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1 Least Squares Linear Models

Suppose we are given a set of m data points

(t1, y1), (t2, y2), . . . , (tm, ym)

which we believe to be samples from some underlying function. Our problem is to
approximate the underlying function using all available information. In general,
this is a difficult problem because we may know very little about the underly-
ing function and the data may be corrupted with noise. There are two common
approaches to approximation of the underlying function: interpolation and curve
fitting. In interpolation a function, called an interpolant, is constructed whose
graph passes through the data points. In curve fitting a function is constructed
which passes "close to" the data points but not necessarily through them. This
function is said to "fit" the data. When a significant amount of noise is present
in the data, an interpolant may not provide a satisfactory approximation of the
underlying function because the interpolant may oscillate rapidly. In this case, a
slowly varying function that "fits" the data may provide a better approximation of
the underlying function.

A linear model of the form

f (t; c) =
n∑

j=1

cjφj (t) (1)

is often used to interpolate or fit data. It is a linear combination of "basis" functions,
φ1(t), · · · , φn(t), which are selected based on practical considerations, visual in-
spection of the data, and knowledge of the processes giving rise to the data. The

∗Department of Mathematical Sciences, Clemson University, Clemson, SC 29634–1907, U.S.A.
(bmoss@math.clemson.edu). Copyright c©1995,1996 William F. Moss. All rights reserved.

1



linear model depends on an independent variable t and on a set of n coefficients,
c1, . . . , cn. The c in f (t; c) denotes a column vector containing these coefficients.
In interpolation, the number of basis functions, n, is chosen to be equal to the
number of data points, m, while for curve fitting n is typically much smaller than
m. We will assume that n ≤ m.

As an example, suppose a straight line is to be used to fitm ≥ 2 data points. We
set n = 2 and φ1(t) = 1 and φ2(t) = t . Then f has the form f (t; c) = c1 + c2t .
Generally, this line will be an interpolant only in case m = 2. A straight line fit is
often used in statistics where this line is called the regression line.

If the linear model is constructed so that it changes much more slowly than
an interpolant, then curve fitting can be used as a noise filter. This approach is
illustrated in the first problem of this project. Here, samples taken from a straight
line are corrupted with noise generated randomly, and then a straight line is fit to
the data. The original line is very nearly recovered.

In the mathematical discussion below, we will use the following matrix notation
which was introduced in the Orthogonal Methods course outline. Let

y = [y1, . . . , ym]T , c = [c1, . . . , cn]
T , A = (aij ) = (φj (ti)).

The m× n matrix A is often called the design matrix.
The interpolation problem is to find c so that the interpolation equations

f (ti; c) = yi, i = 1, . . . , m, (2)

have a solution. Substituting equation (1) into (2), we find that

f (ti; c) =
n∑

j=1

cjφj (ti) = (Ac)i , i = 1, . . . , m

which is a system of m equations and n unknowns with the matrix form

Ac = y. (3)

The curve fitting problem is to find c so that the graph of f passes "close to" the
data points. The most commonly used method for defining "close to" is called the
least squares method. In the least squares method, c is determined by minimizing
the sum of the squares of the vertical deviations between the graph of f and the
data points. The problem is to find cls so that

m∑

i=1

[f (ti; cls)− yi]2 = min
c∈IRn×1

m∑

i=1

[f (ti; c)− yi]2 . (4)
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We can convert (4) into matrix form as follows. First, note that

f (ti; c) =
n∑

j=1

cjφj (ti) = (Ac)i and
m∑

i=1

[(Ac)i − yi]2 = ‖Ac − y‖2
2. (5)

From (4) and (5) we see that

m∑

i=1

[f (ti; cls)− yi]2 ≤
m∑

i=1

[f (ti; c)− yi]2 for all c (6)

implies that
‖Acls − y‖2

2 ≤ ‖Ac − y‖2
2 for all c. (7)

Taking the square root of both sides of (7), yields the standard matrix form of the
linear least squares problem. Find cls so that

‖Acls − y‖2 = min
c∈IRn×1

‖Ac − y‖2. (8)
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Figure 1: The m = 3, n = 2 case.

Figure 1 provides geometric insight into the problem of solving (3) and (8) for
the case m = 3 and n = 2. Here y ∈ IR3×1 and A = [a1, a2] is 3 × 2 with two
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linearly independent columns, a1 and a2. Now Ran(A) is the span{a1, a2}, that
is, the set of all linear combinations of the columns of A. It is a two-dimensional
subspace of IR3×1 and is visualized in Figure 1 by the plane which passes through
the origin and contains a1, a2. Also, for any c ∈ IR2×1, Ac = c1a1 + c2a2 ∈
Ran(A). Now if y is not in the plane Ran(A), as is the case in Figure 1, the linear
system (3) and the interpolation problem will not have a solution. On the other
hand, the least squares problem always has a solution cls . The vector Acls is the
vector in the plane Ran(A), which is closest to y. Also, the vector y − Acls will
be orthogonal to the the plane Ran(A). Because the columns of A are linearly
independent, or equivalently because rank(A) = 2, cls is the only solution to the
least squares problem. Now imagine a case where a1 and a2 lie along the same
line. In this case, Ran(A) is a one-dimensional subspace of IR3×1 and can be
visualized by a line passing through the origin. Now there are infinitely many
ways to describe a vector in Ran(A) as a linear combination of a1 and a2, and so
there are infinitely many solutions to the least squares problem. We would prefer
to have a unique linear model which fits the data. This will happen if the basis
functions used in the linear model are chosen so that the columns of A are linearly
independent.

Them > 3 case works the same ways as them = 3 case. For c,Ac ∈ Ran(A),
a subspace of IRm×1. In the least squares problem, we find the vector cls so
that Acls ∈ Ran(A) is as close to the vector y as possible. Because we have
assumed that n ≤ m, rank(A) ≤ n. If the basis functions have been well chosen,
the columns of A will be linearly independent and rank(A) = n. In this case,
(8) is said to be a full rank least squares problem and has a unique solution. If
rank(A) < n, (8) is said to be rank deficient and has infinitely many solutions.

In Orthogonal Methods course outline, we have see that the singular value
decomposition (SVD) ofA can be used to solve the least squares problem. We note
that in them = n case, it can also be used to solve (3), although Gauss elimination
with partial pivoting is more frequently used. In the Orthogonal Methods course
outline a formula is given for cls . In the rank deficient case, this formula gives
the least squares solution which has the smallest 2-norm. There are two other
methods that are commonly used to solve the full rank least squares problem: QR
factorization with column pivoting followed by the solution of a triangular system,
and solution of the normal equations. However, the SVD approach is regarded as
the most computationally reliable method.

As explained in the instructions for this project, you are to create an M-file with
filename P1loginid.m containing MATLAB commands and statements to solve the
following problems. Note that you can cut MATLAB code from this PDF document
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and paste it into the MATLAB editor.

• Problem 1 In this problem you will fit noisy data using a line. We generate
the data by taking 20 uniformly spaced samples from the line y = 1 + 2t for
t ∈ [0, 1] and adding a small amount of random noise to each sample. Add
the following lines to P1loginid.m.

% Project 2. Last Name First Name. GroupXX

echo on

% Problem 1
% create m > 2 noisy data points lying close to a line
m = 20;
t = linspace(0,1,m)’;
epsilon = .2; % Maximum noise amplitude
y = 1 + 2*t + epsilon*rand(m,1);
% Use the model c(1) + c(2)*t
% Construct the design matrix A.
A = [ones(m,1),t];
% Use the SVD to solve the least squares problem.
c = pinv(A)*y
if rank(A) == 2

disp(’The design matrix is full rank’)
else

disp(’The design matrix is rank deficient.’)
end
% Since A is full rank, we have found the unique
% solution to the full rank least squares problem.
% When the design matrix is rank deficient, the
% least squares problem has infinitely many
% solutions. The above computation would produce
% the solution that has the smallest 2-norm.
%
% Plot
tt = linspace(0,1,100)’;
yy = c(1) + c(2)*tt;
plot(t,y,’o’,tt,yy)
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At the MATLAB prompt, type P2loginid to run your M-file. Note that a semi-
colon at the end of a line suppresses screen output for that line. You should
see your plot in a window labeled Figure No. 1. Next, add three more lines
for Problem 1. Use the MATLAB commands "xlabel" (help xlabel),
"ylabel" (help ylabel), and "title" (help title) to label the x and
y axes and to add explanatory text at the top of the plot. Run your M-file
again. Notice that the solution to the least squares problem is a coefficient
vector which is close to [1, 2].

• Problem 2 The water level in the North Sea is mainly determined by the
so-calledM2-tide, whose period is about 12 hours. A reasonable but simple
model for predicting the level at any time t is a function of the form

h(t) = c1φ1(t)+ c2φ2(t)+ c3φ3(t), t in hours.

where

φ1(t) = 1, φ2(t) = sin
(2πt

12

)
φ3(t) = cos

(2πt
12

)
.

Here we are using basis functions which are periodic with period 12 hours.
Does this seem reasonable? We wish to estimate the values of the unknown
coefficients c1, c2, and c3 from a set of measured values of water level
y1, . . . , ym made at corresponding times t1, . . . , tm by solving a linear least
squares problem as discussed above. From calculus we know that determin-
ing c1, c2, and c3 corresponds to estimating the mean water level (bias), the
amplitude of variation about the mean, and the phase of the oscillatory water
level.

Suppose we have made the measurements:

tj 0 2 4 6 8 10 hours
yj 1.0 1.6 1.4 0.6 0.2 0.8 meters

Add the following lines to your M-file to solve this linear least squares
problem having m = 6 data points and n = 3 basis functions.

% Problem 2

m = 6;
t = [0;2;4;6;8;10]; % hours
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y = [1;1.6;1.4;0.6;0.2;0.8]; % meters
% design matrix
A = [ones(m,1),sin(pi*t/6),cos(pi*t/6)];
c = pinv(A)*y % least squares solution
% Plot the data and the model
% plot vectors
tt = linspace(0,10,100)’;
yy = [ones(100,1),sin(pi*tt/6),cos(pi*tt/6)]*c;
figure % create a new plot window
plot(t,y,’o’,tt,yy)

At the MATLAB prompt, type P2loginid to run your M-file. You should
see your plot for problem 2 in a window labeled Figure No. 2. Next, add
three more lines for Problem 2. Use the MATLAB commands "xlabel"
(help xlabel), "ylabel" (help ylabel), and "title" (help title)
to label the x and y axes and to add explanatory text at the top of the plot.
Run your M-file again. Notice that the model passes "close to" the data
points but does not interpolate them.

• Problem 3 The interpolation equations (2) can be satisfied if and only if the
linear system (3) has a solution. If n < m, there will be more equations
than unknowns and this overdetermined system will not generally have a
solution. This is clear in Figure 1 where m = 3 and n = 2. Show that this
is the case for the example in Problem 2 by applying the rank test from the
Linear Systems and Matrices Outline. You must compare the rank of A to
the rank of [A, y].

• Problem 4 Add lines to your M-file to find a straight line fit to the following
data and plot a graph of the straight line model along with the data on the
same set of axes. Label your graph. Note that here we have (x, y) data
instead of (t, y) data.

Density of ore x 2.8 2.9 3.0 3.1 3.2 3.2 3.2 3.2 3.3 3.4
Iron content y(%) 30 26 33 31 33 35 33 37 36 33
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• Problem 5 Balancing a Chemical Reaction. 1 Balance the chemical reaction

x1Cu2S + x2H
+ + x3NO

−
3 −→ x4Cu

2+ + x5NO + x6S8 + x7H2O

by calculating the smallest possible, positive integer coefficients x1, . . . , x7.
The principles are that the number of atoms of each element must be con-
served as well as the total electric charge. This gives six equations for the
seven coefficients. Put these equations in the form of a homogeneous sys-
tem Ax = 0. The null space N(A) has dimension one. Find a basis vector
for this null space. Find the solution in the form cv where v is your basis
vector and c is a scalar. Remember that the coefficients must be positive
integers and they must be as small as possible. Hint: it is possible to solve
this problem using the MATLAB functions augmovie, or ref and slash, or
null.

• Problem 6 The following problem arises later in the course when we model
heat conduction in a rod and a vibrating string. Find a scalar λ (eigenvalue)
and a nontrivial function X(x) (eigenfunction) so that

X′′(x)+ λX(x) = 0 (9)

X(0) = 0 (10)

X(1) = 0 (11)

This problem is sometimes referred to as an eigenvalue problem for an or-
dinary differential equation. It is also called a Sturm-Liouville problem. It
can be shown that there are infinitely many positive eigenvalues. We want to
approximate the smallest one, which the Sturm-Liouville theory says is π2.
We will reduce this problem to a matrix eigenvalue problem using a centered
finite difference approximation for X′′.
First, we discretize the interval [0, 1] with mesh points xi = ih, i =
0, . . . , n+ 1, and h = 1/(n+ 1). Next, we use the approximation

X′′(xi) ≈ X(xi+1)− 2X(xi)+X(xi−1)

h2
for i = 1, . . . , n, (12)

1This problem appears in FirstLeaves: A Tutorial Introduction, B. W. Char et. al., Springer
1992, page 197 (ISBN 0-387-97621-3).
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to derive a matrix eigenvalue problem by evaluating (9) at x1, . . . , xn, and
using (10), (11), and (12). This problem has the form

1

h2
AZ = λZ (13)

where Z = [X(x1), . . . , X(xn)]T and A has the number 2 on the main
diagonal, the number -1 on the first subdiagonal and first superdiagonal, and
is zero elsewhere.

Add the following lines to your M-file to solve this problem. Experiment
with the value of n.

% Problem 6

n = 100;
h = 1/(n+1); e = ones(n,1)/hˆ2;
A = spdiags([-e 2*e -e],-1:1,n,n);
z = eig(A); format long
y = sort(z)/piˆ2;
y(1)
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