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Abstract

In this article we study the numerical approximation of a variable coefficient fractional dif-
fusion equation. Using a change of variable, the variable coefficient fractional diffusion equation
is transformed into a constant coefficient fractional diffusion equation of the same order. The
transformed equation retains the desirable stability property of being an elliptic equation. A
spectral approximation scheme is proposed and analyzed for the transformed equation, with er-
ror estimates for the approximated solution derived. An approximation to the unknown of the
variable coefficient fractional diffusion equation is then obtained by post processing the com-
puted approximation to the transformed equation. Error estimates are also presented for the
approximation to the unknown of the variable coefficient equation with both smooth and non-
smooth diffusivity coefficient and right-hand side. Three numerical experiments are given whose
convergence results are in strong agreement with the theoretically derived estimates.
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1 Introduction

It has been shown that fractional partial differential equations (PDEs) can accurately model chal-
lenging phenomena including anomalous transport, long-range time memory and spatial interactions
[1, 14]. Extensive research has been conducted on fractional PDEs in terms of their modeling, analy-
sis, numerical approximations and applications. In a representative piece of work Ervin and Roop [3]
proved the wellposedness of the Galerkin weak formulation of linear elliptic space fractional diffusion

equations (FDEs) of order 1 < α < 2 on the Sobolev space H
α/2
0 . They also proved optimal-order

error estimates of its finite element approximations in the energy and L2 norms, assuming that the
true solution and the solution to the dual problem for an L2 right-hand side have full regularity.
However, it was later realized that the smoothness of the coefficients and source term for these
space fractional differential equations cannot ensure the smoothness of their solution [4, 9, 19, 20].
This is in sharp contrast to integer-order linear elliptic PDEs [5, 6]. For this reason, the usual
smoothness assumptions on the true solutions to fractional PDEs in the analysis of the numerical
approximations are inappropriate.
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It turns out that the spectral methods are particularly well suited for the accurate approximation
of FDEs, as they provide a clean expression of the true solution to FDEs for the convenience of
analysis [4, 12], and ordinarily lead to a diagonal stiffness matrices (at least for constant-coefficient
FDEs). This is in contrast to the dense stiffness matrices generated from the finite element, finite
difference, or finite volume approximations. Mao et al. [11] analyzed the regularity of the solution
to a symmetric case of the FDE and developed corresponding spectral methods. The solution
structure to the general case was resolved completely in [4], in which a spectral method utilizing
the weighted Jacobi polynomial was studied and a priori error estimates derived. The two-sided
FDE with constant coefficient and Riemann-Liouville fractional derivative was investigated in [12],
by employing a Petrov-Galerkin projection in a properly weighted Sobolev space using two-sided
Jacobi polyfractonomials as test and trial functions. In [23] and [24], the regularity of the two-sided
fractional reaction-diffusion and advection-diffusion-reaction equations are analyzed in the weighted
Sobolev spaces, based on which the optimal (or sub-optimal) convergence rates of the spectral
Galerkin or Petrov-Galerkin method are proved.

The variable diffusivity K presents another bottleneck of FDEs. It was shown in [18] that the
Galerkin weak formulation may lose its coercivity for a smooth K(x) with positive lower and upper
bounds, which increases the difficulties for the stability and convergence analysis and accurate
simulations. To circumvent this issue, an indirect Legendre spectral Galerkin method was developed
for the FDE in [20], in which the high-order convergence rates of numerical approximations were
proved only under the regularity assumptions of coefficients and right-hand side term. In [10], with
the introduction of an auxiliary variable, a mixed approximation was developed for an FDE and
the corresponding error estimates were proved. In [13], a spectral Galerkin method for a different
variable coefficient FDE was analyzed, in which the outside and inside fractional derivatives are
chosen carefully so that the corresponding Galerkin weak formulation are self-adjoint and coercive.

Recently the wellposedness of the variable coefficient FDE (2.1) was investigated in [22], in which the
existence and uniqueness of the solution to the proposed model was proven for any f ∈ L2

ω(β−1,α−β−1) ,
with the space defined by (2.3). A spectral approximation method was then studied and several
error estimates were derived based on the regularity of the right-hand side term. In this paper we
continue to investigate model (2.1) using a different approach than that used in [22]. We prove in
this paper that the model is wellposed for f belonging to a larger space L2

ω(β,α−β) , which extends the
wellposedness results in [22]. A spectral approximation scheme is proposed and the error estimates
are proved to be dependent on the weaker norms of f without loss of accuracy. In addition, we follow
the idea of the K-method of interpolation to determine the range of the index of the weighted Sobolev
space that the power function belongs to, which provides the theoretical support for estimating the
convergence rate of the proposed method.

This paper is organized as follows. In Section 2 we present the formulation of the model and
introduce notation and key lemmas used in the analysis. The wellposedness of the model and the
regularity of its solution are studied in Section 3, based on which the spectral approximation method
is formulated and a detailed analysis of its convergence is proved. Three numerical experiments are
presented in Section 4 whose results demonstrate the sharpness of the derived error estimates.
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Spectral approximations for fractional diffusion equations

2 Model problem and preliminaries

In this paper we consider the following homogeneous Dirichlet boundary-value problem of a two-
sided Caputo flux FDE, which is obtained by incorporating a fractional Fick’s law into a conventional
local mass balance law with a variable fractional diffusivity [2, 21]:

−D
((
r 0I

2−α
x + (1− r) xI2−α

1

)
K(x)Du(x)

)
= f(x), x ∈ I := (0, 1), (2.1)

u(0) = u(1) = 0. (2.2)

Here 1 < α < 2, D is the first-order differential operator, K(x) is the fractional diffusivity with
0 < Km ≤ K(x) ≤ KM < ∞, 0 ≤ r ≤ 1 indicates the relative weight of forward versus backward
transition probability and f(x) the source or sink term. The left and right fractional integrals of
order 0 < σ < 1 are defined as [15]

0I
σ
xw(x) :=

1

Γ(σ)

∫ x

0
w(s)(x− s)σ−1ds, xI

σ
1w(x) :=

1

Γ(σ)

∫ 1

x
w(s)(s− x)σ−1 ds ,

where Γ(·) is the Gamma function.

We introduce notation and properties used subsequently in our discussion of the approximation
scheme and in its error analysis.

Let Ω be a bounded open interval and ω(x) > 0, x ∈ Ω be a smooth function. We define the
weighted L2 space, L2

ω(Ω), and L2 weighted inner product as

L2
ω(Ω) :=

{
f(x) : ‖f‖2ω :=

∫
Ω
ω(x) f(x)2 dx < ∞

}
, (f , g)ω :=

∫
Ω
ω(x) f(x) g(x) dx . (2.3)

In addition, let N0 := N∪ 0, and ω(α,β) be a weighting function defined on Ω and indexed by α and
β. For any m ∈ N, we introduce the following weighted Sobolev spaces [7, 16]

Hm
ω(α,β)(Ω) :=

{
v : ‖v‖2

m,ω(α,β) :=
m∑
j=0

∣∣v∣∣2
j,ω(α,β) =

m∑
j=0

∥∥Djv
∥∥2

ω(α+j,β+j) <∞
}
.

For t ∈ R+\N0, Ht
ω(a , b)(0, 1) is defined by theK-method of interpolation, and for t ∈ R−, Ht

ω(a , b)(0, 1)
is defined by duality.

The Jacobi polynomials P
(α,β)
n (x) are defined by [16, 17]

P (α,β)
n (x) :=

n∑
k=0

pn,k(x− 1)n−k(x+ 1)k, x ∈ (−1, 1), pn,k :=
1

2n

(
n+ α

k

)(
n+ β

n− k

)
. (2.4)

Let G
(α,β)
n (x) denote the translated and dilated Jacobi polynomials to the interval [0, 1]:

G(α,β)
n (x) := P (α,β)

n (2x− 1), x ∈ [0, 1], (2.5)

and summarize the properties of Gα,βn in the following lemma
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Lemma 2.1 For ω(α,β)(x) = (1 − x)αxβ, the polynomials G
(α,β)
n have the following orthogonality

and norm properties∫ 1

0
ω(α,β)(x)G

(α,β)
j (x)G

(α,β)
k (x)dx = δj,k |‖G

(α,β)
j |‖2, ω(α,β)(x) := (1− x)αxβ, (2.6)

where δj,k = 1 if j 6= k and 0 otherwise, and

|‖G(α,β)
j |‖ :=

( 1

(2j + α + β + 1)

Γ(j + α+ 1) Γ(j + β + 1)

Γ(j + 1) Γ(j + α+ β + 1)

)1/2
= |‖G(β,α)

j |‖. (2.7)

In addition, G
(α,β)
n satisfies

DkG(α,β)
n (x) =

Γ(n+ k + α+ β + 1)

Γ(n+ α+ β + 1)
G

(α+k,β+k)
n−k (x), 0 ≤ k ≤ n;

Dk
(
ω(α+k,β+k)(x)G

(α+k,β+k)
n−k (x)

)
=

(−1)k n!

(n− k)!
ω(α,β)(x)G(α,β)

n (x), 0 ≤ k ≤ n.
(2.8)

Finally, G
(α,β)
n have the following norm relation

1

2
≤

|‖G(α−β , β)
j |‖2

|‖G(β−1 , α−β−1)
j+1 |‖2

=
j + 1

j + α
≤ 1, j ≥ 0. (2.9)

Proof. The orthogonality property (2.6) of G
(α,β)
n is a direct consequence of the orthogonality relation

of P
(α,β)
n [16, 17]∫ 1

−1
ω̃(α,β)(x)P

(α,β)
j (x)P

(α,β)
k (x)dx = δj,k

∥∥P (α,β)
j

∥∥2

ω̃(α,β) , where ω̃(α,β)(x) := (1− x)α(1 + x)β,

Using
∥∥P (α,β)

j

∥∥
ω̃(α,β) =

(
2(α+β+1)

(2j+α+β+1)
Γ(j+α+1) Γ(j+β+1)
Γ(j+1) Γ(j+α+β+1)

)1/2
=
∥∥P (β,α)

j

∥∥
ω̃(β,α)

and the following relation between G
(α,β)
n and P

(α,β)
n leads to (2.7).∫ 1

−1
ω̃(α,β)(x)P

(α,β)
j (x)P

(α,β)
k (x)dx = 2α+β+1

∫ 1

0
ω(α,β)(x)G

(α,β)
j (x)G

(α,β)
k (x)dx.

The two equations in (2.8) are direct consequences of the following equations for P
(α,β)
n (x) [11,

equations (2.15) and (2.19)]

DkP (α,β)
n (x) =

Γ(n+ k + α+ β + 1)

2k Γ(n+ α+ β + 1)
P

(α+k,β+k)
n−k (x),

Dk
(
ω̃α+k,β+k(x)P

(α+k,β+k)
n−k (x)

)
=

(−1)k 2k n!

(n− k)!
ω̃α,β(x)P (α,β)

n (x).

The norm relation (2.9) is derived in [22].

Let SN denote the space of polynomials of degree ≤ N . We define the weighted L2 orthogonal
projection PN,a,b : L2

ω(a,b)(0, 1)→ SN by the condition(
v − PN,a,bv , φN

)
ω(a,b) = 0 , ∀φN ∈ SN . (2.10)
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Spectral approximations for fractional diffusion equations

Lemma 2.2 [7, Theorem 2.1] For µ ∈ N0 and v ∈ Ht
ω(a , b)(0, 1), with 0 ≤ µ ≤ t, there exists a

constant C, independent of N, α and β such that∥∥v − PN,a,bv‖µ,ω(a,b) ≤ C
(
N (N + a+ b)

)µ−t
2 |v|t,ω(a,b) . (2.11)

Remark: In [7] (2.11) is stated for t ∈ N0. The result extends to t ∈ R+ using interpolation.

3 Approximation scheme

3.1 Motivation for the approximation scheme

Introduce D−1 : L1(I) −→ H1(I), defined by D−1g(x) :=
∫ x

0 g(s) ds.

Rewrite (2.1) as

−D
((
r 0I

2−α
x + (1− r) xI2−α

1

)
DD−1K(x)Du(x)︸ ︷︷ ︸

:= w̃(x)

)
= f(x) .

Consider w̃(x) = D−1K(x)Du(x) =
∫ x

0 K(s)Du(s) ds. Note that w̃(0) = 0. Then,

D w̃(x) = K(x)Du(x)

=⇒ u(x) =

∫ x

0

D w̃(s)

K(s)
ds . (3.1)

Now, u(1) = 0 =⇒
∫ 1

0

D w̃(s)

K(s)
ds = 0 . (3.2)

Hence if we could determine w̃(x) such that

Lαr w̃(x) := −D
((
r 0I

2−α
x + (1− r) xI2−α

1

)
Dw̃(x)

)
= f(x), x ∈ I,

subject to w̃(0) = 0 and

∫ x

0

Dw̃(s)

K(s)
ds = 0 ,

then our solution to (2.1),(2.2) would be given by (3.1). With this in mind, consider the problem:
Determine w(x) satisfying

Lαrw(x) = f(x), x ∈ I, (3.3)

subject to w(0) = w(1) = 0. (3.4)

Let β ∈ [α−1, 1] be determined by (1− r) sin(πβ) = r sin(π(α−β)). The following theorem ensures
the wellposedness of this problem.

Theorem 3.1 ([4, 8]) Let f(x) ∈ L2
ω(β,α−β)(I). Then, there exists a unique solution w(x) ∈

L2
ω(−(α−β),−β)(I) satisfying (3.3),(3.4). In addition, there exists C > 0 such that

‖w‖ω(−(α−β),−β) + ‖Dw‖ω(−(α−β)+1 ,−β+1) ≤ C ‖f‖ω(β,α−β) (3.5)
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Spectral approximations for fractional diffusion equations

From [4] we have that k1(x) :=
∫ x

0 (1− s)α−β−1 sβ−1 ds ∈ ker(Lαr ).

Let w̃(x) = C1 k1(x) + w(x). (3.6)

We have that Lαr w̃(x) = f(x), and w̃(0) = 0.

The condition (3.2) combined with (3.6) implies∫ 1

0

1

K(s)

(
C1 (1− s)α−β−1 sβ−1 + Dw(s)

)
ds = 0 ,

=⇒ C1 =
−
∫ 1

0
Dw(s)
K(s) ds∫ 1

0
(1−s)α−β−1 sβ−1

K(s) ds
(3.7)

(if D( 1
K ) ∈ L2

ω(α−β , β) ) =

∫ 1
0 w(s) d

ds

(
1

K(s)

)
ds∫ 1

0
(1−s)α−β−1 sβ−1

K(s) ds

=

∫ 1
0 w(s) K′(s)

K(s)2
ds∫ 1

0
(1−s)α−β−1 sβ−1

K(s) ds
. (3.8)

Let

den :=

∫ 1

0

(1− s)α−β−1 sβ−1

K(s)
ds , c1 :=

∫ 1

0

−Dw(s)

K(s)
ds . (3.9)

Then C1 = c1/den can be bounded by

|C1| =
1

den

∣∣ ∫ 1

0
Dw(s)

1

K(s)
ds
∣∣ ≤ 1

den

∫ 1

0

∣∣Dw(s)
∣∣ 1

K(s)
ds (3.10)

=
1

den

∫ 1

0
ω((−(α−β)+1)/2 , (−β+1)/2)(s)

∣∣Dw(s)
∣∣ω((α−β−1)/2 , (β−1)/2)(s)

1

K(s)
ds

≤ 1

den
‖Dw‖ω(−(α−β)+1 ,−β+1)

∥∥∥∥ 1

K(s)

∥∥∥∥
ω((α−β−1) , (β−1))

≤ C ‖f‖ω(β , α−β) (using Theorem 3.1) . (3.11)

Combining (3.1),(3.6), (3.7), (3.11) and Theorem 3.1 we have the following.

Theorem 3.2 For f(x) ∈ L2
ω(β,α−β)(I) and there exists a unique solution u(x) ∈ L∞(I) to (2.1),(2.2),

given by

u(x) = C1

∫ x

0

(1− s)α−β−1 sβ−1

K(s)
ds +

∫ x

0

Dw(s)

K(s)
ds , (3.12)

where w(x) is determined by (3.3),(3.4) and C1 by (3.7).

Additionally, for ε1, ε2 > 0 there exists C > 0 such that

‖u‖L∞ + ‖u‖ω(−1+ε1 ,−1+ε2) ≤ C ‖f‖ω(β , α−β) . (3.13)
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Proof :
It is straightforward to show that u(x) given by (3.12) satisfies (2.1),(2.2). Next we show that there
exists a unique solution to (2.1),(2.2).

Assume that u1(x) and u2(x) are solutions of (2.1),(2.2). Let z1(x) and z2(x) be defined by:

z1(x) =

∫ x

0
K(s)Du1(s) ds , z1(x) =

∫ x

0
K(s)Du1(s) ds ,

i.e., Dz1(x) = K(x)Du1(x) , z1(0) = 0 , and Dz2(x) = K(x)Du2(x) , z2(0) = 0 .
(3.14)

Note that Lαr (z1 − z2) = 0. Hence, (z1 − z2) ∈ ker(Lαr ). Thus from [4], for constants A and B,

(z1 − z2)(x) = A+ B

∫ x

0
(1− s)α−β−1 sβ−1 ds .

As (z1 − z2)(0) = 0 =⇒ A = 0 .

Then, D(z1 − z2)(x) = B (1− x)α−β−1 xβ−1

=⇒ D(u1 − u2)(x) = B
1

K(x)
(1− x)α−β−1 xβ−1

=⇒ (using (u1 − u2)(0) = 0) (u1 − u2)(x) = B

∫ x

0

1

K(s)
(1− s)α−β−1 sβ−1 ds .

As the integrand is nonnegative, (u1 − u2)(1) = 0 =⇒ B = 0 ,

=⇒ u1(x) = u2(x) .

Using (3.10) and (3.11)

|u(x)| =
∣∣C1

∫ x

0

(1− s)α−β−1 sβ−1

K(s)
ds +

∫ x

0

Dw(s)

K(s)
ds
∣∣ ,

≤ C
∣∣C1

∣∣ +

∫ 1

0

∣∣Dw(s)
∣∣ 1

K(s)
ds ≤ C ‖f‖ω(β , α−β) . (3.15)

Consequently, we obtain

‖u‖2
ω(−1+ε1 ,−1+ε2)

=

∫ 1

0
u2(x)ω(−1+ε1 ,−1+ε2)(x) dx

≤ C ‖f‖2
ω(β , α−β)

∫ 1

0
ω(−1+ε1 ,−1+ε2)(x) dx ≤ C ‖f‖2

ω(β , α−β) . (3.16)

Estimate (3.13) then follows from (3.15) and (3.16).

3.2 Approximation scheme

To compute an approximation to u(x), uN (x), we firstly compute an approximation to w(x), wN (x),
satisfying (3.3),(3.4), and then use wN (x) in place of w(x) in (3.7) and (3.12) to obtain uN (x).
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3.2.1 Approximation of w(x) satisfying (3.3),(3.4)

Proceeding as in [4], f(x) ∈ L2
ω(β,α−β)(I) may be expressed as f(x) =

∑∞
i=0

fi

|‖G(β,α−β)
i |‖2

G
(β,α−β)
i (x),

where fi is given by

fi :=

∫ 1

0
ω(β,α−β)(x) f(x)G

(β,α−β)
i (x) dx . (3.17)

With fi defined in (3.17), let

fN (x) =

N∑
i=0

fi

|‖G(β,α−β)
i |‖2

G
(β,α−β)
i (x) and wN (x) = ω(α−β,β)(x)

N∑
i=0

ciG
(α−β,β)
i (x) , (3.18)

where λi =
− sin(πα)

sin(π(α− β)) + sin(πβ)

Γ(i+ 1 + α)

Γ(i+ 1)
and ci =

1

λi |‖G(β,α−β)
i |‖2

fi . (3.19)

Using Stirling’s formula we have that

lim
n→∞

Γ(n+ µ)

Γ(n)nµ
= 1 , for µ ∈ R. Thus λi ∼ (i+ 1)α . (3.20)

Theorem 3.3 ([4, 8]) Let f(x) ∈ L2
ω(β,α−β)(I) and wN (x) be as defined in (3.18). Then, w(x) :=

limN→∞wN (x) = ω(α−β,β)(x)
∑∞

j=0 cj G
(α−β,β)
j (x) ∈ L2

ω(−(α−β),−β)(I) and satisfies (3.3),(3.4).

Theorem 3.4 For f(x) ∈ Ht
ω(β , α−β)(I), t ≥ 0, and wN (x) given by (3.18), there exists C > 0 such

that

‖w − wN‖ω(−(α−β) ,−β) ≤ C (N + 2)−α(N(N + α))−t / 2 ‖f‖t, ω(β , α−β) , and (3.21)

‖D(w − wN )‖ω(−(α−β)+1 ,−β+1)) ≤ C (N + 2)−(α−1)(N(N + α))−t / 2 ‖f‖t, ω(β , α−β) . (3.22)

Proof : Using the definition of the ‖ · ‖ω(−(α−β) ,−β) norm,

‖w − wN‖2ω(−(α−β) ,−β) =

∫ 1

0
ω(−(α−β) ,−β)(x)

(
ω(α−β , β)(x)

∞∑
i=N+1

G
(α−β , β)
i (x)

(λi |‖G(β , α−β)
i |‖2)

fi

)2

dx

≤ max
i≥N+1

(
1

λ2
i

) ∞∑
i=N+1

f2
i

|‖G(β , α−β)
i |‖2

=
1

λ2
N+1

∫ 1

0
ω(β , α−β)(x)

( ∞∑
i=N+1

G
(β , α−β)
i (x)

|‖G(β , α−β)
i |‖2

fi

)2

dx

=
1

λ2
N+1

∫ 1

0
ω(β , α−β)(x) (f(x)− PN,β,α−βf(x))2 dx

≤ C (N + 2)−2α ‖f − PN,β,α−βf‖2ω(β , α−β) , (using |λN+1| ∼ (N + 2)α)

≤ C (N + 2)−2α(N(N + α))−t‖f‖2
t, ω(β , α−β) , (using (2.11)).

8



Spectral approximations for fractional diffusion equations

Similarly, using (2.8)

‖D(w − wN )‖2
ω(−(α−β)+1 ,−β+1)

=

∫ 1

0
ω(−(α−β)+1 ,−β+1)(x)

(
D

(
ω(α−β , β)(x)

∞∑
i=N+1

G
(α−β , β)
i (x)

(λi |‖G(β , α−β)
i |‖2)

fi

))2

dx

=

∫ 1

0
ω(−(α−β)+1 ,−β+1)(x)

(
ω(α−β−1 , β−1)(x)

∞∑
i=N+1

(i+ 1)G
(α−β−1 , β−1)
i+1 (x)

(λi |‖G(β , α−β)
i |‖2)

fi

)2

dx

=
∞∑

i=N+1

(i+ 1)2

λ2
i

f2
i

|‖G(β , α−β)
i |‖4

|‖G(α−β−1 , β−1)
i+1 |‖2

=

∞∑
i=N+1

(i+ 1)2

λ2
i

(
i+ α

i+ 1

)2 f2
i

|‖G(β , α−β)
i |‖2

(using (2.9) and (2.7)) . (3.23)

Using (3.20),
(i+ α)2

λ2
i

∼ (i+ α)2 (i+ 1)−2α ∼ (i+ 1)−2(α−1) . (3.24)

Combining (3.23) and (3.24),

‖D(w − wN )‖2
ω(−(α−β)+1 ,−β+1) ≤

C

(N + 2)2(α−1)

∞∑
i=N+1

f2
i

|‖G(β , α−β)
i |‖2

=
C

(N + 2)2(α−1)

∫ 1

0
ω(β , α−β)(x)

( ∞∑
i=N+1

G
(β , α−β)
i (x)

|‖G(β , α−β)
i |‖2

fi

)2

dx

=
C

(N + 2)2(α−1)

∫ 1

0
ω(β , α−β)(x) (f(x)− PN,β,α−βf(x))2 dx

= C (N + 2)−2 (α−1) ‖f − PN,β,α−βf‖2ω(β , α−β) ,

≤ C (N + 2)−2 (α−1)(N(N + α))−t‖f‖2
t, ω(β , α−β) .

3.2.2 Approximation of u(x) satisfying (3.12)

The approximation uN (x) of u(x) is obtained by substituting wN (x) in place of w(x) in (3.7) and
(3.12). With den defined in (3.9), let

c1,N :=

∫ 1

0

−DwN (s)

K(s)
ds and C1,N := c1,N/den.

Note that |C1 − C1,N | = |c1 − c1,N |/den. Hence the rate of convergence as N →∞ of |C1 − C1,N |

9
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is equal to the rate of convergence of |c1 − c1,N |. Now,

|c1 − c1,N | =
∣∣ ∫ 1

0
D(w − wN )(s)

1

K(s)
ds
∣∣ ≤ ∫ 1

0

∣∣D(w − wN )(s)
∣∣ 1

K(s)
ds (3.25)

≤
∫ 1

0
ω((−(α−β)+1)/2 , (−β+1)/2)(s)

∣∣D(w − wN )(s)
∣∣ω((α−β−1)/2 , (β−1)/2)(s)

1

K(s)
ds

≤ ‖D(w − wN )‖ω(−(α−β)+1 ,−β+1)

∥∥∥∥ 1

K

∥∥∥∥
ω((α−β−1) , (β−1))

≤ C (N + 2)−(α−1)(N(N + α))−t / 2 ‖f‖t, ω(β , α−β) (using (3.22)) . (3.26)

In case D( 1
K ) ∈ L2

ω(α−β , β)(I) ,

|c1 − c1,N | =
∣∣ ∫ 1

0
(w − wN )(s)D

( 1

K(s)

)
ds
∣∣ (3.27)

=

∫ 1

0
ω(−(α−β)/2 ,−β/2)(s) (w − wN )(s)ω((α−β)/2 , β/2)(s)D

( 1

K(s)

)
ds
∣∣

≤ ‖w − wN‖ω(−(α−β) ,−β)

∥∥∥∥D( 1

K

)∥∥∥∥
ω((α−β) , β)

≤ C (N + 2)−α(N(N + α))−t / 2 ‖f‖t, ω(β , α−β) (using (3.21)) . (3.28)

We have the following error estimates for u − uN .

Theorem 3.5 For f ∈ Ht
ω(β,α−β)(I), t ≥ 0, then for ε1, ε2 > 0 there exists C > 0 (independent of N

and α) such that

‖u − uN‖L∞ + ‖u− uN‖ω(−1+ε1 ,−1+ε2) ≤ C (N + 2)−(α−1)(N(N + α))−t / 2 ‖f‖t, ω(β , α−β) , (3.29)

and, if D( 1
K ) ∈ L2

ω(α−β , β)(I) ,

‖u− uN‖ω(−(α−β),−β) ≤ C (N + 2)−α(N(N + α))−t / 2 ‖f‖t, ω(β , α−β) . (3.30)

Proof : From (3.12), we have using (3.25) and (3.26)

u(x) − uN (x) = (C1 − C1,N )

∫ x

0

(1− s)α−β−1 sβ−1

K(s)
ds +

∫ x

0

D(w − wN )(s)

K(s)
ds , (3.31)

⇒ ‖u − uN‖L∞ ≤ C
∣∣C1 − C1,N

∣∣ +

∫ 1

0

∣∣D(w − wN )(s)
∣∣ 1

K(s)
ds ,

≤ C(N + 2)−(α−1)(N(N + α))−t / 2 ‖f‖t, ω(β , α−β) . (3.32)

Then, from (3.32) and

‖u− uN‖2ω(−1+ε1 ,−1+ε2)
=

∫ 1

0
ω(−1+ε1 ,−1+ε2(x) (u− uN )2(x) dx

≤ ‖u− uN‖2L∞
∫ 1

0
ω(−1+ε1 ,−1+ε2)(x) dx ≤ C ‖u− uN‖2L∞ ,

10
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we obtain (3.29).

For D( 1
K ) ∈ L2

ω(α−β , β)(I), we apply integration by parts to (3.31) to obtain

u(x)− uN (x) =
(
C1 − C1,N

) ∫ x

0

(1− s)α−β−1sβ−1

K(s)
ds

+
w(x)− wN (x)

K(x)
+

∫ x

0

(
w(s)− wN (s)

)K ′(s)
K2(s)

ds.

Therefore,
‖u− uN‖2ω(−(α−β),−β) ≤ I1 + I2 + I3 , where (3.33)

I1 = 3 (C1 − C1,N )2

∫ 1

0
ω(−(α−β),−β)(x)

( ∫ 1

0

(1− s)α−β−1sβ−1

K(s)
ds
)2
dx

≤ C (C1 − C1,N )2 , (3.34)

I2 = 3
1

K2
m

‖w − wN‖2ω(−(α−β),−β) , (3.35)

I3 = 3

∫ 1

0
ω(−(α−β),−β)(x)

( ∫ 1

0
ω(− (α−β)

2
,−β

2
)(s) (w(s) − wN (s))ω(

(α−β)
2

,β
2

)(s)
K ′(s)

K2(s)
ds
)2
dx

≤ 3

K2
m

∫ 1

0
ω(−(α−β),−β)(x)

( ∫ 1

0
ω(−(α−β),−β)(s) (w(s) − wN (s)) ds

) ( ∫ 1

0
ω(α−β,β)(s)

K ′(s)

K2(s)
ds
)
dx

≤ C ‖w − wN‖2ω(−(α−β),−β) . (3.36)

Combining (3.33)-(3.36) with (3.28) and (3.21) we obtain (3.30).

We conclude this section with an error bound for D(u− uN ).

Lemma 3.1 For f ∈ Ht
ω(β,α−β)(I), t ≥ 0, then there exists C > 0 (independent of N and α) such

that

‖D(u− uN )‖ω(−(α−β)+1 ,−β+1) ≤ C(N + 2)−(α−1)(N(N + α))−t / 2 ‖f‖t, ω(β , α−β) . (3.37)

Proof : From (3.31) it follows that

D(u − uN ) =
1

K(x)

(
(C1 − C1,N ) (1− x)α−β−1 xβ−1 + D(w − wN )

)
.

Thus,

‖D(u− uN )‖ω(−(α−β)+1 ,−β+1) ≤
1

Km

(
|C1 − C1,N | ‖(1− x)(α−β−1)/2 x(β−1)/2‖

+ ‖D(w − wN )‖ω(−(α−β)+1 ,−β+1)

)
≤ C(N + 2)−(α−1)(N(N + α))−t / 2 ‖f‖t, ω(β , α−β) ,

where in the last step we have used (3.26) and (3.22)), and the fact that (α−β−1) and (β−1) > −1.

11
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4 Numerical experiments

In this section we present three numerical experiments to demonstrate our approximation scheme,
and to compare the experimental rate of convergence of the approximation with the theoretically
predicated rate.

Numerical example. Let K(x) = 1/(1 + xγ) and

f(x) = −r x1−α

Γ(2− α)
+ (1− r)(1− x)1−α

Γ(2− α)
. (4.1)

Then the solution u(x) is given by (3.12) where

w(x) = x − Cxβ2F1(−(α− β − 1), β;β + 1, x), C = 2F1(−(α− β − 1), β;β + 1, 1)−1 ,

and 2F1(a, b; c, x) denotes the Gaussian three parameter hypergeometric function.

In order to determine the theoretical rate of convergence for ‖u− uN‖ω(−(α−β),−β) , ‖u− uN‖L∞ and
‖D(u− uN )‖ω(−(α−β)+1 ,−β+1) from (3.29), (3.30), and (3.37), respectively, we need to determine the
largest value for t such that f(x) ∈ Ht

ω(β , α−β)(I). The most singular terms for f(x) in (4.1) are

x1−α and (1 − x)1−α. Using Lemma A.1 (in the Appendix) we have that x1−α ∈ Ht
ω(β , α−β)(I), for

t < 3− α− β, and (1− x)1−α ∈ Ht
ω(β , α−β)(I), for t < 3− α− (α− β).

Then, for Experiment 1 (α = 1.60, β = 0.80) f(x) ∈ Ht
ω(β , α−β) (I) for t < 3−α−max{α− β , β} =

0.90, which leads to theoretical asymptotic convergence rates of ‖u − uN‖ω(−(α−β),−β) ∼ N−2.20

(using (3.30)), ‖u − uN‖L∞ ∼ N−1.20 (using (3.29)) and ‖D(u − uN )‖ω(−(α−β)+1 ,−β+1) ∼ N−1.20

(using (3.37)).

Assuming that ‖ξ − ξN‖Lρ ∼ N−κ, the experimental convergence rate is calculated using

κ ≈
log(‖ξ − ξN1‖Lρ/‖ξ − ξN2‖Lρ)

log(N2/N1)
.

Experiment 1. In this experiment we select α = 1.60, r = 0.50, β = 0.80 and γ = 0.80, which
leads to f(x) ∈ Ht

ω(β , α−β) (I) for t < 0.60.

Table 4.1: Convergence properties of Experiment 1.

N ‖u− uN‖ω(−(α−β),−β) κ ‖D(u− uN )‖ω(−(α−β)+1,−β+1) κ ‖u− uN‖L∞(I) κ

16 4.87E-04 1.15E-02 4.41E-04
20 3.09E-04 2.15 8.93E-03 1.18 2.95E-04 1.89
24 2.12E-04 2.16 7.26E-03 1.18 2.00E-04 2.23
28 1.54E-04 2.16 6.09E-03 1.19 1.54E-04 1.78
32 1.16E-04 2.16 5.22E-03 1.19 1.21E-04 1.86
36 9.08E-05 2.16 4.56E-03 1.19 9.46E-05 2.14

Pred. 2.20 1.20 1.20
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Figure 4.1: The plots of (left) u(x) and (right) u(x)− uN (x)

Experiment 2. In this experiment, we take α = 1.30, r = 0.63, β = 0.50 and γ = 0.80.
The above analysis gives that f(x) ∈ Ht

ω(β , α−β) (I) for t < 0.90. The corresponding theoreti-

cal asymptotic convergence rates are ‖u − uN‖ω(−(α−β),−β) ∼ N−2.20, ‖u − uN‖L∞ ∼ N−1.20 and
‖D(u− uN )‖ω(−(α−β)+1 ,−β+1) ∼ N−1.20.

Table 4.2: Convergence properties of Experiment 2.

N ‖u− uN‖ω(−(α−β),−β) κ ‖D(u− uN )‖ω(−(α−β)+1,−β+1) κ ‖u− uN‖L∞(I) κ

16 4.57E-04 1.07E-02 4.41E-04
20 2.88E-04 2.20 8.29E-03 1.21 2.95E-04 1.90
24 1.96E-04 2.19 6.71E-03 1.21 2.00E-04 2.24
28 1.42E-04 2.19 5.61E-03 1.21 1.53E-04 1.78
32 1.07E-04 2.19 4.80E-03 1.21 1.20E-04 1.87
36 8.33E-05 2.19 4.18E-03 1.21 9.42E-05 2.15

Pred. 2.20 1.20 1.20

Experiment 3. In this experiment we select α = 1.30, r = 0.63, β = 0.50 and γ = 0.10, which
leads to f(x) ∈ Ht

ω(β , α−β) (I) for t < 0.90. However, in this case, D( 1
K ) 6∈ L2

ω(α−β , β)(I) due to the
relatively strong singularity of K(x) at x = 0, which means that (3.28) is not applicable. Hence we
can only apply the bound (3.26) of c1 − c1,N , which leads to the estimate (3.29) of u− uN instead
of (3.30), and consequently an estimate for the convergence rate of ‖u− uN‖ω(−(α−β),−β) of 1.20 by
(3.29), instead of 2.20 if using (3.30).

13
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Table 4.3: Convergence properties of Experiment 3.

N ‖u− uN‖ω(−(α−β),−β) κ ‖D(u− uN )‖ω(−(α−β)+1,−β+1) κ ‖u− uN‖L∞(I) κ

16 4.99E-04 1.14E-02 5.73E-04
20 3.11E-04 2.24 8.74E-03 1.25 3.71E-04 2.05
24 2.10E-04 2.24 7.03E-03 1.24 2.63E-04 1.98
28 1.51E-04 2.23 5.85E-03 1.24 1.88E-04 2.25
32 1.13E-04 2.22 4.99E-03 1.24 1.35E-04 2.59
36 8.80E-05 2.22 4.33E-03 1.23 1.07E-04 2.01

Pred. 1.20 1.20 1.20

The experimental convergence rates for ‖u − uN‖L2

ω(−(α−β),−β)
and ‖D(u − uN )‖L2

ω(−(α−β)+1,−β+1)

are in strong agreement with the theoretically predicted rates for the first two experiments. For
Experiment 3, we note that the numerical convergence rate of ‖u− uN‖L2

ω(−(α−β),−β)
is 2.20, which

corresponds to the case for D( 1
K ) ∈ L2

ω(α−β , β)(I) (even though this is not the case in this experiment).
Additionally, we remark that the error in the L∞ norm is difficult to measure accurately due to the
oscillatory nature of the error function caused by the polynomial approximation, as illustrated by
Figure 1.

A Appendix

In this section we investigate which Hs
ω(α,β)(I) space u(x) = xµ lies in. For brevity of notation, in

this section we use Hs
(α,β)(I) ≡ H

s
ω(α,β)(I).

Lemma A.1 Let u(x) = xµ. Then, u ∈ Hs
(α,β)(I) for s ≥ 0 satisfying s < 2µ+ β + 1.

Proof : Let χ(x) ∈ C∞[0,∞) denote the cutoff function satisfying

χ(x) =

{
1 for 0 < x ≤ 1/4
0 for x ≥ 3/4

,

and let χδ(x) := χ(xδ ), for δ > 0. Note that

χδ(x) =

{
1 for 0 < x ≤ δ/4
0 for x ≥ 3δ/4

, and
dm

dxm
χδ(x) =

{
0 for 0 < x < δ/4
0 for x > 3δ/4

for m ∈ N .

For δ to be determined, let u = v + w where v(x) = χδ(x)u(x) and w(x) =
(
1 − χδ(x)

)
u(x).

We have that ∣∣∣∣dmv(x)

dxm

∣∣∣∣ ≤ C

m∑
j=0

δ−(m−j) xµ−j , and is zero for x > 3δ/4 .

14
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Thus,∫
I
(1− x)α+m xβ+m

∣∣∣∣dmv(x)

dxm

∣∣∣∣2 dx ≤ C

∫ 3δ/4

0

m∑
j=0

δ−2(m−j) x2µ− 2j+β+m dx

≤ C
m∑
j=0

δ−2(m−j) δ2µ− 2j+β+m+1 provided 2µ − 2j + β +m > −1 ,

≤ C δ2µ+β+1−m ,

which implies that, for m < 2µ + β + 1, v ∈ Hm
(α,β)(I) and

‖v‖2Hm
(α,β)

≤ C δ2µ+β+1−m . (A.1)

Next, consider w(x).∣∣∣∣dmw(x)

dxm

∣∣∣∣ ≤ C

(1− χδ(x)
)
xµ−m +

m−1∑
j=0

xµ−j
dm−j

dxm−j
(
1− χδ(x)

) . (A.2)

The first term on the RHS of (A.2) vanishes for x < δ/4, and the second term vanishes for x < δ/4
and x > 3δ/4. Using this,∫

I
(1− x)α+m xβ+m

∣∣∣∣dmw(x)

dxm

∣∣∣∣2 dx ≤ C

∫ 1

δ/4
xβ+m x2µ− 2m dx +

∫ 3δ/4

δ/4
xβ+m

m−1∑
j=0

x2µ− 2j δ−2(m−j) dx


≤ C

∫ 1

δ/4
x2µ+β−m dx +

m−1∑
j=0

δ−2m+ 2j

∫ 3δ/4

δ/4
x2µ+β+m− 2j dx


≤
{
C
(
1 + δ2µ+β−m+ 1

)
if 2µ + β − m 6= −1

C (1 + | log δ|) if 2µ + β − m = −1
. (A.3)

Hence, for n > 2µ + β + 1
‖w‖2Hn

(α,β)
≤ C δ2µ+β+ 1−n . (A.4)

(Remark: For n > 2µ + β + 1 the exponent of δ in (A.4) is negative, so the ′1′ term in (A.3) is
bounded by the δ term.)

For 0 < t < 1 we have from (A.1) and (A.4)

K(t, u) = inf
u=u1+u2

(
‖u1‖Hm

(α,β)
+ t ‖u1‖Hn

(α,β)

)
(A.5)

≤ ‖v‖Hm
(α,β)

+ t ‖w‖Hn
(α,β)

≤ C
(
δ(2µ+β+1−m)/2 + t δ(2µ+β+ 1−n)/2

)
. (A.6)

Setting δ = t2/(n−m) leads to K(t, u) ≤ C t(2µ+β+1−m)/(n−m).

Recall that

‖u‖2[Hm
(α,β)

, Hn
(α,β)

]θ,2
=

∫ ∞
0

t−2θ (K(t, u))2 dt

t
. (A.7)

15



Spectral approximations for fractional diffusion equations

The larger the value of θ (0 < θ < 1) in (A.7) such that the integral is finite, the “nicer” (i.e., more
regular) is the function u. Hence from (A.7), we are interested in the integrand about t = 0. We
have trivially that for u1 = u, u2 = 0 in (A.5) that K(t, u) ≤ ‖u‖Hm

(α,β)
≤ C. Hence it follows that

K(t, u) ≤
{
C t(2µ+β+1−m)/(n−m) for 0 < t < 1
C for t ≥ 1

.

Using (A.7),

‖u‖2[Hm
(α,β)

, Hn
(α,β)

]θ,2
≤
∫ 1

0
C t−2θ− 1 + 2(2µ+β+1−m)/(n−m) dt +

∫ ∞
1

C t−2θ− 1 dt < ∞ ,

if θ < (2µ + β + 1−m)/(n−m) . (A.8)

For s = (1− θ)m + θn = m + θ(n−m), then s < 2µ + β + 1 using (A.8) .

Hence we can conclude that u(x) = xµ ∈ Hs
(α,β)(I) for s < 2µ + β + 1.
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