport equation with c(x, t)
gives

1

2

d

dt

∫
Ω

βc2 dx+

∫
Ω

D|∇c|2 dx +
1

2

∫
Ω

(∇ · u)c2 dx =

∫
Ω

s c dx. (1.4)

The key term involves∇·u which is exactly zero (a common assumption in the numerical analysis of convection
diffusion equations, [RST96]) when S0 = 0 (quasistatic) and fp = 0. However, for (1.1), (1.2), (1.3)

∇ · u =

{
0 in Ωf ,

β−1
(
−S0

∂φ
∂t + fp

)
in Ωp.

(1.5)

Thus, when S0 6= 0 this acts like a reaction term causing error growth and couples the growth rate to the
error in the discrete convecting velocity uh.

The regularity needed for uh to ensure stability is also an important issue. In the continuous time analysis
in Section 3 we assume only

uh ∈ L∞(0, T ;L2(Ω)), ∇uh ∈ L2(0, T ;L2(Ω)),

uh = 0 on ∂Ω, [uh · n̂] = 0 on I, ∇ · uh = 0 in Ωf , (1.6)

and ∇ · uh ∈
{
L2(0, T ;L2(Ωp)) in 2d,
L4(0, T ;L2(Ωp)) in 3d.
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The assumption ∇ · uh = 0 in Ωf (rather than small but non-zero) shortens the analysis and can be relaxed.
There are also methods of increasing utility that produce exactly incompressible fluid velocities. A recent
survey on these, enforcing ∇ · uh = 0 pointwise, is given in [JLM].

For the discrete time approximation in Sections 4 and 5 we assume further that a discrete version of the
following holds

∇ · uh ∈ L∞(0, T ;L2(Ωp)). (1.7)

A third issue is the multitude of small parameters in the full problem. For example, when Dmin << |u| the
transport equation reduces to a singularly perturbed, convection diffusion equation with no control on ∇ · u,
a problem for which methods are comparatively less well developed, [RST96]. Since our focus is the time
partitioning, we have studied the discrete time, continuous space approximation for which both the standard
Finite Element Method (FEM) and the Streamline Diffusion Finite Element Method (SDFEM) can be used
for discretization in space. See [DDD91], [ZYD09], [LY08] for interesting alternate approaches that could be
explored for the present application.

1.1. Related work. Porous media transport and transport in a freely flowing fluid describe different
physical processes with different variables, time scales, flow rates and uncertainties. There has been an intense
effort at developing algorithms that use the subdomain/sub-physics codes to maximum effect to solve the cou-
pled problem, e.g., domain decomposition methods for the equilibrium problem [CGHW11], [CMX09],[D04],
[DQ09], [DMQ02], [J09], [LSY] and partitioned methods for the evolutionary problem [CGHW11b], [MZ10],
[CGHW08], [LTT13], [SS12], [AZ11]. Partitioned methods for the pure diffusion case (when u = 0) have been
developed in [CHL09] and partitioned methods based on other principles for convection diffusion equations
in [DDD91], [ZYD09].

The reliability of the resulting predictions has spurred analytical study of the coupled model. The
quasi-static approximation (S0 = 0), studied in [M12], [EKL15], [CR09] or the fully steady Stokes-Darcy
approximation [VY09], treating the transport as a time-dependent, monolithically coupled single domain
problem has been studied in [AZ11], [CR09], [SS12], [VY09], [R14]. In these, the quasi-static Stokes-Darcy
problem is typically solved by a domain decomposition procedure and a single domain transport problem is
solved.

2. Preliminaries. Let the L2 norms and inner products over Ωf , Ωp and I be denoted by || · ||r, (·, ·)r,
r ∈ {f, p, I}, respectively. Recall that Ω = Ωf ∪ Ωp ∪ I; the L2 norm and inner product over Ω will be
denoted by || · ||, (·, ·) (without subscripts). Throughout we use C to denote a generic positive constant, whose
actual value may vary from line to line in the analysis. The function space for the concentration is

Xp/f = {c ∈ H1(Ωp/f ) : c = 0 on ∂Ωp/f\I} and X = {c : c|Ωp/f
∈ Xp/f} .

With respect to L2 duality, we define X∗ as the dual space of X.
Due to the exterior boundary conditions, the Poincaré - Friedrichs inequality holds in both sub-domains:

||v||f/p ≤ CPF (Ωf/p)||∇v||f/p,∀v ∈ Xf/p .

We shall also use the following special cases of (combinations of) Sobolev, Poincaré-Friedrichs, interpolation
and Gagliardo-Nirenberg inequalities (in d = 2 and 3 dimensions) for all v ∈ X

||v||L6 ≤ C||∇v||, ||v||L3 ≤ C||v||1/2||∇v||1/2, and ||v||L4 ≤ C||v||1−d/4||∇v||d/4 . (2.1)

We assume D(x) is positive and bounded

0 < Dmin ≤ D(x) ≤ Dmax <∞

and define a trilinear convective form as follows

b(u, c, v) :=
1

2
(u · ∇c, v)− 1

2
(u · ∇v, c) +

1

2

∫
Ωp

(∇ · u)cv dx.
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2.1. Regularity. Regularity of the concentration depends on regularity of the Stokes-Darcy variables.
The values of uf,t(0), φt(0) at t = 0 are defined as

uf,t(0) := uf,t(x, 0) = lim
t→0+

uf,t(x, t) = lim
t→0+

(ff (x, t) + ν∆uf (x, t)−∇p(x, t))

φt(0) := φt(x, 0) = lim
t→0+

φt(x, t) = S−1
0 lim

t→0+
(fp(x, t) +∇ · (K∇φ(x, t))) .

In [M12] Moraiti proved that for 0 < T <∞ and data satisfying

ff/p,t ∈ L2(0, T ;H−1(Ωf/p)), uf,t(0) ∈ L2(Ωf ), φt(0) ∈ L2(Ωp),

the following holds and will be assumed herein:

uf,t ∈ L∞(0, T ;L2(Ωf )), φt ∈ L∞(0, T ;L2(Ωp)) and ∇φt ∈ L2(0, T ;L2(Ωp)). (2.2)

Additionally we assume

c0 ∈ H1(Ω), s ∈ L2(0, T ;L2(Ω)),∇φt(0) ∈ L2(Ωp), and (2.3)

ff ∈ L∞(0, T ;L2(Ωf )), fp ∈ L∞(0, T ;H1(Ωp)), fp,t ∈ L2(0, T ;L2(Ωp)). (2.4)

In [EKL15] the following regularity was proven for the transport problem.

Proposition 2.1 (Regularity of concentration). Suppose 0 < T <∞ and the problem data is such that
(2.2)-(2.4) hold. Then

c ∈ L∞(0, T ;L2(Ω)), ∇c ∈ L∞(0, T ;L2(Ω)), and ct ∈ L2(0, T ;L2(Ω)). (2.5)

3. The continuous penalty method. Pick a penalty parameter δ > 0 (small), exponent q ≥ 2 and
replace the jump conditions (Jumps) with a penalty term in the variational formulation. We also replace
(uh ·∇c, v) with b(uh, c, v). This results in another jump integral which is also controlled by the penalty term.
The resulting solution then depends on δ and is denoted cδ. The continuous penalty approximation is: Given
an approximate velocity uh, select q ≥ 2, and find cδ : [0, T ] → X with cδ(0) = c(0) and satisfying, for all
v ∈ X,

β(cδt , v) + (D∇cδ,∇v) + b(uh, c
δ, v) + δ−q

∫
I

|[cδ]|q−2[cδ][v]ds = (s, v). (3.1)

Integrating backwards, this penalty approximation is equivalent to replacing the interface jump conditions
(Jumps) with {

D∇cp · ~np − 1
2uph · ~npcp = δ−q|[c]|q−2[c], on I, in Ωp,

D∇cf · ~nf − 1
2ufh · ~nfcf = δ−q|[c]|q−2[c], on I, in Ωf ,

where cf/p denotes c|Ωf/p
, and ~nf/p denotes the unit outer normal vector with respect to Ωf/p. The above

form of the nonlinear penalty term is a natural extension of the linear (q = 2) case. The complexity of the
analysis for the general q ≥ 2 case does not increase substantially over the linear q = 2 case. As motivation,
when q > 2, large jumps are over penalized (and small jumps under-weighted) compared to q = 2.

We prove in Section 3.1 that [cδ]→ 0 as δ → 0 and cδ → c, as δ → 0 and ||u− uh|| → 0.
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3.1. Convergence of the continuous in time, penalty approximation. In the convergence anal-
ysis, the true concentration is transported by the true velocity u(x, t) while the approximation is transported
by the approximate velocity uh(x, t). The error in the velocity couples to the error in the concentration so
that the regularity of the approximate velocity is significant. For (3.1), we assume that uh satisfies (1.6). We
begin by proving an á priori bound that shows the jump on I,

[
cδ
]
→ 0 as δ → 0.

Proposition 3.1. Suppose 0 < T <∞ and (1.6) holds. Then, there is a C = C(T, problem data) <∞
such that

(i) cδ ∈ L∞(0, T ;L2(Ω)) , ∇cδ ∈ L2(0, T ;L2(Ω)), (3.2)

(ii) ‖[cδ]‖qLq(0,T ;Lq(I)) ≤ Cδ
q → 0 as δ → 0, (3.3)

(iii) β‖cδ‖2L∞(0,T ;L2(Ω)) + ‖
√
D∇cδ‖2L2(0,T ;L2(Ω)) + δ−q ‖[cδ]‖qLq(0,T ;Lq(I))

≤ C
(
‖s||2L2(0,T ;L2(Ω)) + ‖cδ(0)‖2

)
. (3.4)

Proof. Setting v = cδ in (3.1), and using b(uh, c
δ, cδ) = 1

2

∫
Ωp

(∇ · uh) (cδ)2 dx, we obtain

β
1

2

d

dt
‖cδ‖2 + ‖

√
D∇cδ‖2 + δ−q ‖[cδ]‖qLq(I) = (s, cδ)− 1

2

∫
Ωp

(∇ · uh)
(
cδ
)2

dx.

By the Cauchy-Schwarz inequality,∣∣∣∣∣
∫

Ωp

(∇ · uh)
(
cδ
)2
dx

∣∣∣∣∣ ≤ ||∇ · uh|| ||cδ||2L4(Ω) .

Using the inequalities (2.1) for ||c||2L4 we have∣∣∣∣∣12
∫

Ωp

(∇ · uh)
(
cδ
)2
dx

∣∣∣∣∣ ≤ C||∇ · uh||
{

||cδ||||∇cδ|| in 2d,
||cδ||1/2||∇cδ||3/2 in 3d.

(3.5)

Of the 2 cases in (3.5), we present the 3d case. (The 2d case follows by analogous steps.) In 3d there follows

1

2
β
d

dt
||cδ||2 + ||

√
D∇cδ||2 + δ−q ‖[cδ]‖qLq(I)

≤ 1

2
||s||2 +

1

2
||cδ||2 + C||∇ · uh|| ||cδ||1/2||∇cδ||3/2

≤ 1

2
||s||2 +

1

2
||cδ||2 + ||

√
D∇cδ||3/2

(
CD

−3/4
min ||∇ · uh|| ||c

δ||1/2
)
. (3.6)

For the last term in (3.6) using ab ≤ 3
4a

4/3 + 1
4b

4, we have that

1

2
β
d

dt
||cδ||2 +

1

4
||
√
D∇cδ||2 + δ−q ‖[cδ]‖qLq(I)

≤ 1

2
||s||2 + C

(
1 +

(
D
−3/4
min ||∇ · uh||

)4
)
||cδ||2.

The regularity (1.6) implies that ||∇ · uh||4 ∈ L1(0, T ). Thus, using Grönwall’s inequality we establish (3.2)-
(3.4).
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We now prove convergence of the continuous penalty method to the true concentration and give an error
estimate. With u the true velocity, define

λ := −D∇c · ~nf +
1

2
u · ~nfc

∣∣∣
I

= −
(
−D∇c · ~np +

1

2
u · ~npc

) ∣∣∣
I
.

In the analysis (see (3.10) and (3.27) below) we require λ to be bounded in the Lq
′
(0, T ;Lq

′
(I)) norm, for

1 < q′ ≤ 2. Hence, we additionally assume that the true solution c satisfies

c ∈ L2(0, T ;H2(Ωp/f )) . (3.7)

Since the Stokes-Darcy velocity satisfies [u · n̂]I = 0, c(x, t) satisfies, for all v ∈ X:

β(ct, v) + (D∇c,∇v) +
1

2
(u · ∇c, v)− 1

2
(u · ∇v, c) +

1

2

∫
Ω

(∇ · u)c v dx

+

∫
I

(−D∇cp · ~np +
1

2
up · ~npcp)vp ds+

∫
I

(−D∇cf · ~nf +
1

2
uf · ~nfcf ) vf ds = (s, v).

Thus, the variational formulation for c(x, t) in X (i.e., in terms of the multiplier λ and [v] = vf − vp) may be
written as, for all v ∈ X:

β(ct, v) + (D∇c,∇v) + b(u, c, v) +

∫
I

λ[v]ds = (s, v). (3.8)

We begin the error analysis with the linear penalty whose approximation cδ ∈ X satisfies (3.1) with q = 2

β(cδt , v) + (D∇cδ,∇v) + b(uh, c
δ, v) + δ−2

∫
I

[cδ][v]ds = (s, v). (3.9)

Theorem 3.2. Suppose 0 < T < ∞, q = 2 and (2.2) and (1.6) hold. Let e = c − cδ. Then there is a
C = C(T, data) such that the error in the linear penalty method (3.9) satisfies

β‖e(T )‖2 +

∫ T

0

(
‖D1/2∇e‖2 + δ−2‖[e]‖2L2(I)

)
dt ≤ C δ2

∫ T

0

‖λ‖2L2(I)dt (3.10)

+C ||∇ (u− uh) ||2L2(0,T ;L2(Ω)) + C ||∇ · (u− uh) ||2L4(0,T ;L2(Ωp)).

Proof. Subtracting (3.9) from (3.8), and setting v = e we obtain

β

2

d

dt
‖e‖2 + ‖D1/2∇e‖2 + δ−2‖[e]‖2L2(I) + b(u, c, e)− b(uh, cδ, e) = −

∫
I

λ[e]ds , (3.11)

in which the core difficulty is the nonlinear term. Adding and subtracting b(uh, c, e), the nonlinear term can
be algebraically rearranged as follows

b(u, c, e)− b(uh, cδ, e) = b(u, c, e)− b(uh, c, e) + b(uh, c, e)− b(uh, cδ, e)
= b(u− uh, c, e) + b(uh, e, e)

=
1

2

∫
Ω

(u− uh) · ∇c e dx − 1

2

∫
Ω

(u− uh) · ∇e c dx

+
1

2

∫
Ωp

∇ · (u− uh) c e dx +
1

2

∫
Ωp

(∇ · uh) e2dx. (3.12)
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For the last two terms in (3.12), subtracting and adding 1
2

∫
Ωp
∇ · u (c− cδ) e dx yields

1

2

∫
Ωp

∇ · (u− uh) c e dx+
1

2

∫
Ωp

(∇ · uh) e2 dx

=
1

2

∫
Ωp

∇ · (u− uh) cδ e dx +
1

2

∫
Ωp

(∇ · u) e2dx.

Thus we have

b(u, c, e)− b(uh, cδ, e) = N1 +N2 +N3 +N4, (3.13)

where

N1 =
1

2

∫
Ω

(u− uh) · ∇c e dx, N2 = −1

2

∫
Ω

(u− uh) · ∇e c dx,

N3 =
1

2

∫
Ωp

∇ · (u− uh) cδ e dx, N4 =
1

2

∫
Ωp

(∇ · u) e2 dx.

The term N1 is estimated using the regularity of c(x, t) and applications of Hölder’s, Poincaré-Friedrichs’
inequalities, and (2.1) as follows:

|N1| =
∣∣∣∣12
∫

Ω

(u− uh) · ∇c e dx
∣∣∣∣ ≤ C ||∇(u− uh)|| ||∇c||

√
||e|| ||∇e||

≤
(
C ||∇(u− uh)||D−1/4

min ||e||
1/2
)(
||
√
D∇e||1/2

)
≤ 1

8
||
√
D∇e||2 + C||∇(u− uh)||4/3||e||2/3 . (3.14)

Next using ab ≤ 2
3a

3/2 + 1
3b

3,

||∇(u− uh)||4/3 ||e||2/3 ≤ C ||∇(u− uh)||2 +
1

3
||e||2. (3.15)

Thus, combining (3.14) and (3.15),

|N1| ≤
1

8
||
√
D∇e||2 + C ||∇(u− uh)||2 +

1

3
||e||2. (3.16)

The N2 term is treated similarly using (2.5), resulting in the estimate

|N2| =
∣∣∣∣12
∫

Ω

(u− uh) · ∇e c dx
∣∣∣∣ ≤ C ||∇(u− uh)|| ||∇e||

√
||c|| ||∇c||

≤ C ||∇(u− uh)||2 +
1

8
||
√
D∇e||2 . (3.17)

The terms in (3.16) and (3.17) involving ||
√
D∇e||2 are subsumed into the LHS of (3.11) and the terms

involving ||e||2 are handled using Grönwall’s inequality.
For N4, by Hölder’s inequality and the inequalities (2.1) for ||e||2L4(Ωp), and the Poincaré-Friedrichs’

inequality

|N4| =

∣∣∣∣∣12
∫

Ωp

(∇ · u)e2dx

∣∣∣∣∣ ≤ 1

2
||∇ · u||p||e||2L4(Ωp)

≤ C||∇ · u||p ||e||1/2p ||∇e||3/2p

≤
(
||
√
D∇e||3/2p

)(
C D

−3/2
min ||∇ · u||p ||e||

1/2
p

)
≤ 3

4
||
√
D∇e||2p +

(
C ||∇ · u||4p

)
||e||2 , (3.18)
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where in the last step we have used ab ≤ 3
4a

4/3 + 1
4b

4.

For N3, we have

|N3| ≤
1

2
||∇ · (u− uh) cδ||X∗ ||∇e|| ≤

1

8
||
√
D∇e||2 +

1

2
D−1

min||∇ · (u− uh) cδ||2X∗ , (3.19)

where ||∇ · (u− uh) cδ||X∗ := sup
v∈X

(∇ · (u− uh) cδ, v)

||∇v||
.

Hölder’s inequality, ||v||L6 ≤ C||∇v||, (1.5) and (1.6) gives

||∇ · (u− uh) cδ||X∗ ≤ sup
||∇ · (u− uh) cδ||L6/5(Ω)||v||L6(Ω)

||∇v||
≤ C||∇ · (u− uh) cδ||L6/5(Ωp).

Applying Hölder’s inequality again,

||∇ · (u− uh) cδ||2L6/5(Ωp) =

(∫
Ωp

|∇ · (u− uh) cδ|6/5dx

)5/3

≤

(∫
Ωp

|∇ · (u− uh) |2dx

)(∫
Ωp

|cδ|3dx

)2/3

≤ ‖∇ · (u− uh) ‖2p ‖cδ‖2L3(Ωp)

≤ C ‖∇ · (u− uh) ‖2p ‖cδ‖p ‖∇cδ‖p (using (2.1))

≤ C ‖∇ · (u− uh) ‖2p ‖
√
D∇cδ‖ (using (3.4)). (3.20)

Combining (3.19) and (3.20) we have that

|N3| ≤
1

8
||
√
D∇e||2 + C ‖∇ · (u− uh) ‖2p ‖

√
D∇cδ‖ . (3.21)

Next, combining (3.11) with (3.13), (3.16)-(3.18), and (3.21) we have

β

2

d

dt
‖e‖2 +

1

2
‖D1/2∇e‖2 +

1

2
δ−2‖[e]‖2L2(I)

≤ C(‖∇ · u‖4p + 1)‖e‖2 +
1

2
δ2‖λ‖2L2(I) + C ‖∇ (u− uh) ‖2

+ C ‖∇ · (u− uh) ‖2p ‖
√
D∇cδ‖ . (3.22)

Equation (1.6) implies that ||∇ · u||4p ∈ L1(0, T ) so that Grönwall’s inequality can be applied to (3.22). This
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gives, for any T <∞,

β‖e(T )‖2 +

∫ T

0

(
‖D1/2∇e‖2 + δ−2‖[e]‖2L2(I)

)
dt

≤ C(T )

∫ T

0

δ2‖λ‖2L2(I) dt + C(T )

∫ T

0

‖∇ (u− uh) ‖2 dt

+C(T )

∫ T

0

‖∇ · (u− uh) ‖2p ‖
√
D∇cδ‖ dt

≤ Cδ2

∫ T

0

‖λ‖2L2(I) dt + C‖∇ (u− uh) ‖2L2(0,T ;L2(Ω))

+C

(∫ T

0

‖∇ · (u− uh) ‖4p dt

)1/2(∫ T

0

‖
√
D∇cδ‖2 dt

)1/2

≤ Cδ2

∫ T

0

‖λ‖2L2(I) dt + C‖∇ (u− uh) ‖2L2(0,T ;L2(Ω))

+C‖∇ · (u− uh) ‖2L4(0,T ;L2(Ωp)) , (3.23)

where in the last step we have used the boundedness of ‖
√
D∇cδ‖L2(0,T ;L2(Ω)) given by (3.4), establishing

(3.10).

The analysis is similar for the nonlinear penalty method and yields the following.

Theorem 3.3 (Convergence of the nonlinear penalty method). Suppose 0 < T < ∞, 2 ≤ q < ∞,
1/q + 1/q′ = 1, and (2.2) and (1.6) hold. Let e = c− cδ. Then there is a C = C(T, data) such that the error
in the nonlinear penalty method (3.9) satisfies

β‖e(T )‖2 +

∫ T

0

(
‖D1/2∇e‖2 + δ−q‖[e]‖qLq(I)

)
dt ≤ C δq

′
∫ T

0

‖λ‖q
′

Lq′ (I)
dt (3.24)

+C ||∇ (u− uh) ||2L2(0,T ;L2(Ω)) + C ||∇ · (u− uh) ||2L4(0,T ;L2(Ω)).

Remark 3.4 (On L4 regularity in time). The assumption of L4 regularity in time in (1.6) for the
approximate Stokes-Darcy velocity in 3d is no issue for the quasi-static Stokes-Darcy approximation or if the
velocity u is assumed to be known exactly. If the discrete velocity is calculated so that it satisfies the regularity
proven for the continuous velocity then the estimates are also improvable and the “4” can also be improved to
“2” in the time regularity in the last term.

4. The discrete time penalty method. This section considers the time discretized penalty approx-
imation. A partitioned extension of this method is given in Section 5. We let 4t = T/N > 0 denote the
timestep, tn := n4t, cn = cn(x) (suppressing the superscript δ) the approximation to c(tn, x), the solution
to (1.1) and cnp/f denotes cn|Ωp/f

. The approximate Stokes-Darcy velocity at time tn is denoted un(x). In

the continuous case ∇ · u ∈ L∞(0, T ;L2(Ω)). We shall assume in this section that the discrete approximation
satisfies a discrete version of this condition:

max
0≤n≤N

||∇ · un|| ≤ C(T, data) <∞. (4.1)

This is a stronger regularity assumption than the one used for the continuous time case in Section 3.
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4.1. Stability of the discrete penalty method. To avoid a timestep restriction of the form
4t C(T, data) < 1 we study a method where∇·un+1cn+1 is replaced by∇·un+1cn. The resulting time-discrete
method is

β

(
cn+1 − cn

4t
, v

)
+ (D∇cn+1,∇v) +

1

2
(un+1 · ∇cn+1, v)− 1

2
(un+1 · ∇v, cn+1) (4.2)

+
1

2

∫
Ωp

(∇ · un+1)cnv dx+ δ−q
∫
I

|[cn+1]|q−2[cn+1][v]ds = (sn+1, v), ∀v ∈ X.

We prove 0-stability without a timestep restriction. The basic tool used will be a version of the discrete
Grönwall inequality that does not require a timestep restriction (Lemma 2.4 p.176 of [GR79]).

Theorem 4.1 (0-Stability). Assume (4.1) holds. The method (4.2) is stable: that is, there is a C =
C(T, data) such that

β||cN ||2 + 4t||
√
D∇cN ||2

+ 24t
N−1∑
n=0

(
β

24t
||cn+1 − cn||2 +

5

16
||
√
D∇cn+1||2 + δ−q||[cn+1]||qLq(I)

)

≤ β||c0||2 +4t||
√
D∇c0||2 + C4t

N−1∑
n=0

||sn+1||2X∗ . (4.3)

Proof. Setting v = cn+1 in (4.2), using the polarization identity on the first term, the Cauchy-Schwarz
and Poincaré-Friedrichs inequalities on the last term yields

β

24t
(
||cn+1||2 − ||cn||2

)
+

(
β

24t
||cn+1 − cn||2 + ||

√
D∇cn+1||2 + δ−q||[cn+1]||qLq(I)

)
+

1

2

∫
Ω

(∇ · un+1)cn cn+1 dx ≤ 1

16
||
√
D∇cn+1||2 + C||sn+1||2X∗ . (4.4)

Next, using Hölder’s inequality, (4.1), (2.1) and ab ≤ εa4/3 + C(ε)b4 we have

1

2
|
∫

Ω

(∇ · un+1)cn cn+1 dx| ≤ 1

2
||∇ · un+1|| ||cn||L4(Ω)||cn+1||L4(Ω)

≤ C ||cn||1/4||∇cn||3/4||cn+1||1/4||∇cn+1||3/4

≤
(
||
√
D∇cn||3/4||

√
D∇cn+1||3/4

)(
C ||cn||1/4||cn+1||1/4

)
≤ 1

8
||
√
D∇cn|| ||

√
D∇cn+1|| + C ||cn|| ||cn+1||

≤ 1

16
||
√
D∇cn||2 +

1

16
||
√
D∇cn+1||2 + C ||cn||2 + ε||cn+1||2 .

By the Poincaré-Friedrichs inequality we can bound the last term as

ε||cn+1||2 ≤ εC ||∇cn+1||2 ≤ εC ||
√
D∇cn+1||2.

Then, picking ε appropriately, we obtain the bound

1

2
|
∫

Ω

(∇ · un+1)cn cn+1 dx| ≤ 1

16
||
√
D∇cn||2 +

2

16
||
√
D∇cn+1||2 + C ||cn||2. (4.5)
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Consider next the ||
√
D∇cn+1||2 term on the LHS of (4.4). Note that

||
√
D∇cn+1||2 =

1

2

(
||
√
D∇cn+1||2 + ||

√
D∇cn||2

)
(4.6)

+
1

2
||
√
D∇cn+1||2 − 1

2
||
√
D∇cn||2.

Inserting (4.6) on the LHS of (4.4) and using (4.5) yields(
β

24t
||cn+1||2 +

1

2
||
√
D∇cn+1||2

)
−
(

β

24t
||cn||2 +

1

2
||
√
D∇cn||2

)
+

(
β

24t
||cn+1 − cn||2 +

1

2
(||
√
D∇cn+1||2 + ||

√
D∇cn||2) + δ−q||[cn+1]||qLq(I)

)
≤ C ||sn+1||2X∗ +

1

16
||
√
D∇cn||2 +

3

16
||
√
D∇cn+1||2 + C||cn||2.

Thus, collecting terms we have(
β

24t
||cn+1||2 +

1

2
||
√
D∇cn+1||2

)
−
(

β

24t
||cn||2 +

1

2
||
√
D∇cn||2

)
+

(
β

24t
||cn+1 − cn||2 +

5

16
(||
√
D∇cn+1||2 + ||

√
D∇cn||2) + δ−q||[cn+1]||qLq(I)

)
≤ C||sn+1||2X∗ + C||cn||2 . (4.7)

Finally, summing (4.7) from n = 0 to N − 1 and using the discrete Grönwall’s inequality we obtain (4.3).

Remark 4.2. In the stability proof the key term is
∫

(∇ · un+1)cn cn+1 dx. If the fully implicit method
was used this term would instead be

∫
(∇ · un+1) (cn+1)2 dx. In this case a different version of the discrete

Grönwall’s inequality is needed and from this version a timestep restriction would arise. If reduction to the
standard implicit Euler method in the quasistatic case is desired the method can be modified by replacing

1

2

∫
Ωp

(∇ · un+1)cnv dx by

1

2

∫
Ωp

β−1fp(t
n+1, x)cn+1v dx− 1

2

∫
Ωp

β−1S0
∂φ

∂t

n+1

cnv dx.

When S0 = 0 this becomes the fully implicit method. A timestep restriction linking 4t to fp(t
n+1, x) would

reemerge.

We proceed to an analysis of the error in the semi-discrete method. To derive an equation for en :=
c(tn)− cn we first rewrite the continuous problem to identify the method’s consistency error.

Definition 4.3. The consistency error of (4.2) is Rn+1 = Rn+1
1 +Rn+1

2 where

Rn+1
1 : =

c(tn+1)− c(tn)

4t
− ct(tn+1),

Rn+1
2 : =

1

2
(∇ · u(tn+1))(c(tn)− c(tn+1)).
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Rearranging equation (3.8), the true solution c(t) satisfies

β

(
c(tn+1)− c(tn)

4t
, v

)
+ (D∇c(tn+1),∇v) + δ−q

∫
I

|[c(tn+1)]|q−2[c(tn+1)][v]ds

+
1

2
(u(tn+1) · ∇c(tn+1), v)− 1

2
(u(tn+1) · ∇v, c(tn+1)) (4.8)

+
1

2

∫
Ωp

(∇ · u(tn+1))c(tn)v dx +

∫
I

λ(tn+1)[v] ds

= (s(tn+1), v) + (Rn+1
1 +Rn+1

2 , v), ∀v ∈ X.

We begin by estimating the consistency error terms.

Lemma 4.4 (Consistency Error: Monolithic Method). For any ε > 0 there is a C = C(T, data, ε) < ∞
such that

(Rn+1
1 , v) ≤ ε||

√
D∇v||2 + C ||Rn+1

1 ||2X∗ , (4.9)

(Rn+1
2 , v) ≤ ε||

√
D∇v||2 + C ||Rn+1

2 ||2X∗ .

Further,

(Rn+1
1 , v) ≤ ε||

√
D∇v||2 + C4t2||ctt||2L∞(0,T ;L2(Ω)), (4.10)

(Rn+1
2 , v) ≤ ε||

√
D∇v||2 + C4t2||ct||2L∞(0,T ;L4(Ω)), and (4.11)

(Rn+1
2 , v) ≤ ε||

√
D∇v||2 + C4t2||ct||1/2L∞(0,T ;L2(Ω))||∇ct||

3/2
L∞(0,T ;L2(Ω)). (4.12)

Proof. The estimates given by (4.9) and (4.10) are standard. The bounds in (4.11) and (4.12) are
established in a similar manner, so we will prove the more involved estimate (4.12). As

c(tn+1)− c(tn) =

∫ tn+1

tn
ct(t) dt,

we have, by Hölder’s inequality, (1.5), (2.2) and (2.4)

(Rn+1
2 , v) =

1

2

∫
Ωp

∇ · u(x, tn+1)

∫ tn+1

tn
ct(x, t) dt v(x)dx

≤ ||∇ · u||L∞(0,T ;L2(Ω))

∥∥∥∥∥
∫ tn+1

tn
ct(t)dt

∥∥∥∥∥
L4(Ω)

‖v‖L4(Ω)

≤ C

∥∥∥∥∥
∫ tn+1

tn
ct(t)dt

∥∥∥∥∥
L4(Ω)

‖v‖L4(Ω) .
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Using Poincaré-Friedrichs inequality, (2.1) and Hölder’s in time we obtain

(Rn+1
2 , v) ≤ C

∥∥∥√D∇v∥∥∥
∫

Ω

(∫ tn+1

tn
1 · ct(t) dt

)4

dx

1/4

≤ C
∥∥∥√D∇v∥∥∥

∫
Ω

(∫ tn+1

tn
14/3dt

)3/4(∫ tn+1

tn
ct(t)

4dt

)1/4
4

dx


1/4

≤ C
∥∥∥√D∇v∥∥∥((4t)3

∫ tn+1

tn
‖ct(t)‖4L4(Ω)dt

)1/4

≤ C
∥∥∥√D∇v∥∥∥((4t)3

∫ tn+1

tn
‖ct(t)‖ ‖∇ct(t)‖3dt

)1/4

≤ C
∥∥∥√D∇v∥∥∥4t ‖ct‖1/4L∞(0,T ;L2(Ω)) ‖∇ct‖

3/4
L∞(0,T ;L2(Ω))

≤ ε||
√
D∇v||2 + C4t2||ct||1/2L∞(0,T ;L2(Ω))||∇ct||

3/2
L∞(0,T ;L2(Ω)).

We now establish the error in the time discrete method when q = 2. (When q > 2 monotonicity and local
Lipschitz continuity are used to replace linearity and boundedness but other details are identical.)

Theorem 4.5. Assume (4.1) holds and q = 2. Then, there is a C = C(data, T ) such that

β

2
||eN ||2 +

4t
2
||
√
D∇eN ||2

+
4t
2

N−1∑
i=1

(
β

4t
||en+1 − en||2 + ||

√
D∇en+1||2 + ||

√
D∇en||2 + δ−2||[en+1]||2L2(I)

)
≤ C

(
β

2
||e0||2 +

4t
2
||
√
D∇e0||2

)
+ C δ2||λ(tn+1)||2L∞(0,T ;L2(I)) (4.13)

+ C
(
4t2 ||ct||2L∞(0,T ;L4(Ω)) + 4t2 ||ctt||2L∞(0,T ;L2(Ω))

)
+ C max

1≤n≤N
||∇(u(tn+1)− un+1)||2 .

Proof. Subtracting (4.2) from (4.8), and noting that [c(t)] = 0, we have

β

(
en+1 − en

4t
, v

)
+ (D∇en+1,∇v) + δ−2

∫
I

[en+1][v]ds

+

(
1

2
(u(tn+1) · ∇c(tn+1), v)− 1

2
(u(tn+1) · ∇v, c(tn+1))

)
−
(

1

2
(un+1 · ∇cn+1, v)− 1

2
(un+1 · ∇v, cn+1)

)
(4.14)

+
1

2

∫
Ωp

(∇ · u(tn+1)) c(tn) v dx− 1

2

∫
Ωp

(∇ · un+1) cn v dx

=
(
Rn+1

1 +Rn+1
2 , v

)
−
∫
I

λ(tn+1)[v]ds.
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In (4.14) let v = en+1. All the terms in the first line are treated exactly as in the stability proof (Theorem
4.1). The terms in line 5 are treated using the consistency error lemma (Lemma 4.4), and the λ term is
treated using the Cauchy-Schwarz inequality with ε = δ2. The terms in lines 2, 3 and 4 are treated by adding
and subtracting terms and regrouping as in the proof of the error estimate for the continuous time method.
To compress the result, define

En+1 : =
β

2
||en+1||2 +

4t
2
||
√
D∇en+1||2,

Dn+1 : =
β

24t
||en+1 − en||2 +

1

2
||
√
D∇en+1||2 +

1

2
||
√
D∇en||2 +

δ

2

−2

||[en+1]||2L2(I).

Then, from (4.14) it follows

En+1 − En +4tDn+1+

4t
2

∫
Ω

(u(tn+1)− un+1)(∇ · cn+1) en+1 dx− 4t
2

∫
Ω

(u(tn+1)− un+1)(∇ · en+1) cn+1 dx

+
4t
2

∫
Ωp

∇ · (u(tn+1)− un+1)cnen+1dx+
4t
2

∫
Ωp

∇ · u(tn+1)enen+1dx

≤ C4t
(

(4t)2||ctt||2L∞(0,T ;L2(Ω)) + (4t)2||ct||2L∞(0,T ;L4(Ω))

)
+ ε4t||

√
D∇en+1||2

+
4t
2
δ2||λ(tn+1)||2L2(I) . (4.15)

The terms on line 2 of (4.15) are bounded in an analogous fashion to N1 and N2 in the proof of Theorem 3.2.
With (4.10) and (4.11) we then obtain

En+1 − En +4tDn+1

+
4t
2

∫
Ω

∇ · (u(tn+1)− un+1)cnen+1dx+
4t
2

∫
Ωp

(
∇ · u(tn+1)

)
enen+1dx

≤ C4t
(

(4t)2||ctt||2L∞(0,T ;L2(Ω)) + (4t)2||ct||2L∞(0,T ;L4(Ω))

)
+ 3ε4t||

√
D∇en+1||2

+C4t‖en+1‖2 +
4t
2
δ2||λ(tn+1)||2L2(I) + C4t ||∇(u(tn+1)− un+1)||2 . (4.16)

We consider now the two nonlinear terms in line 2 of (4.16). For the second term, we have (using, respec-
tively, Hölder’s inequality, ∇ · u ∈ L∞(0, T ;L2(Ω)), the inequality (2.1) and the arithmetic-geometric mean
inequality), for any ε > 0,∣∣∣∣∣12

∫
Ωp

(
∇ · u(tn+1)

)
enen+1dx

∣∣∣∣∣ ≤ 1

2
||∇ · u(tn+1)||p ||en||L4(Ωp)||en+1||L4(Ωp)

≤ C||en||L4(Ωp)||en+1||L4(Ωp) ≤ C||en||1/4||∇en||3/4||en+1||1/4||∇en+1||3/4

≤ ε
(
||
√
D∇en||2 + ||

√
D∇en+1||2

)
+ C

(
||en|| ||en+1||

)
. (4.17)

On the last term in (4.17) we use the Poincaré-Friedrichs inequality, and again the arithmetic-geometric mean
inequality to obtain ∣∣∣∣∣12

∫
Ωp

(
∇ · u(tn+1)

)
enen+1dx

∣∣∣∣∣ ≤ ε(||√D∇en||2 + ||
√
D∇en+1||2

)
+C ||en||2. (4.18)
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For the first term in line 2 of (4.16) using (2.1) and the arithmetic-geometric mean inequality several times
we have, for any ε > 0,∣∣∣∣∣12

∫
Ωp

∇ · (u(tn+1)− un+1)cnen+1dx

∣∣∣∣∣ ≤ 1

2
||∇ · (u(tn+1)− un+1)|| p||cn||L3(Ωp)||en+1||L6(Ωp)

≤ C ||∇ · (u(tn+1)− un+1)||p ||cn||1/2p ||∇cn||1/2p ||
√
D∇en+1||p

≤ ε||
√
D∇en+1||2 + C ||∇ · (u(tn+1)− un+1)||2p||cn|| ||

√
D∇cn||

≤ ε||
√
D∇en+1||2 + C

(
||cn||2 + ||

√
D∇cn||2

)
||∇ · (u(tn+1)− un+1)||2p . (4.19)

With estimates (4.18) and (4.19), and picking ε so as to subsume the terms in the LHS of (4.16), for some
fixed α > 0 we have

En+1 − En +4t αDn+1

≤ C4t En + C4t
(

(4t)2||ctt||2L∞(0,T ;L2(Ω)) + (4t)2||ct||2L∞(0,T ;L4(Ω))

)
+
4t
2
δ2||λ(tn+1)||2L2(I) + C4t ||∇(u(tn+1)− un+1)||2

+C4t
(
||cn||2 + ||

√
D∇cn||2

)
||∇ · (u(tn+1)− un+1)||2p. (4.20)

The result now follows from the discrete Grönwall’s inequality and the stability estimate (4.3).

5. The partitioned method. In previous sections we have analyzed the error in imposing the jump
conditions linking the concentration in the two domains as a penalty term. Herein, we give a first-order
accurate and unconditionally 0-stable partitioned method for the resulting penalized system. This method
decouples the approximation of (4.2) into separate solves in the fluid and porous regions. In Ωf/p respectively,
we solve the following systems at each timestep.

β

(
cnf − c

n−1
f

4t
, vf

)
f

+ (D∇cnf ,∇vf )f

+
1

2
(unf · ∇cnf , vf )f −

1

2
(unf · ∇vf , cnf )f

+ δ−q
∫
I

(
|[cn−1]|q−2cnf vf −

√
|[cn−1]|q−2|[cn−2]|q−2 cn−1

p vf

)
ds (5.1)

= (fnf , vf )f , ∀vf ∈ Xh
f ,

β

(
cnp − cn−1

p

4t
, vp

)
p

+ (D∇cnp ,∇vp)p

+
1

2
(unp · ∇cnp , vp)p −

1

2
(unp · ∇vp, cnp )p +

1

2

∫
Ωp

(∇ · unp )cnpvp dx

+ δ−q
∫
I

(
|[cn−1]|q−2cnpvp −

√
|[cn−1]|q−2|[cn−2]|q−2 cn−1

f vp

)
ds (5.2)

= (fnp , vp)p, ∀vp ∈ Xh
p .

This method has an O(4t) consistency error, is linearly implicit, and uncouples into one subdomain solve on
each subdomain per timestep. The treatment of the nonlinearity is inspired by [CHL12]. Our tests in Section
6 compare approximations using q = 2 with q = 4.
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5.1. Stability analysis. We establish 0-stability of the partitioned method (5.1), (5.2).

Theorem 5.1. Assume ∇·unp ∈ l∞(0, T ;L2(Ωp)). The method (5.1) and (5.2) is unconditionally 0-stable,
in the sense that for n ≥ 2 and C = C(T, data)

β(‖cnf ‖2f + ‖cnp‖2p) +
4t
δq

∫
I

|[cn−1]|q−2((cnf )2 + (cnp )2)ds

+ β

n∑
i=2

(‖cif − ci−1
f ‖

2
f + ‖cip − ci−1

p ‖2p + ‖D1/2∇cif‖2 + ‖D1/2∇cip‖2f )

+
4t
δq

n∑
i=2

∫
I

(|[ci−2]|
q−2
2 ci−1

f − |[ci−1]|
q−2
2 cip)

2 + (|[ci−2]|
q−2
2 ci−1

p − |[ci−1]|
q−2
2 cif )2ds

≤ C

(
4t

n∑
i=2

‖f i‖2 + β(‖c1f‖2f + ‖c1p‖2p) +
4t
δq

∫
I

|[c0]|q−2((c1f )2 + (c1p)
2) ds

)
.

Proof. Letting vf = 24tcnf in (5.1), we deduce

β‖cnf ‖2f − β‖cn−1
f ‖2f + β‖cnf − cn−1

f ‖2f + 24t‖D1/2∇cnf ‖2f

+2
4t
δq

∫
I

|[cn−1]|q−2(cnf )2 ds− 2
4t
δq

∫
I

|[cn−1]|
(q−2)

2 cnf |[cn−2]|
(q−2)

2 cn−1
p ds

= 24t(fnf , cnf )f . (5.3)

The nonlinear terms satisfy the algebraic identity∫
I

|[cn−1]|q−2(cnf )2 ds−
∫
I

|[cn−1]|
(q−2)

2 cnf |[cn−2]|
(q−2)

2 cn−1
p ds

=
1

2

∫
I

|[cn−1]|q−2(cnf )2 ds− 1

2

∫
I

|[cn−2]|q−2(cn−1
p )2 ds

+
1

2

∫
I

(|[cn−2]|
(q−2)

2 cn−1
p − |[cn−1]|

(q−2)
2 cnf )2 ds.

Combining with (5.3), we get

β‖cnf ‖2f − β‖cn−1
f ‖2f+

+β‖cnf − cn−1
f ‖2f + 24t‖D1/2∇cnf ‖2f +

4t
δq

∫
I

|[cn−1]|q−2(cnf )2 ds

−4t
δq

∫
I

|[cn−2]|q−2(cn−1
p )2 ds+

4t
δq

∫
I

(|[cn−2]|
q−2
2 cn−1

p − |[cn−1]|
q−2
2 cnf )2 ds

≤ 24t(fnf , cnf )f . (5.4)

Letting vp = 24tcnp in (5.2), we obtain

β‖cnp‖2p − β‖cn−1
p ‖2p + β‖cnp − cn−1

p ‖2p + 24t‖D1/2∇cnp‖2p +4t((∇ · unp )cnp , c
n
p )p

+2
4t
δq

∫
I

|[cn−1]|p−2(cnp )2 ds− 2
4t
δq

∫
I

|[cn−1]|
q−2
2 cnp |[cn−2]|

q−2
2 cn−1

f ds

= 24t(fnp , cnp )p.
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Similarly, we have the algebraic identity∫
I

|[cn−1]|q−2(cnp )2 ds−
∫
I

|[cn−1]|
q−2
2 cnp |[cn−2]|

q−2
2 cn−1

f ds

=
1

2

∫
I

|[cn−1]|q−2(cnp )2 ds− 1

2

∫
I

|[cn−2]|q−2(cn−1
f )2 ds

+
1

2

∫
I

(|[cn−2]|
q−2
2 cn−1

f − |[cn−1]|
q−2
2 cnp )2 ds.

The term |((∇·unp )cnp , c
n
p )p| is bounded as follows using Hölder’s inequality, (2.1), (1.7), and ab ≤ 3

4a
4/3 + 1

4b
4.

This gives

|((∇ · unp )cnp , c
n
p )p| ≤ ||∇ · unp‖p‖cnp‖2L4(Ωp)

≤ C ||∇ · unp ||p ||cnp ||1/2p ||∇cnp ||3/2p ≤ C ‖cnp‖2p + ‖D1/2∇cnp‖2p .

Then, we deduce

β‖cnp‖2p − β‖cn−1
p ‖2p + β‖cnp − cn−1

p ‖2p +4t‖D1/2∇cnp‖2p +
4t
δq

∫
I

|[cn−1]|q−2(cnp )2 ds

−4t
δq

∫
I

|[cn−2]|q−2(cn−1
f )2 ds+

4t
δq

∫
I

(|[cn−2]|
q−2
2 cn−1

f − |[cn−1]|
q−2
2 cnp )2 ds

≤ 24t(fn, cnp )p + C4t‖cnp‖2p. (5.5)

With (fn, cnr )r ≤ 1/2‖fn‖2r + 1/2‖cnr ‖2r, adding (5.4) and (5.5) gives[
β(‖cnf ‖2f + ‖cnp‖2p) +

4t
δq

∫
I

|[cn−1]|q−2((cnf )2 + (cnp )2) ds

]
−
[
β(‖cn−1

f ‖2f + ‖cn−1
p ‖2p) +

4t
δq

∫
I

|[cn−2]|q−2((cn−1
f )2 + (cn−1

p )2) ds

]
+β(‖cnf − cn−1

f ‖2f + ‖cnp − cn−1
p ‖2p)

+4t(‖D1/2∇cnf ‖2f + ‖D1/2∇cnp‖2p)

+
4t
δq

∫
I

(|[cn−2]|
(q−2)

2 cn−1
f − |[cn−1]|

(q−2)
2 cnp )2 ds

+
4t
δq

∫
I

(|[cn−2]|
(q−2)

2 cn−1
p − |[cn−1]|

(q−2)
2 cnf )2 ds

≤ 4t‖fn‖2f +4t‖fn‖2p + C4t(‖cnf ‖2 + ‖cnp‖2).

Summing over the above inequality and using a discrete Grönwall lemma, we get the following, completing
the proof. For n ≥ 2,

β(‖cnf ‖2f + ‖cnp‖2p) +
4t
δq

∫
I

|[cn−1]|q−2((cnf )2 + (cnp )2) ds

+β

n∑
i=2

(‖cif − ci−1
f ‖

2
f + ‖cip − ci−1

p ‖2p) +4t
n∑
i=2

(‖D1/2∇cif‖2f + ‖D1/2∇cip‖2p)

+
4t
δq

n∑
i=2

∫
I

(|[ci−2]|
q−2
2 ci−1

f − |[ci−1]|
q−2
2 cip)

2 + (|[ci−2]|
q−2
2 ci−1

p − |[ci−1]|
q−2
2 cif )2ds

≤ C

(
4t

n∑
i=2

‖f i‖2 + β(‖c1f‖2f + ‖c1p‖2p) +
4t
δq

∫
I

|[c0]|q−2((c1f )2 + (c1p)
2) ds

)
.
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6. Numerical results. In this section we investigate the numerical algorithms described above. Two
series of numerical experiments are presented. In the first series of experiments, Section 6.1, we focus our
investigation on the influence of the penalty parameters δ and q. The second series of numerical experiments,
Section 6.2, investigates the performance of the partitioned method described in (5.1), (5.2).

Continuous, piecewise linear, and piecewise quadratic approximations are computed. For the numerical
experiments we take Ωf = (0, 1)× (0.5, 1), Ωp = (0, 1)× (0, 0.5), and I = {(x, 1/2) : 0 < x < 1}. We use for
the numerical experiments [VY09]

c(x, y, t) = t (cos(πx) + cos(πy)) /π , and u(x, y, t) =

[
sin
(
x
G + ω

)
ey/G

− cos
(
x
G + ω

)
ey/G

]
,

where G = 2
√

0.1, and ω = 1.05. Additionally, for the parameters in the modeling equation (1.1), we use
β = 1 and D = 1. The initial time is taken to be t = 0, and final time t = T = 1. A fixed time step
∆t = 0.01 is used.

Illustrated in Figure 6.1 is the computational mesh corresponding to h = 1/8.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2
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0.4
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0.8

0.9

1

Fig. 6.1. Computational mesh for Ω corresponsding to h = 1/8.

The tables present the discrete L∞(0, T ; L2(Ωp)) norm for (c − cp) and the discrete L2(0, T ; L2(Ωp))
norm for (∇c − ∇cp), together with their experimental convergence rates. (Similar results were also obtained
for (c−cf ) in Ωf .) The discrete L2(0, T ; L2(Ωp)) norm for (c−cp) behaved in a similar manner to its discrete
L∞(0, T ; L2(Ωp)) norm. The discrete L2(0, T ; L2(I)) norms for (cf − cp) (on the interface) is also given.

For compactness in the table headings, we use

‖cn − cnp‖n1 := maxn=1,...,NT
‖cn − cnp‖Ωp

, ‖∇(cn − cnp )‖n2 :=
(

∆t
∑NT

n=1 ‖∇(cn − cnp )‖2Ωp

)1/2

,

and ‖cf − cp‖m2 :=
(

∆t
∑NT

n=1 ‖cnf − cnp‖2I
)1/2

.

6.1. Influence of the penalty parameters δ and q. In this section we investigate the influence of
the penalty parameters δ and q using algorithm (4.2). Section 6.1.1 presents computations for q = 2 (linear
algorithm) using fixed values of δ, for continuous piecewise linear and quadratic approximations. Section
6.1.2 presents similar computations to Section 6.1.1 for the penalty parameter q = 4 (nonlinear algorithm).

In Tables 6.1 - 6.9, the given expected convergence rate assumes that the penalty parameter δ is sufficiently
small and ∆t sufficiently small such that the approximation error is due to the spatial discretization.
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6.1.1. Investigation of δ for q = 2. In this section, with q = 2, we investigate the influence of using a
fixed value of δ for continuous piecewise linear and quadratic approximations. Results are presented in Tables
6.1 - 6.5.

Remarks:
For δ fixed the norm of the error on the interface approaches a fixed, nonzero value. For δ sufficiently small,
with respect to the smallest mesh size, the approximation converges optimally. For δ fixed, under repeated
mesh refinements, the error on the interface will eventually significantly influence the approximation errors
in the subdomains, with the effect that the errors in the subdomains also approach a fixed, nonzero value.
The condition number of the approximating linear system scales ≈ C δ−q.

h ‖cn − cnp‖n1 Cvg. rate ‖∇(cn − cnp )‖n2 Cvg. rate ‖cf − cp‖m2 Cond. Num.

1/4 2.340E-02 -8.63E-02 1.086E-01 3.19E-01 8.282E-02 1.445E+01
1/6 2.423E-02 -6.66E-02 9.540E-02 1.86E-01 8.423E-02 1.748E+01
1/8 2.470E-02 -4.42E-02 9.044E-02 1.17E-01 8.480E-02 2.077E+01
1/10 2.495E-02 -3.07E-02 8.811E-02 7.88E-02 8.508E-02 2.435E+01
1/12 2.509E-02 -2.24E-02 8.685E-02 5.59E-02 8.525E-02 2.823E+01
1/14 2.517E-02 -1.69E-02 8.611E-02 4.13E-02 8.536E-02 3.730E+01
1/16 2.523E-02 8.563E-02 8.543E-02 4.766E+01

Exptd. 2.0 1.0
Table 6.1

Example 1. Convergence rates for a linear approximation with δ = 0.5 and q = 2.

h ‖cn − cnp‖n1 Cvg. rate ‖∇(cn − cnp )‖n2 Cvg. rate ‖cf − cp‖m2 Cond. Num.

1/4 8.945E-03 2.04E+00 7.563E-02 9.91E-01 1.247E-03 3.004E+02
1/6 3.905E-03 2.08E+00 5.060E-02 9.95E-01 1.264E-03 2.702E+02
1/8 2.145E-03 2.11E+00 3.801E-02 9.96E-01 1.274E-03 2.543E+02
1/10 1.341E-03 2.09E+00 3.044E-02 9.95E-01 1.280E-03 2.455E+02
1/12 9.153E-04 2.00E+00 2.539E-02 9.95E-01 1.284E-03 2.401E+02
1/14 6.722E-04 1.81E+00 2.178E-02 9.94E-01 1.286E-03 2.746E+02
1/16 5.280E-04 1.907E-02 1.289E-03 3.112E+02

Exptd. 2.0 1.0
Table 6.2

Example 1. Convergence rates for a linear approximation with δ = 0.05 and q = 2.

h ‖cn − cnp‖n1 Cvg. rate ‖∇(cn − cnp )‖n2 Cvg. rate ‖cf − cp‖m2 Cond. Num.

1/4 9.118E-03 1.99E+00 7.567E-02 9.92E-01 1.253E-05 2.930E+04
1/6 4.061E-03 2.00E+00 5.062E-02 9.96E-01 1.271E-05 2.615E+04
1/8 2.285E-03 2.00E+00 3.801E-02 9.98E-01 1.281E-05 2.440E+04
1/10 1.463E-03 2.00E+00 3.043E-02 9.98E-01 1.287E-05 2.334E+04
1/12 1.015E-03 2.00E+00 2.536E-02 9.99E-01 1.291E-05 2.263E+04
1/14 7.456E-04 2.00E+00 2.174E-02 9.99E-01 1.294E-05 2.564E+04
1/16 5.705E-04 1.903E-02 1.297E-05 2.879E+04

Exptd. 2.0 1.0
Table 6.3

Example 1. Convergence rates for a linear approximation with δ = 0.005 and q = 2.
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h ‖cn − cnp‖n1 Cvg. rate ‖∇(cn − cnp )‖n2 Cvg. rate ‖cf − cp‖m2 Cond. Num.

1/4 2.922E-04 2.98E+00 5.942E-03 1.99E+00 1.287E-05 3.676E+04
1/6 8.713E-05 2.97E+00 2.649E-03 2.00E+00 1.295E-05 3.577E+04
1/8 3.707E-05 2.92E+00 1.492E-03 2.00E+00 1.300E-05 4.053E+04
1/10 1.933E-05 2.78E+00 9.554E-04 2.00E+00 1.302E-05 4.847E+04
1/12 1.164E-05 2.50E+00 6.638E-04 2.00E+00 1.304E-05 5.653E+04
1/14 7.920E-06 2.06E+00 4.879E-04 2.00E+00 1.305E-05 6.471E+04
1/16 6.012E-06 3.737E-04 1.306E-05 7.292E+04

Exptd. 3.0 2.0
Table 6.4

Example 1. Convergence rates for a quadratic approximation with δ = 0.005 and q = 2.

h ‖cn − cnp‖n1 Cvg. rate ‖∇(cn − cnp )‖n2 Cvg. rate ‖cf − cp‖m2 Cond. Num.

1/4 2.919E-04 2.99E+00 5.943E-03 1.99E+00 1.288E-07 3.675E+06
1/6 8.678E-05 2.99E+00 2.650E-03 2.00E+00 1.295E-07 3.575E+06
1/8 3.667E-05 3.00E+00 1.492E-03 2.00E+00 1.300E-07 4.049E+06
1/10 1.879E-05 3.00E+00 9.556E-04 2.00E+00 1.302E-07 4.842E+06
1/12 1.088E-05 3.00E+00 6.639E-04 2.00E+00 1.304E-07 5.647E+06
1/14 6.854E-06 3.00E+00 4.879E-04 2.00E+00 1.305E-07 6.462E+06
1/16 4.593E-06 3.736E-04 1.306E-07 7.280E+06

Exptd. 3.0 2.0
Table 6.5

Example 1. Convergence rates for a quadratic approximation with δ = 0.0005 and q = 2.

Remark: In order to avoid the stagnation of the errors under spatial mesh refinement, computations
were also performed using δ = c hs (see [EKL17]). Such a choice for δ is not covered by the theory developed
herein. The numerical results indicate that if s is chosen sufficiently large, (s ≥ 1 for a linear approximation,
s ≥ 1.5 for a quadratic approximation), the approximations converge optimally. However, using δ = 0.5hs

results in a significant growth in the condition number under mesh refinement.
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6.1.2. Investigation of δ for q = 4. As noted for the computations with q = 2, the accuracy of the
approximation of c in Ω is controlled by the value of [c] along I. For δ fixed, under mesh refinement, the
accuracy of the approximations in Ω stagnate once the order of magnitude of the error of cf and cp in Ωf
and Ωp, respectively, are equal to the order of magnitude of their errors on I. The same observations hold
for the nonlinear case, q = 4. For the nonlinear case, at each time step an iteration was used to solve the
nonlinear system of equations. Specifically, given cn, cn+1 was computed using the damped iteration. The
functions ckn and cknold, the same type as cn, were used in the iteration.

cn+1,0 = cn

cknold = cn

ckn = 0

k = 1

while ‖ukn− uknold‖l∞ > 10−8

cknold = ckn

β

(
ckn− cn

∆t

)
+

1

2
(un+1 · ∇ckn , v) − 1

2
(un+1 · ∇v , ckn)

+
1

2

∫
Ωp

(∇ · un+1) cn v dx + δ−q
∫
I

|[cn+1,k−1]|q−2 [ckn] [v] ds = (sn+1 , v) ,∀v ∈ X

cn+1,k = 0.5 ∗ cn+1,k−1 + 0.5 ∗ ckn
k = k + 1

end

cn+1 = ckn

For all of the computations, the number of iterations required to solve the nonlinear system of equations
was less than 20.

As the iteration converges [cn+1,k−1] << 1, thus the multiplier in the integrand over I acts to damp
the coefficients of the unknowns on the interface. For δ << 1, the δ−q multiplier outside the integral over I
amplifies the coefficients of the unknowns on the interface. For example, with δ = 0.05, if [cn+1,k−1] ≈ 10−4 the
coefficients in the integrand are initially multiplied by ≈ 10−8 and then post multiplied by (0.05)−4 = 4∗106.
The result of this pre and post scaling is that it is difficult to control the accuracy of the error in the
interface. This was most noticeable in the case of a continuous, piecewise quadratic approximation for cf
and cp. From Tables 6.8-6.9 we note accurate computations for cp and cf , however we do not observe the
expected asymptotic convergence rates as the domain error is of the same order of magnitude as the error on
the interface.

h ‖cn − cnp‖n1 Cvg. rate ‖∇(cn − cnp )‖n2 Cvg. rate ‖cf − cp‖m2

1/4 8.213E-03 1.90E+00 7.615E-02 9.44E-01 1.212E-02
1/6 3.801E-03 1.08E+00 5.194E-02 8.99E-01 1.258E-02
1/8 2.787E-03 3.06E-01 4.011E-02 8.40E-01 1.280E-02
1/10 2.603E-03 -7.37E-03 3.325E-02 7.74E-01 1.292E-02
1/12 2.607E-03 -9.41E-02 2.887E-02 7.04E-01 1.300E-02
1/14 2.645E-03 -1.09E-01 2.590E-02 6.35E-01 1.305E-02
1/16 2.684E-03 2.380E-02 1.309E-02

Exptd. 2.0 1.0
Table 6.6

Example 1 (Nonlinear Iteration). Convergence rates for a linear approximation with δ = 0.05 and q = 4.
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h ‖cn − cnp‖n1 Cvg. rate ‖∇(cn − cnp )‖n2 Cvg. rate ‖cf − cp‖m2

1/4 9.061E-03 2.01E+00 7.565E-02 9.91E-01 5.751E-04
1/6 4.007E-03 2.03E+00 5.061E-02 9.96E-01 5.975E-04
1/8 2.234E-03 2.05E+00 3.801E-02 9.97E-01 6.085E-04
1/10 1.413E-03 2.07E+00 3.042E-02 9.98E-01 6.150E-04
1/12 9.684E-04 2.09E+00 2.536E-02 9.98E-01 6.193E-04
1/14 7.018E-04 2.10E+00 2.175E-02 9.98E-01 6.223E-04
1/16 5.303E-04 1.904E-02 6.246E-04

Exptd. 2.0 1.0
Table 6.7

Example 1 (Nonlinear Iteration). Convergence rates for a linear approximation with δ = 0.005 and q = 4.

h ‖cn − cnp‖n1 Cvg. rate ‖∇(cn − cnp )‖n2 Cvg. rate ‖cf − cp‖m2

1/4 3.332E-04 1.74E+00 5.940E-03 1.93E+00 6.126E-04
1/6 1.644E-04 5.46E-01 2.713E-03 1.76E+00 6.219E-04
1/8 1.405E-04 1.51E-01 1.636E-03 1.43E+00 6.265E-04
1/10 1.358E-04 5.03E-02 1.190E-03 1.02E+00 6.292E-04
1/12 1.346E-04 1.98E-02 9.878E-04 6.58E-01 6.310E-04
1/14 1.342E-04 8.38E-03 8.925E-04 3.97E-01 6.323E-04
1/16 1.340E-04 8.464E-04 6.333E-04

Exptd. 3.0 2.0
Table 6.8

Example 1 (Nonlinear Iteration). Convergence rates for a quadratic approximation with δ = 0.005 and q = 4.

h ‖cn − cnp‖n1 Cvg. rate ‖∇(cn − cnp )‖n2 Cvg. rate ‖cf − cp‖m2

1/4 3.019E-04 1.98E-01 5.947E-03 1.98E+00 3.497E-05
1/6 2.786E-04 6.24E-04 2.660E-03 1.96E+00 3.544E-05
1/8 2.786E-04 3.22E-04 1.513E-03 1.91E+00 3.564E-05
1/10 2.786E-04 0.00E+00 9.877E-04 1.81E+00 3.576E-05
1/12 2.786E-04 2.33E-04 7.097E-04 1.67E+00 3.583E-05
1/14 2.785E-04 0.00E+00 5.489E-04 1.47E+00 3.588E-05
1/16 2.785E-04 4.511E-04 3.592E-05

Exptd. 3.0 2.0
Table 6.9

Example 1 (Nonlinear Iteration). Convergence rates for a quadratic approximation with δ = 0.0005 and q = 4.

In summary, for the values of δ used, the nonlinear approach with q = 4 took considerably longer to
compute the approximations compared to the linear approach (q = 2). The accuracy of the approximations
in both cases were similar, except for the case of a continuous piecewise quadratic approximation with a fixed
value for δ. For this case the accuracy of the nonlinear scheme was approximately one order of magnitude
less accurate.

6.2. Partitioned algorithm. In this section we investigate the partitioned algorithm (5.1), (5.2) for
the linear penalty method (i.e., q = 2). We note, as established by Theorem 5.1, that the approximation
scheme is stable. The computations show that for a spatial approximation using linear elements (quadratic
elements) with ∆t ≈ h2 ( ∆t ≈ h3 ) the scheme is convergent (up to an accuracy predetermined by penalty
parameter δ). (See Tables 6.10 and 6.12.) In other tests (not herein but reported in [EKL17]), choosing
δ ≈ hs was not observed to be effective for the decoupled algorithm.
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In Tables 6.10 - 6.12, the given expected convergence rate assumes that the approximation error is
O(∆t + ∆t hl), where l is the polynomial order of the spatial discretization.

h ‖cn − cnp‖n1 Cvg. rate ‖∇(cn − cnp )‖n2 Cvg. rate ‖cf − cp‖m2

1/4 1.894E-02 1.19E+00 1.684E-01 1.03E+00 1.258E-03
1/6 1.171E-02 1.55E+00 1.108E-01 1.37E+00 1.263E-03
1/8 7.507E-03 1.74E+00 7.481E-02 1.49E+00 1.269E-03
1/10 5.092E-03 1.84E+00 5.361E-02 1.52E+00 1.273E-03
1/12 3.639E-03 1.90E+00 4.065E-02 1.50E+00 1.276E-03
1/14 2.713E-03 1.94E+00 3.225E-02 1.47E+00 1.278E-03
1/16 2.092E-03 2.651E-02 1.280E-03

Exptd. 2 2
Table 6.10

Example 1 (Partitioned algorithm). Approximation using linear elements with q = 2, δ = 0.05, ∆t = h2.

h ‖cn − cnp‖n1 Cvg. rate ‖∇(cn − cnp )‖n2 Cvg. rate ‖cf − cp‖m2

1/4 2.991E-02 3.75E-01 3.119E-01 3.68E-01 1.388E-03
1/6 2.569E-02 5.68E-01 2.686E-01 6.38E-01 1.330E-03
1/8 2.182E-02 8.03E-01 2.235E-01 8.90E-01 1.311E-03
1/10 1.824E-02 1.04E+00 1.833E-01 1.12E+00 1.302E-03
1/12 1.510E-02 1.25E+00 1.495E-01 1.31E+00 1.298E-03
1/14 1.246E-02 1.42E+00 1.222E-01 1.47E+00 1.296E-03
1/16 1.031E-02 1.004E-01 1.294E-03

Exptd. 2 2
Table 6.11

Example 1 (Partitioned algorithm). Approximation using quadratic elements with q = 2, δ = 0.05, ∆t = h2.

h ‖cn − cnp‖n1 Cvg. rate ‖∇(cn − cnp )‖n2 Cvg. rate ‖cf − cp‖m2

1/4 2.196E-02 1.56E+00 2.173E-01 1.61E+00 1.299E-03
1/6 1.167E-02 2.42E+00 1.130E-01 2.46E+00 1.286E-03
1/8 5.813E-03 2.79E+00 5.578E-02 2.78E+00 1.285E-03
1/10 3.121E-03 2.92E+00 2.997E-02 2.89E+00 1.286E-03
1/12 1.831E-03 2.98E+00 1.768E-02 2.93E+00 1.287E-03
1/14 1.157E-03 2.98E+00 1.125E-02 2.93E+00 1.288E-03
1/16 7.771E-04 7.612E-03 1.288E-03

Exptd. 3 3
Table 6.12

Example 1 (Partitioned algorithm). Approximation using quadratic elements with q = 2, δ = 0.05, ∆t = h3.

7. Conclusions. A number of effective decoupled (partitioned) schemes for the Stokes-Darcy problem
have been developed. The velocity these calculate is important because it transports contaminants. Thus,
partitioned methods for the associated transport problem have equal importance but are much less developed.
Much of the previous work has either assumed a static flow field and then solved an evolutionary equation for
the transport across the entire domain, or computed the time dependent Stokes-Darcy flow using a partitioned
algorithm and then used a monolithic approach across the entire domain for the transport equation. There
are several natural methods to uncouple this transport problem into subdomain transport problems. We
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have given a numerical analysis and presented tests of a natural first step in their development, a partitioned
penalty approach. Like penalty methods in general, this approach is easily implemented ( for q = 2). The
analysis presented in this paper establishes an error bound between the original modeling equations and
the modified equations that use the penalty parameter to enforce continuity of the concentration across
the Stokes-Darcy interface. For the numerical approximation schemes, the analysis proves stability of the
monolithic and partitioned algorithms, and gives an error analysis of the monolithic scheme. The presented
numerical computations investigate the appropriate choice of the penalty parameter, and demonstrate that
the presented partitioned algorithm is a viable method for the approximation of the concentration equation
in a coupled flow with transport problem. Naturally, other approaches to partitioning the transport problem
are needed followed by a comparison of their advantages and disadvantages.
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