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Abstract

In this article we consider the approximation of a variable coefficient (two-sided) fractional
diffusion equation (FDE), having unknown u. By introducing an intermediate unknown, q,
the variable coefficient FDE is rewritten as a lower order, constant coefficient FDE. A spectral
approximation scheme, using Jacobi polynomials, is presented for the approximation of q, qN .
The approximate solution to u, uN , is obtained by post processing qN . An a priori error analysis
is given for (q − qN ) and (u − uN ). Two numerical experiments are presented whose results
demonstrate the sharpness of the derived error estimates.
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1 Introduction

In recent years the numerical approximation of fractional differential equations has received increased
attention as their incorporation into models, to address phenomena not well captured using usual
differential equations, has increased. Examples of applications using fractional differential equations
include contaminant transport in ground water flow [2], viscoelasticity [23], image processing [3, 13],
turbulent flow [23, 31], and chaotic dynamics [42]. Approximation schemes including finite difference
methods [8, 21, 27, 33, 34], finite element methods [12, 18, 22, 36], discontinuous Galerkin methods
[41], mixed methods [6, 20], spectral methods [7, 11, 19, 26, 24, 26, 25, 40, 43], enriched subspace
methods [17] have all been applied to fractional differential equations.

Our interest in this paper is on the numerical approximation of the two-sided variable-coefficient
FDE of order 1 < α < 2

Kαr u(x) := −D( (r 0I
2−α
x + (1− r) xI2−α1 )K(x)Du(x)) = f(x), x ∈ (0, 1) , (1.1)

u(0) = u(1) = 0 , (1.2)
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where K(x) is the diffusivity coefficient with 0 < Kmin ≤ K(x) ≤ Kmax, 0 ≤ r ≤ 1, f(x) the source
or sink term, and Dj denotes the derivative operator dj/dxj , for j ∈ N. The left and right fractional
integrals of order 0 < σ < 1 are defined as [29, 30]

0I
σ
xw(x) :=

1

Γ(σ)

∫ x

0

w(s)

(x− s)1−σ
ds, xI

σ
1w(x) :=

1

Γ(σ)

∫ 1

x

w(s)

(s− x)1−σ
ds ,

where Γ(·) is the Gamma function. Equation (1.1) was derived by incorporating a nonlocal Fick’s law
with variable diffusivity coefficient K(x) into a conventional local mass conservation law [9, 12, 44].

In [12] the Galerkin weak formulation for (1.1) and (1.2) was presented and studied for K(x) a
constant. It was shown in [36] that the bilinear form of the Galerkin weak formulation may lose its
coercivity for a variable-coefficient K(x), and so its Galerkin finite element approximation might
diverge [39]. A Petrov-Galerkin weak formulation was proved to be wellposed on Hα−1

0 × H1
0 for

3/2 < α < 2 for a one-sided version of (1.1) and (1.2) [36]. A Petrov-Galerkin finite element method
was developed and analyzed subsequently for the one-sided version of (1.1) and (1.2) [38]. In [20],
with the introduction of an auxiliary variable, a mixed method approximation scheme for problem
(1.1) and (1.2) was studied and error estimates derived. In [26], a spectral Galerkin method for the
two-sided steady-state FDE with variable coefficient was analyzed, in which the outside and inside
fractional derivatives are chosen carefully so that the corresponding Galerkin weak formulation are
self-adjoint and coercive. Optimal error estimates were also derived under suitable smoothness
assumption on the solution.

It was shown in [37] that for one-dimensional FDEs smoothness of the coefficients and the right-
hand side function is not sufficient to guarantee the smoothness of the solution, especially at the
endpoints of the interval, which is different from the case of the classical second order diffusion
equation. Hence, seeking proper regularity solution spaces for FDEs becomes a key issue in the
study of FDEs. Jin et al. [18] conducted a thorough analysis of the regularity issue in the context of
a one-sided constant-coefficient FDE by fully utilizing the explicit solution expression. An indirect
Legendre spectral Galerkin method [40] and a finite element method [39] were developed for the
one-sided FDE with variable coefficient, in which the solution to the FDE is expressed as a frac-
tional derivative of the solution to a second-order differential equations. Consequently, high-order
convergence rates of numerical approximations were proved using only regularity assumptions on
the coefficients and right-hand side, but not on the true solution (which is not smooth in fact).
However, many aforementioned works for one-sided FDEs do not apply for two-sided FDEs.

Mao et al. [24] analyzed the solution structure to the constant coefficient version of (1.1) and (1.2)
with r = 1/2 in terms of spectral polynomials and developed corresponding spectral methods. The
solution structure to the constant coefficient version of (1.1) and (1.2) with general 0 ≤ r ≤ 1
was completely resolved in [11]. Additionally, in [11] the spectral method utilizing the weighted
Jacobi polynomial was studied and a priori error estimates derived. The two-sided FDE with con-
stant coefficient and Riemann-Liouville fractional derivative was investigated in [25], by employing
a Petrov-Galerkin projection in a properly weighted Sobolev space using two-sided Jacobi polyfrac-
nomials as test and trial functions. Spectral methods enjoy many excellent mathematical properties
that make them particularly suited for FDEs: (i) They present a clean analytical expression of the
true solution to FDEs, that has been fully explored in [11, 24] to analyze its structure and regularity;
(ii) Fractional differentiation of many spectral polynomials can be carried out analytically [40], in
contrast to finite element methods in which they have to be calculated numerically [39]; (iii) As
FDEs are nonlocal operators the appealing property of a sparse coefficient matrix, which arises for
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a finite element, finite difference, or finite volume approximation of a usual differential equation, is
lost. The aforementioned discretizations of FDEs ordinarily lead to Toeplitz-like coefficient matrices,
the structure of which can be leveraged to solve the associated linear systems with an almost linear
cost (precisely, O(n log n) with n the degrees of freedom), see [10, 28, 35]. In contrast, the stiffness
matrices of spectral methods are often diagonal (at least for constant coefficient FDEs). As the
convergence analysis of the finite element/difference/volume approximation relies on the estimate
of the interpolation, projection or residue of the asymptotic expansion of the solution, which in turn
depends on its regularity, the convergence rate of these methods are strongly constrained due to the
singularity nature of the solution to FDEs [12]. The spectral method, for which the convergence
rate only depends on the regularity of the input data, circumvents that low regularity constraint
and thus provides a high-accuracy approximation of the solutions to FDEs [11]. Because of the
advantages mentioned above, spectral methods are appealing for the approximation of FDEs.

The goal of this paper is to extend the application of the spectral method in [11] to the two-sided
variable-coefficient FDE (1.1) and (1.2) whose solution may have endpoint singularities. By intro-
ducing an intermediate variable, we rewrite the variable coefficient model as a constant coefficient
FDE. Then, utilizing Jacobi polynomials which incorporate the possible singularity of solution at
endpoints, we apply the spectral method to construct an approximating series for the solution.

This paper is organized as follows. In Section 2 we present the formulation to be used, introduce
notation used through the paper, and give some key lemmas used in the analysis. The spectral
approximation method is formulated and a detailed analysis of its convergence is given in Sections
3, 4 and 5. Two numerical experiments are presented in Section 6 whose results demonstrate the
sharpness of the derived error estimates.

2 Problem formulation and preliminaries

Let q̃(x) = −K(x)Du(x). Using the homogeneous Dirichlet boundary condition at x = 0 yields

u(x) = −
∫ x

0

q̃(s)

K(s)
ds. (2.1)

Enforcing the homogeneous Dirichlet boundary condition at x = 1 we obtain∫ 1

0

q̃(s)

K(s)
ds = 0. (2.2)

Thus, with (2.1), problem (1.1), (1.2) can be recast as the following system

Nα
r q̃(x) := D

(
r 0I

2−α
x + (1− r) xI

2−α
1

)
q̃(x) = f(x), x ∈ (0, 1) , (2.3)

with

∫ 1

0

q̃(s)

K(s)
ds = 0. (2.4)

Jacobi polynomials play a key role in the approximation schemes. We briefly review their definition
and properties central to the method [1, 32].
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Usual Jacobi polynomials, P
(α,β)
n (t), on (−1 , 1).

Definition: P
(α,β)
n (t) :=

∑n
m=0 pn,m (t− 1)(n−m)(t+ 1)m, where α, β > −1, and

pn,m :=
1

2n

(
n+ α
m

) (
n+ β
n−m

)
. (2.5)

Orthogonality:

∫ 1

−1
(1− t)α(1 + t)β P

(α,β)
j (t)P

(α,β)
k (t) dt =

{
0, k 6= j

|‖P (α,β)
j |‖2 , k = j

, where

|‖P (α,β)
j |‖ =

(
2(α+β+1)

(2j + α + β + 1)

Γ(j + α+ 1) Γ(j + β + 1)

Γ(j + 1) Γ(j + α+ β + 1)

)1/2

. (2.6)

In order to transform the domain of the family of Jacobi polynomials to [0, 1], let t → 2x − 1 and

introduce Gα,βn (x) = Pα,βn (t(x)). From (2.6),∫ 1

−1
(1− t)α(1 + t)β P

(α,β)
j (t)P

(α,β)
k (t) dt =

∫ 1

0
2α (1− x)α 2β xβ P

(α,β)
j (2x− 1)P

(α,β)
k (2x− 1) 2 dx

= 2α+β+1

∫ 1

0
(1− x)α xβ G

(α,β)
j (x)G

(α,β)
k (x) dx

=

{
0, k 6= j

2α+β+1 |‖G(α,β)
j |‖2 , k = j

, where

∣∣∥∥G(α,β)
j

∣∣∥∥ =

(
1

(2j + α + β + 1)

Γ(j + α+ 1) Γ(j + β + 1)

Γ(j + 1) Γ(j + α+ β + 1)

)1/2

. (2.7)

Note that
|‖G(α,β)

j |‖ = |‖G(β,α)
j |‖ . (2.8)

From [24, equation (2.19)] we have that for k ∈ N

dk

dtk
P (α,β)
n (t) =

Γ(n+ k + α+ β + 1)

2k Γ(n+ α+ β + 1)
P

(α+k , β+k)
n−k (t) . (2.9)

Hence,

dk

dxk
G(α,β)
n (x) =

Γ(n+ k + α+ β + 1)

Γ(n+ α+ β + 1)
G

(α+k , β+k)
n−k (x) . (2.10)

Also, from [24, equation (2.15)],

dk

dtk

{
(1− t)α+k (1 + t)β+k P

(α+k , β+k)
n−k (t)

}
=

(−1)k 2k n!

(n− k)!
(1− t)α (1 + t)β P (α , β)

n (t) , n ≥ k ≥ 0 ,

(2.11)

4



from which it follows that

dk

dxk

{
(1 − x)α+k xβ+kG

(α+k , β+k)
n−k (x)

}
=

(−1)k n!

(n− k)!
(1 − t)α tβ G(α , β)

n (x) . (2.12)

For compactness of notation we introduce

N0 := N ∪ {0} and ρ(α,β) := ρ(α,β)(x) := (1− x)α xβ .

We use yn ∼ np to denote that there exist two constants c and C ≥ 0 such that, as n → ∞,
c np ≤ |yn| ≤ C np.

The weighted L2(0, 1) spaces, L2
ω(0, 1).

The weighted L2(0, 1) spaces are appropriate for analyzing the convergence of the spectral type
methods presented below. For ω(x) > 0, x ∈ (0, 1), let

L2
ω(0, 1) :=

{
f(x) :

∫ 1

0
ω(x) f(x)2 dx < ∞

}
.

Associated with L2
ω(0, 1) is the inner product, 〈·, ·〉ω, and norm, ‖ · ‖ω, defined by

〈f , g〉ω :=

∫ 1

0
ω(x) f(x) g(x) dx , and

‖f‖ω := (〈f , f〉ω)1/2 .

For 1 < α < 2 and 0 ≤ r ≤ 1 given, let β satisfying α− 1 ≤ β, α− β ≤ 1 be determined by

r =
sin(π β)

sin(π(α− β)) + sin(π β)
. (2.13)

The operator Nα
r , defined in (2.3), has a nontrivial kernel which is described in the following lemma.

The kernel is need in order that functions satisfying (2.3) can be suitably modified so that they then
also satisfy (2.4). In the following two lemmas we present mapping properties for Nα

r which form
the basis for the spectral approximation scheme presented in Section 3.

Lemma 2.1 [11] For β determined by (2.13), we have that

ker(Nα
r ) = span

{
z(x) := (1− x)α−β−1 xβ−1

}
.

where Nα
r is defined in (2.3). Additionally, [16] (as G

(δ,γ)
0 (x) = 1)

Nα
r (x z(x)) = −(1− r) Γ(α)

sin(πα)

sin(π(α− β))
= λ−1G

(δ,γ)
0 (x) ,

and Nα
r ((1− x) z(x)) = −λ−1G(δ,γ)

0 (x) ,

where λ−1 := −(1− r) Γ(α)
sin(πα)

sin(π(α− β))
.
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Lemma 2.2 [11] Let β be determined by (2.13). Then, for n = 0, 1, 2, . . .

Nα
r

(
(1− x)α−βxβ G(α−β , β)

n (x)
)

= λnG
(β−1 , α−β−1)
n+1 (x) , where

λn =
sin(πα)

sin(π(α− β)) + sin(πβ)

Γ(n+ α)

n!
> 0 (2.14)

∼ (n+ 1)α−1 . (2.15)

Remark: Equation (2.15) follows from Stirling’s formula, specifically,

lim
n→∞

Γ(n+ µ)

Γ(n)nµ
= 1 , for µ ∈ R .

3 Spectral type approximation to N α
r .

In this section, using the mapping properties of Nα
r given in Lemmas 2.1 and 2.2, we present a

spectral approximation scheme for q(x) satisfying Nα
r q(x) = f(x). (The solution q̃(x) satisfying

(2.3),(2.4), is given by q̃(x) = c−2 z(x) + q(x) where c−2 is chosen in order that q̃ satisfies (2.4).)
Also presented in this section is a corresponding a priori error analysis.

In this section we fix the values of α and r as defined by the operatorKαr in (1.1), and correspondingly,
β determined by (2.13).

Useful in the analysis below is the following result.

Lemma 3.1 For j = 0, 1, 2, . . .

1

2
≤

|‖G(α−β , β)
j |‖2

|‖G(β−1 , α−β−1)
j+1 |‖2

=
j + 1

j + α
≤ 1 . (3.1)

Proof : From (2.7),

|‖G(α−β , β)
j |‖2

|‖G(β−1 , α−β−1)
j+1 |‖2

=
1

2j + α + 1

Γ(j + α− β + 1) Γ(j + β + 1)

Γ(j + 1) Γ(j + α+ 1)

× 2j + α + 1

1

Γ(j + 2) Γ(j + α)

Γ(j + β + 1) Γ(j + α− β + 1)
=

j + 1

j + α
≤ 1 . (3.2)

The solution u(x) to (1.1), (1.2) is computed directly using (2.1) once q̃(x) satisfying (2.3), (2.4) is
determined. Note that as ker(Nα

r ) = span{z(x)}, then q̃ satisfying (2.3) is only determined up

6



to an additive constant multiple of z(x). Hence, we rewrite q̃(x) = c−2 z(x) + q(x), where q(x)
satisfies

Nα
r q(x) = f(x), x ∈ (0, 1) , (3.3)

and c−2 is determined by (2.4).

For γ, δ > −1,
{
G

(γ , δ)
i (x)

}∞
i=0

is a basis for L2
ρ(γ , δ)

(0, 1). In view of Lemmas 2.1 and 2.2, in order

that the mapping Nα
r : S → L2

ρ(β , α−β)
(0, 1) is onto we can choose

S :=

{
h : h(x) = c−1x z(x) + ρ(α−β , β)(x)

∞∑
i=0

ciG
(α−β , β)
i (x), ci ∈ R, i = −1, 0, 1, 2, . . .

}
,

(3.4)
or

S :=

{
h : h(x) = c−1(1− x) z(x) + ρ(α−β , β)(x)

∞∑
i=0

ciG
(α−β , β)
i (x), ci ∈ R, i = −1, 0, 1, 2, . . .

}
.

(3.5)
Observe that if β − 1 < α − β, i.e., r > 1/2, then x z(x) is a more regular function on (0, 1) than
(1− x) z(x). However, if β − 1 > α− β, i.e., r < 1/2, then (1− x) z(x) is a more regular function
on (0, 1) than x z(x). Below we will assume that r ≥ 1/2 and use (3.4) as the domain for Nα

r . This
choice is reflected in the representation for qN (x), the approximation of q(x), given in (3.7).

Remark: Note that f(x) ∈ L2
ρ(β−1 , α−β−1)(0, 1) may be expressed as

f(x) =
∑∞

i=0
fi

|‖G(β−1 , α−β−1)
i |‖2

G
(β−1 , α−β−1)
i (x), where fi is given by

fi := 〈f , G(β−1 , α−β−1)
i 〉ρ(β−1 , α−β−1) =

∫ 1

0
ρ(β−1 , α−β−1)(x) f(x)G

(β−1 , α−β−1)
i (x) dx . (3.6)

With fi defined in (3.6), let

qN (x) = c−1x z(x) + ρ(α−β , β)(x)
N−1∑
i=0

ciG
(α−β , β)
i (x) , (3.7)

where,

ci =
1

λi |‖G(β−1 , α−β−1)
i+1 |‖2

fi+1 , for i = −1, 0, 1, . . . N − 1. (3.8)

With the above framework we can establish the convergence of qN (x) to q(x) satisfying (3.3).

Theorem 3.1 Let f(x) ∈ L2
ρ(β−1 , α−β−1)(0, 1) and qN (x) be as defined in (3.7). Then,

(q(x)− c−1x z(x)) := limN→∞ (qN (x)− c−1x z(x)) ∈ L2
ρ(−(α−β) ,−β)(0, 1). In addition,

Nα
r q(x) = f(x).
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Proof : For fN (x) :=
∑N

i=0
fi

|‖G(β−1 ,α−β−1)
i |‖2

G
(β−1 ,α−β−1)
i (x), we have that f(x) = limN→∞ fN (x),

and {fN (x)}∞N=0 is a Cauchy sequence in L2
ρ(β−1 , α−β−1)(0, 1). A straightforward calculation shows

that (qN (x)− c−1x z(x)) ∈ L2
ρ(−(α−β) ,−β)(0, 1). Then, (without loss of generality, assume M > N)

‖ (qM (x)− c−1x z(x))− (qN (x)− c−1x z(x)) ‖2
ρ(−(α−β) ,−β) = ‖qM (x) − qN (x)‖2

ρ(−(α−β) ,−β)

=

〈
ρ(−(α−β) ,−β)(x) ρ(α−β , β)(x)

M−1∑
j=N

cj G
(α−β , β)
j (x) , ρ(α−β , β)(x)

M−1∑
j=N

cj G
(α−β , β)
j (x)

〉

=

〈
ρ(α−β , β)(x)

M−1∑
j=N

G
(α−β , β)
j (x)

λj |‖G(β−1 , α−β−1)
j+1 |‖2

fj+1 ,
M−1∑
j=N

G
(α−β , β)
j (x)

λj |‖G(β−1 , α−β−1)
j+1 |‖2

fj+1

〉

=

M−1∑
j=N

f2j+1

λ2j |‖G
(β−1 , α−β−1)
j+1 |‖4

|‖G(α−β , β)
j |‖2 ≤

M−1∑
j=N

f2j+1

λ2j |‖G
(β−1 , α−β−1)
j+1 |‖2

(using (3.1))

≤ C

〈
ρ(β−1 , α−β−1)(x)

M∑
j=N+1

G
(β−1 , α−β−1)
j (x)

|‖G(β−1 , α−β−1)
j |‖2

fj ,

M∑
j=N+1

G
(β−1 , α−β−1)
j (x)

|‖G(β−1 , α−β−1)
j |‖2

fj

〉
(using that λj are bounded away from zero, see (2.14))

= C ‖fN (x) − fM (x)‖2
ρ(β−1 , α−β−1) .

Hence {(qN (x)− c−1x z(x))}∞N=0 is a Cauchy sequence in L2
ρ(−(α−β) ,−β)(0, 1). As L2

ρ(−(α−β) ,−β)(0, 1)

is complete [15], q(x)− c−1x z(x) := limN→∞ qN (x)− c−1x z(x) ∈ L2
ρ(−(α−β) ,−β)(0, 1).

Next, as fN (x) → f(x) in L2
ρ(β−1 , α−β−1)(0, 1), given ε > 0 there exists Ñ such that for N > Ñ ,

‖f(x) − fN (x)‖ρ(β−1 , α−β−1) < ε. Then, for N > Ñ , using Lemmas 2.1 and 2.2

‖f(x) − Nα
r qN (x)‖ρ(β−1 , α−β−1)

=

∥∥∥∥f(x) − Nα
r

(
c−1x z(x) + ρ(α−β , β)(x)

N−1∑
j=0

G
(α−β , β)
j (x)

λj |‖G(β−1 , α−β−1)
j+1 |‖2

fj+1

)∥∥∥∥
ρ(β−1 , α−β−1)

=

∥∥∥∥f(x) −
N∑
j=0

G
(β−1 , α−β−1)
j (x)

|‖G(β−1 , α−β−1)
j |‖2

fj

∥∥∥∥
ρ(β−1 , α−β−1)

= ‖f(x) − fN (x)‖ρ(β−1 , α−β−1) < ε .

Hence, f(x) = Nα
r q(x).

For q − qN we have the following a priori error estimate.

Theorem 3.2 For f(x) ∈ L2
ρ(β−1 , α−β−1)(0, 1) and qN (x) given by (3.7), there exists C > 0 such

that

‖q − qN‖ρ(−(α−β) ,−β) ≤
1

λN
‖f‖ρ(β−1 , α−β−1) ≤ C (N + 1)−α+1 ‖f‖ρ(β−1 , α−β−1) . (3.9)
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Proof : Using the definition of the ‖ · ‖ρ(−(α−β) ,−β) norm,

‖q − qN‖2ρ(−(α−β) ,−β) =

∫ 1

0
ρ(−(α−β) ,−β)(x)

(
ρ(α−β , β)(x)

∞∑
i=N

G
(α−β , β)
i (x)

(λi |‖G(β−1 , α−β−1)
i+1 |‖2)

fi+1

)2

dx

≤ max
k≥N

(
1

λ2k

) ∞∑
i=N

f2i+1

|‖G(β−1 , α−β−1)
i+1 |‖4

|‖G(α−β , β)
i |‖2

≤ 1

λ2N

∞∑
i=N

f2i+1

|‖G(β−1 , α−β−1)
i+1 |‖4

|‖G(β−1 , α−β−1)
i+1 |‖2 (using (3.1))

≤ 1

λ2N

∫ 1

0
ρ(β−1 , α−β−1)(x)

( ∞∑
i=0

G
(β−1 , α−β−1)
i (x)

|‖G(β−1 , α−β−1)
i |‖2

fi

)2

dx

=
1

λ2N

∫ 1

0
ρ(β−1 , α−β−1)(x) f(x)2 dx ≤ 1

λ2N
‖f‖2

ρ(β−1 , α−β−1)

≤ C (N + 1)−2 (α− 1) ‖f‖2
ρ(β−1 , α−β−1) , (using (2.15)).

Immediately following from (3.9) we obtain an L2 error estimate for u(x) − uN (x).

Corollary 3.1 For f(x) ∈ L2
ρ(β−1 , α−β−1)(0, 1) and qN (x) given by (3.7), there exists C > 0 such

that

‖q − qN‖ ≤
1

λN
‖f‖ρ(β−1 , α−β−1) ≤ C (N + 1)−α+1 ‖f‖ρ(β−1 , α−β−1) . (3.10)

Proof : As ρ(−(α−β) ,−β)(x) = (1 − x)−(α−β) x−β > 1, for 0 < x < 1, then ‖u − uN‖ ≤ ‖u −
uN‖ρ(−(α−β) ,−β) . Hence the bound (3.10) follows immediately from (3.9) .

4 Regularity of Dj
(
(q(x) − c−1xz(x))/ρ

(α−β,β)(x)
)

The endpoint behavior of q(x) is determined by the functions x z(x) and ρ(α−β,β)(x). In order
to gain insight into the regularity of q(x) “away from the endpoints,” in this section we investi-
gate the regularity of (q − c−1x z(x))/ρ(α−β,β)(x). We do this by establishing that {Dj

(
(qN −

c−1x z(x))/ρ(α−β,β)(x)
)
} is a Cauchy sequence in an appropriately weighted L2 function space.

Let

fN (x) =
N∑
i=0

fi

|‖G(β−1 , α−β−1)
i (x)|‖2

G
(β−1 , α−β−1)
i (x) .

Hence, using (2.10) and reindexing

Dj fN (x) =

N−1∑
i=−1

fi+1

|‖G(β−1 , α−β−1)
i+1 |‖2

Γ(i+ j + α)

Γ(i+ α)
G

(β+j−1 , α−β+j−1)
i−j+1 (x) . (4.1)
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Helpful in establishing the regularity of (q(x) − c−1x z(x))/ρ(α−β,β)(x) is the following lemma.

Lemma 4.1 For j ∈ N, there exists C > 0 such that

1

λ2i

(
i+ j + α

i+ α

)2 |‖G(α−β+j , β+j)
i−j |‖2

|‖G(β+j−1 , α−β+j−1)
i−j+1 |‖2

≤ C i−2(α−1). (4.2)

Proof : From (2.8) and (2.7) ,

|‖G(α−β+j , β+j)
i−j |‖2

|‖G(β+j−1 , α−β+j−1)
i−j+1 |‖2

=
|‖G(α−β+j , β+j)

i−j |‖2

|‖G(α−β+j−1 , β+j−1)
i−j+1 |‖2

=
1

(2i + α + 1)

Γ(i+ α− β + 1) Γ(i+ β + 1)

Γ(i− j + 1) Γ(i+ j + α+ 1)

· (2i + α + 1)
Γ(i− j + 2) Γ(i+ j + α)

Γ(i+ α− β + 1) Γ(i+ β + 1)

=
(i− j + 1)

(i+ j + α)
. (4.3)

Using Stirling’s formula,

1

|λi|
= C

Γ(i+ 1)

Γ(i+ α)
∼ (i+ 1)−(α−1) ∼ i−(α−1) . (4.4)

Combining (4.3) and (4.4) we obtain

1

λ2i

(
i+ j + α

i+ α

)2 |‖G(α−β+j , β+j)
i−j |‖2

|‖G(β+j−1 , α−β+j−1)
i−j+1 |‖2

∼
(
i−(α−1)

)2 ( i+ j + α

i+ α

)2 (i− j + 1)

(i+ j + α)
∼ i−2(α−1) ,

from which (4.2) follows.

The following theorem describes the regularity of q(x) “away from the endpoints.”

Theorem 4.1 For j ∈ N, if Djf ∈ L2
ρ(β+j−1 , α−β+j−1)(0, 1), then Dj

(
(q(x)− c−1x z(x))/ρ(α−β,β)(x)

)
∈

L2
ρ(α−β+j , β+j)

(0, 1).

Proof : From (2.12) and (3.7),

Dj

(
qN − c−1x z(x)

ρ(α−β,β)(x)

)
= Dj

(N−1∑
i=0

ciG
(α−β , β)
i (x)

)
=

N−1∑
i=0

ci
Γ(i+ j + α+ 1)

Γ(i+ α+ 1)
G

(α−β+j , β+j)
i−j (x),

where G
(a,b)
k (x) = 0 for k < 0.
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Then,∥∥∥∥Dj

(
qM − c−1xz(x)

ρ(α−β,β)(x)

)
− Dj

(
qN − c−1xz(x)

ρ(α−β,β)(x)

)∥∥∥∥2
ρ(α−β+j , β+j)

=

(
ρ(α−β+j , β+j)

M−1∑
i=N

ci
Γ(i+ j + α+ 1)

Γ(i+ α+ 1)
G

(α−β+j , β+j)
i−j ,

M−1∑
i=N

ci
Γ(i+ j + α+ 1)

Γ(i+ α+ 1)
G

(α−β+j , β+j)
i−j

)

=
M−1∑
i=N

c2i

(
Γ(i+ j + α+ 1)

Γ(i+ α+ 1)

)2

|‖G(α−β+j , β+j)
i−j (x)|‖2

=
M−1∑
i=N

f2i+1

λ2i |‖G
(β−1,α−β−1)
i+1 (x)|‖4

(
Γ(i+ j + α+ 1)

Γ(i+ α+ 1)

)2

|‖G(α−β+j , β+j)
i−j (x)|‖2

≤ C

M−1∑
i=N

f2i+1

|‖G(β−1,α−β−1)
i+1 (x)|‖4

i−2(α−1)
(

Γ(i+ j + α)

Γ(i+ α)

)2

|‖G(β+j−1 , α−β+j−1)
i+1−j (x)|‖2 (using (4.2))

≤ C N−2(α−1) ‖DjfM (x) − DjfN (x)‖2
ρ(β+j−1 , α−β+j−1) (using (4.1)) , (4.5)

= C ‖DjfM (x) − DjfN (x)‖2
ρ(β+j−1 , α−β+j−1) .

Assuming thatDjf ∈ L2
ρ(β+j−1 , α−β+j−1)(0, 1), then {Djfn} is a Cauchy sequence in L2

ρ(β+j−1 , α−β+j−1)(0, 1).

Thus we can conclude that Dj
(
(q − c−1x z(x))/ρ(α−β,β)(x)

)
∈ L2

ρ(α−β+j , β+j)
(0, 1).

4.1 Additional error estimate for q(x) − c−1xz(x)

From Theorems 3.1 and 4.1 we have that q(x) − c−1x z(x) ∈ L2
ρ(−(α−β) ,−β)(0, 1), and Dj

(
(q(x) −

c−1x z(x))/ρ(α−β,β)(x)
)
∈ L2

ρ(α−β+j , β+j)
(0, 1), j ∈ N, for a sufficiently smooth rhs function, f(x).

Thus the power on the weight function,
(
ρ(α−β , β)(x)

)j
, such thatDj

(
(q(x)− c−1x z(x))/ρ(α−β,β)(x)

)
∈

L2
ρ(α−β+j , β+j)

(0, 1), increases with each derivative of (q(x)− c−1x z(x))/ρ(α−β,β)(x). This observation

leads to the following definition of weighted Sobolev spaces [14].

Hs
ρ(a , b)

(0, 1) :=
{
v | v is measurable and ‖v‖s, ρ(a , b) <∞

}
, s ∈ N0 ,

with associated norm and semi-norm

‖v‖s, ρ(a , b) :=

( s∑
j=0

‖Djv‖2
ρ(a+j ,b+j)

)1/2

, |v|s, ρ(a , b) := ‖Dsv‖ρ(a+s ,b+s) .

For s ∈ R+\N0, H
s
ρ(a , b)

(0, 1) is defined by the K-method of interpolation, and for s ∈ R−,

Hs
ρ(a , b)

(0, 1) is defined by duality.

Let PN denote the space of polynomials of degree ≤ N , and introduce the orthogonal projection
PN,a,b : L2

ρ(a , b)
(0, 1)→ PN defined by

(v − PN,a,bv , φ)ρ(a , b) = 0 , ∀φ ∈ PN .

Then from [14] we have the following theorem.
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Theorem 4.2 [14, Theorem 2.1] For µ ∈ N0 and v ∈ Hs
ρ(a , b)

(0, 1), with 0 ≤ µ ≤ s, there exists a

constant C, independent of N, α and β such that

‖v(x) − PN,a,bv(x)‖µ, ρ(a , b) ≤ C (N (N + a+ b))
µ−s
2 ‖v‖s, ρ(a , b) . (4.6)

Remark: In [14] (4.6) is stated for s ∈ N0. The result extends to s ∈ R+ using interpolation.

We can apply (4.6) to obtain an improved error estimate for
(
(q(x) − qN (x))/ρ(α−β,β)(x)

)
.

Corollary 4.1 For µ ∈ N0 and f ∈ Hs
ρ(β−1 , α−β−1)(0, 1), with 0 ≤ µ ≤ s there exists C > 0

(independent of N and α) such that

‖(q − qN )/ρ(α−β,β)‖µ, ρ(α−β , β) ≤ C N−(α−1) (N (N + α− 2))
µ−s
2 ‖f‖s, ρ(β−1 , α−β−1) . (4.7)

Proof : Noting that fN (x) = PN, β−1 , α−β−1f(x), from (4.5), taking the limit as M →∞, we have

‖Dµ
(
(q − qN )/ρ(α−β,β)

)
‖ρ(α−β+µ , β+µ) ≤ C N

−(α−1) ‖Dµ(f − fN )‖ρ(β+µ−1 , α−β+µ−1)

≤ C N−(α−1) ‖f − fN‖µ, ρ(β−1 , α−β−1)

≤ C N−(α−1) (N (N + α− 2))
µ−s
2 ‖f‖s, ρ(β−1 , α−β−1) , (4.8)

where, in the last step we have used (4.6).

5 Convergence of u(x)− uN(x)

In this section we use the error estimates derived above for q(x)−qN (x) to investigate the convergence
of u(x)− uN (x).

From (2.1), u(x) is given by

u(x) = −
∫ x

0

q̃(s)

K(s)
ds = − c−2

∫ x

0

z(s)

K(s)
ds −

∫ x

0

q(s)

K(s)
ds . (5.1)

Hence,

|u(x)− uN (x)| ≤ |c−2 − c−2,N |
∣∣∣∣∫ x

0

z(s)

K(s)
ds

∣∣∣∣ +

∣∣∣∣∫ x

0

q(s)− qN (s)

K(s)
ds

∣∣∣∣
≤ |c−2 − c−2,N |

∣∣∣∣∫ 1

0

z(s)

K(s)
ds

∣∣∣∣
+

(∫ 1

0
(1− s)−(α−β) s−β (q(s)− qN (s))2 ds

)1/2 (∫ 1

0

(1− s)α−β sβ

K2(s)
ds

)1/2

≤ C11C12 ‖q − qN‖ρ(−(α−β),−β) C−111 + C12 ‖q − qN‖ρ(−(α−β),−β)

= 2C12 ‖q − qN‖ρ(−(α−β),−β) = ‖(q − qN )/ρ(α−β,β)‖ρ(α−β , β) . (5.2)

Combining (5.2) and (4.7) we obtain an L∞ error estimate for u(x)− uN (x).
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Lemma 5.1 For f ∈ Hs
ρ(β−1 , α−β−1)(0, 1) there exists C > 0 such that

‖u − uN‖L∞ ≤ C N−α+1−s ‖f‖s, ρ(β−1 , α−β−1) . (5.3)

The above analysis is very coarse. We improve on this estimate with a more detailed error analysis
in the next section.

5.1 Convergence of ‖u− uN‖ρ(−(α−β+1) ,−(β+1))

In this section we investigate the convergence of uN (x) to u(x) in the weighted L2 norm. To improve
upon the analysis used to obtain (5.2) an additional regularity assumption is needed for K(x).

Theorem 5.1 For f ∈ Hs
ρ(β−1 , α−β−1)(0, 1) and K−1 ∈W 1

∞(0, 1), then there exists C > 0 (indepen-

dent of N and α) such that

‖u − uN‖ρ(−(α−β+1) ,−(β+1)) ≤ C N−α (N (N + α− 1))−
s
2 ‖f‖s, ρ(β−1,α−β−1) . (5.4)

Proof : Recall that q̃(x) = c−2z(x) + q(x), where c−2 is determined by (2.2). Then, with (5.1),
we have that

u(x)− uN (x) =

∫ x
0

z(s)
K(s) ds∫ 1

0
z(s)
K(s) ds

∫ 1

0

q(s)− qN (s)

K(s)
ds−

∫ x

0

q(s)− qN (s)

K(s)
ds. (5.5)

From (2.12) it follows that∫ x

0
ρ(α−β,β)(s)G(α−β,β)

n (s) ds =
−1

n
ρ(α−β+1 , β+1)(x)G

(α−β+1 , β+1)
n−1 (x) , n ≥ 1 . (5.6)

Using (3.7) and integration by parts in (5.5), together with (5.6), we obtain

u(x) − uN (x) =

∫ x
0

z(s)
K(s) ds∫ 1

0
z(s)
K(s) ds

∞∑
i=N

ci
i

∫ 1

0
ρ(α−β+1 , β+1)(s)G

(α−β+1 , β+1)
i−1 (s)D

(
1

K(s)

)
ds

+
∞∑
i=N

ci
i

1

K(x)
ρ(α−β+1 , β+1)(x)G

(α−β+1 , β+1)
i−1 (x)

−
∞∑
i=N

ci
i

∫ x

0
ρ(α−β+1 , β+1)(s)G

(α−β+1 , β+1)
i−1 (s)D

(
1

K(s)

)
ds

:= R1 +R2 +R3. (5.7)

Applying ‖ · ‖ρ(−(α−β+1) ,−(β+1)) on both sides of (5.7) yields

‖u − uN‖ρ(−(α−β+1) ,−(β+1)) ≤
3∑
j=1

‖Rj‖ρ(−(α−β+1) ,−(β+1)) .
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We bound R1 by

‖R1‖ρ(−(α−β+1) ,−(β+1))

=

∥∥∥∥
∫ x
0

z(s)
K(s) ds∫ 1

0
z(s)
K(s) ds

∞∑
i=N

ci
i

∫ 1

0
ρ(α−β+1 , β+1)(s)G

(α−β+1 , β+1)
i−1 (s)D

(
1

K(s)

)
ds

∥∥∥∥
ρ(−(α−β+1) ,−(β+1))

≤ ‖1‖ρ(−(α−β+1) ,−(β+1))

∫ 1

0

∣∣∣∣D( 1

K(s)

) ∞∑
i=N

ci
i
ρ(α−β+1 , β+1)(s)G

(α−β+1 , β+1)
i−1 (s)

∣∣∣∣ ds
≤ C‖K−1‖W 1

∞

∫ 1

0

∣∣∣∣ρ(α−β+1)/2 , (β+1)/2(s)ρ(α−β+1)/2 , (β+1)/2(s)
M−1∑
i=N

ci
i
G

(α−β+1 , β+1)
i−1 (s)

∣∣∣∣ ds
≤ C‖K−1‖W 1

∞
‖1‖ρ(−(α−β+1) ,−(β+1))

∥∥∥∥ ∞∑
i=N

ci
i
G

(α−β+1 , β+1)
i−1 (s)

∥∥∥∥
ρ(α−β+1 , β+1)

= C‖K−1‖W 1
∞

( ∞∑
i=N+1

1

(i− 1)2
f2i

λ2i−1 |‖G
(β−1 , α−β−1)
i |‖4

|‖G(α−β+1 , β+1)
i−2 |‖2

)1/2

(using (3.8)).

(5.8)

Similar to Lemma 3.1, we have

|‖G(α−β+1 , β+1)
i−2 |‖2

|‖G(β−1 , α−β−1)
i |‖2

=
1

2i+ α− 1

Γ(i+ α− β) Γ(i+ β)

Γ(i− 1)Γ(i+ α+ 1)

2i+ α− 1

1

Γ(i+ 1) Γ(i+ α− 1)

Γ(i+ β) Γ(i+ α− β)

=
i(i− 1)

(i+ α)(i+ α− 1)
≤ 1 . (5.9)

Using (5.8) and (5.9), together with (2.15) we then obtain

‖R1‖ρ(−(α−β+1) ,−(β+1)) ≤ C‖K−1‖W 1
∞

( ∞∑
i=N+1

1

(i− 1)2
f2i

λ2i−1 |‖G
(β−1 , α−β−1)
i |‖2

)1/2

≤
C‖K−1‖W 1

∞

N λN

(∫ 1

0
ρ(β−1 , α−β−1)(x)

( ∞∑
i=N+1

fi

|‖G(β−1 , α−β−1)
i |‖2

G
(β−1 , α−β−1)
i (x)

)2

dx

)1/2

≤
C‖K−1‖W 1

∞

N (N + 1)α−1
‖f − fN‖ρ(β−1,α−β−1) .

Then we bound R2 and R3 in a similar manner and apply the approximating property (4.6) to
obtain

‖u − uN‖ρ(−(α−β+1) ,−(β+1)) ≤ C‖K−1‖W 1
∞
N−1 (N + 1)−(α−1) (N (N + α− 1))−

s
2 ‖f‖s, ρ(β−1,α−β−1) .

Remark: For the discussion in Sections 3, 4 and 5, we have assumed that 1/2 ≤ r ≤ 1, which lead to

our representation of q(x) as q(x) = c−1x z(x) + ρ(α−β , β)(x)
∑∞

i=0 ciG
(α−β , β)
i (x). As previously

commented, since (1−x) z(x) is a more regular function than x z(x) for r < 1/2, for 0 ≤ r < 1/2 we

would use as the representation for q(x), q(x) = c−1(1−x) z(x) + ρ(α−β , β)(x)
∑∞

i=0 ciG
(α−β , β)
i (x).

Apart from the obvious change, q(x) − c−1x z(x) → q(x) − c−1(1− x) z(x), the above analysis
also applies directly for 0 ≤ r < 1/2.
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6 Numerical experiments

In this section we present two numerical examples to validate our approximation scheme, and to
compare the experimental rate of convergence of the approximation with the theoretically predicated
rate. The numerical examples were computed using MATLAB R2016a, on a computer with an
Intel(R) Core(TM) i5-4570 CPU @ 3.20 GHz, and with 8 GB of RAM. To evaluate the intermediate
integrals, such as the computations of the coefficients (3.6) and the final transformation (2.1) for
u(x), we used MATLAB’s high-order global adaptive quadrature routine ‘quadgk’, with the default
error tolerances.

Within Example 1 we consider three numerical experiments corresponding to different values of α
and r. For this example we choose K(x) = 1 which permits us to compare the theoretically predicted
rate of convergence of uN to u in the L2

ρ(−(α−β+1),−(β+1)) norm with its experimental rate.

In order to determine the theoretical rate of convergence for ‖q − qN‖L2

ρ(−(α−β),−β)
and

‖u−uN‖L2

ρ(−(α−β+1),−(β+1))
from (4.7) and (5.4), respectively, we need to determine the largest value

for j such that f(x) ∈ Hj

ρ(β−1 , α−β−1)(0, 1), i.e, the largest j such that ‖Djf‖2
ρ(β+j−1 , α+j−β−1) < ∞.

The most singular terms for f(x) in Example 1 are x2−α and (1 − x)2−α. We focus our attention
on x2−α.

Note that Djx2−α ∼ x2−α−j . Then

‖Djx2−α‖2
ρ(β+j−1 , α+j−β−1) ∼

∫ 1

0
xα+j−β−1

(
x2−α−j

)2
dx =

∫ 1

0
x3−α−β−j dx < ∞

⇒ −1 < 3− α− β − j
⇒ j < 4− α− β .

Then, for experiment 1 in Example 1 (α = 1.60, β = 0.85) f(x) ∈ Hj

ρ(β−1 , α−β−1)(0, 1) for j < 1.55,

which leads to theoretical asymptotic rates of ‖q − qN‖L2

ρ(−(α−β),−β)
∼ N−(α−1+j) = N−2.15 and

‖u− uN‖L2

ρ(−(α−β+1),−(β+1))
∼ N−(α+j) = N−3.15.

Assuming that ‖ξ − ξN‖Lρ ∼ N−κ, the experimental convergence rate is calculated using

κ ≈
log(‖ξ − ξN1‖Lρ/‖ξ − ξN2‖Lρ)

log(N2/N1)
.

Example 1. Let K(x) = 1, β be determined by (2.13), and

f(x) =
6r

Γ(2− α)δ
((2α− 8)x3−α + (α− 3)(α− 4)x2−α)

+
6(1− r)

Γ(2− α)δ
(−(2α− 8)(1− x)3−α − (α− 3)(α− 4)(1− x)2−α),

where δ := α3 − 9α2 + 26α− 24. Then the solution u(x), and the related q(x), are given by

u(x) = 3x2 − 2x3 − xβ 2F1(−α+ β + 1 , β ; β + 1 , x)

2F1(−α+ β + 1 , β ; β + 1 , 1)
, q(x) = −6x+ 6x2,
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where 2F1(a, b; c, x) denote the Gauss three-parameter hypergeometric function defined as follows:

2F1(a, b; c, x) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
zb−1(1− z)c−b−1(1− zx)−adz

=
∞∑
n=0

(a)n(b)nx
n

(c)nn!
,

with convergence only if Re(c) > Re(b) > 0 and (s)n is the rising Pochhammer symbol defined by
(s)n = Γ(s+ n)/Γ(s).

A plot of the solution u(x), corresponding to α = 1.40, r = 0.76 and β = 0.50, and a plot of the
errors for this numerical experiment are presented in Figure 6.1. Near x = 0, u′(x) ∼ xβ−1 = x−0.5,
and near x = 1, u′(x) ∼ (1− x)α−β−1 = x−0.1.
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Figure 6.1: The plot of solution u(x) (left), and (right) the log− log plot of the errors for experiment
1 of Example 1.

The experimental convergence rate κ of the error in different norms for Example 1 are shown in
Table 6.1, 6.2 and 6.3.

Table 6.1: Example 1 with α = 1.60, r = 0.39 and β = 0.85.

N ‖q − qN‖L2

ρ(−(α−β),−β)
κ ‖u− uN‖L2

ρ(−(α−β+1),−(β+1))
κ ‖u− uN‖L∞ κ

30 5.23E-04 1.40E-05 1.51E-06
32 4.54E-04 2.18 1.13E-05 3.26 1.17E-06 3.90
34 3.98E-04 2.18 9.29E-06 3.28 9.63E-07 3.27
36 3.51E-04 2.18 7.69E-06 3.30 7.83E-07 3.62
38 3.12E-04 2.18 6.43E-06 3.33 6.46E-07 3.54

Pred. 2.15 3.15 2.15
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Table 6.2: Example 1 with α = 1.40, r = 0.50 and β = 0.70.

N ‖q − qN‖L2

ρ(−(α−β),−β)
κ ‖u− uN‖L2

ρ(−(α−β+1),−(β+1))
κ ‖u− uN‖L∞ κ

30 5.10E-04 1.37E-05 1.59E-06
32 4.40E-04 2.29 1.10E-05 3.39 1.22E-06 4.16
34 3.83E-04 2.29 8.94E-06 3.42 1.02E-06 2.87
36 3.36E-04 2.29 7.34E-06 3.44 8.28E-07 3.72
38 2.97E-04 2.29 6.09E-06 3.47 6.72E-07 3.86

Pred. 2.30 3.30 2.30

Table 6.3: Example 1 with α = 1.80, r = 0.50 and β = 0.90.

N ‖q − qN‖L2

ρ(−(α−β),−β)
κ ‖u− uN‖L2

ρ(−(α−β+1),−(β+1))
κ ‖u− uN‖L∞ κ

30 4.21E-04 1.11E-05 1.08E-06
32 3.69E-04 2.07 9.07E-06 3.16 8.40E-07 3.85
34 3.25E-04 2.07 7.48E-06 3.18 7.08E-07 2.82
36 2.89E-04 2.08 6.23E-06 3.21 5.76E-07 3.60
38 2.58E-04 2.08 5.23E-06 3.24 4.64E-07 4.03

Pred. 2.10 3.10 2.10

The experimental convergence rates for ‖q − qN‖L2

ρ(−(α−β),−β)
and ‖u− uN‖L2

ρ(−(α−β+1),−(β+1))
are in

good agreement with the theoretically predicted rates. Not surprisingly, the theoretically predicted
rate for ‖u− uN‖L∞ in (5.2) appears to be suboptimal.

Example 2. With this example we investigate the numerical approximation for the interesting case
of a non constant K(x). Let K(x) = 1 + x2 and

f(x) = r

(
−480

x6−α

Γ(7− α)
+ 144

x5−α

Γ(6− α)
− 36

x4−α

Γ(5− α)
+ 12

x3−α

Γ(4− α)
− 2

x2−α

Γ(3− α)

)
− (1− r)

(
480

(1− x)6−α

Γ(7− α)
− 366

(1− x)5−α

Γ(6− α)
+ 132

(1− x)4−α

Γ(5− α)
− 32

(1− x)3−α

Γ(4− α)
+ 4

(1− x)2−α

Γ(3− α)

)
.

Then the solution u(x), and the related q(x), are

u(x) = x2(1− x)2, q(x) = −2(1 + x2)x(1− x)(1− 2x).

The convergence rate κ of the error in different norms for Example 2 are shown in Table 6.4, 6.5
and 6.6.

Table 6.4: Example 2 with α = 1.60, r = 0.39 and β = 0.85.

N ‖q − qN‖L2

ρ(−(α−β),−β)
κ ‖u− uN‖L2

ρ(−(α−β+1),−(β+1))
κ ‖u− uN‖L∞ κ

30 3.01E-04 5.57E-06 7.21E-07
32 2.59E-04 2.28 4.50E-06 3.31 5.54E-07 4.07
34 2.26E-04 2.28 3.68E-06 3.30 4.54E-07 3.28
36 1.98E-04 2.28 3.05E-06 3.28 3.63E-07 3.95
38 1.75E-04 2.27 2.56E-06 3.27 2.92E-07 4.01

Pred. 2.15 3.15 2.15
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Table 6.5: Example 2 with α = 1.40, r = 0.50 and β = 0.70.

N ‖q − qN‖L2

ρ(−(α−β),−β)
κ ‖u− uN‖L2

ρ(−(α−β+1),−(β+1))
κ ‖u− uN‖L∞ κ

30 2.90E-04 5.49E-06 7.73E-07
32 2.49E-04 2.37 4.40E-06 3.42 6.08E-07 3.72
34 2.16E-04 2.36 3.58E-06 3.41 4.79E-07 3.92
36 1.89E-04 2.36 2.95E-06 3.40 3.82E-07 3.97
38 1.66E-04 2.35 2.45E-06 3.39 3.10E-07 3.83

Pred. 2.30 3.30 2.30

Table 6.6: Example 2 with α = 1.80, r = 0.50 and β = 0.90.

N ‖q − qN‖L2

ρ(−(α−β),−β)
κ ‖u− uN‖L2

ρ(−(α−β+1),−(β+1))
κ ‖u− uN‖L∞ κ

30 2.38E-04 4.40E-06 5.22E-07
32 2.07E-04 2.14 3.58E-06 3.19 4.10E-07 3.73
34 1.82E-04 2.14 2.95E-06 3.18 3.32E-07 3.49
36 1.61E-04 2.14 2.46E-06 3.17 2.68E-07 3.77
38 1.43E-04 2.14 2.08E-06 3.16 2.16E-07 4.00

Pred. 2.10 3.10 2.10

The experimental convergence rates for ‖q−qN‖L2

ρ(−(α−β),−β)
and ‖u−uN‖L2

ρ(−(α−β+1),−(β+1))
are again

in good agreement with the theoretically predicted rates. We again note that the error estimate
obtained in (5.2) appears to be suboptimal.
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[32] G. Szegő, Orthogonal polynomials. American Mathematical Society, Providence, R.I., fourth
edition, 1975. American Mathematical Society, Colloquium Publications, Vol. XXIII.

[33] C. Tadjeran and M.M. Meerschaert, A second-order accurate numerical method for the two-
dimensional fractional diffusion equation. J. Comput. Phys., 220(2):813–823, 2007.

[34] H. Wang and T.S. Basu, A fast finite difference method for two-dimensional space-fractional
diffusion equations. SIAM J. Sci. Comput., 34(5):A2444–A2458, 2012.

[35] H. Wang and N. Du, A superfast-preconditioned iterative method for steady-state space-
fractional diffusion equations. J Comput. Phys., 240 (2013), 49-57.

[36] H. Wang and D. Yang, Wellposedness of Variable-coefficient conservative fractional elliptic
differential equations. SIAM. Numer. Anal., 51:1088–1107, 2013.

[37] H. Wang, D. Yang and S. Zhu, Inhomogeneous Dirichlet boundary-value problems of space-
fractional diffusion equations and their finite element approximations. SIAM. Numer. Anal.,
52:1292–1310, 2014.

20



[38] H. Wang, D. Yang, and S. Zhu, A Petrov-Galerkin finite element method for variable-coefficient
fractional diffusion equations, Comput. Methods Appl. Mech. Engrg., 290:45–56, 2015.

[39] H. Wang, D. Yang, and S. Zhu, Accuracy of finite element methods for boundary-value problems
of steady-state fractional diffusion equations. J. Sci. Comput., 70(1):429–449, 2017.

[40] H. Wang and X. Zhang, A high-accuracy preserving spectral Galerkin method for the Dirich-
let boundary-value problem of variable-coefficient conservative fractional diffusion equations. J
Comp. Phys., 281:67–81, 2015.

[41] Q. Xu and J.S. Hesthaven, Discontinuous Galerkin method for fractional convection-diffusion
equations. SIAM J. Numer. Anal., 52(1):405–423, 2014.

[42] G.M. Zaslavsky, D. Stevens, and H. Weitzner, Self-similar transport in incomplete chaos. Phys.
Rev. E (3), 48(3):1683–1694, 1993.

[43] M. Zayernouri, M. Ainsworth, and G.E. Karniadakis, A unified Petrov-Galerkin spectral
method for fractional PDEs. Comput. Methods Appl. Mech. Engrg., 283:1545–1569, 2015.

[44] Y. Zhang, D.A. Benson, M.M. Meerschaert and E.M. LaBolle, Space-fractional advection-
dispersion equations with variable parameters: Diverse formulas, numerical solutions, and appli-
cation to the MADE-site data, Water Resources Research, 43 (2007), W05439.

21


