
These are brief notes for the lecture on Friday September 10, 2010: they are not complete,
but they are a guide to what I want to say today. They are not guaranteed to be correct.

2.3. Matrix Inverses, continued

Recall the definition of invertible and of the inverse of a matrix

Definition. An n×n matrix is invertible if there exists a n×n matrix B so that AB = In =
BA. B is called the inverse of A and is denoted by A−1. A matrix which is not invertible is
said to be singular.

Theorem 5. If A is an invertible m×m matrix, then for every b ∈ Rn, the equation Ax = b
has a unique solution, namely x = A−1b.

Proof:

Theorem 6.

(1) If A is invertible, then so is A−1, and its inverse is given by

(A−1)−1 = A

.

(2) If A and B are invertible n× n matrices (that is, they are both invertible and they
are the same size) then AB is invertible, and

(AB)−1 = B−1A−1.

(3) If A is invertible, then so is AT , and its inverse is given by

(AT )−1 = (A−1)T .

Proof:
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Elementary Row Operations Recall that when solving a linear system of equations, we
converted it to a matrix (corresponding to the coefficients of the unknowns), augmented this
matrix by a column matrix, and then performed elementary row operations on the resulting
matrix. We were then able to read off from the matrix in reduced row echelon form whether
there were solutions to the original system, if so, how many there were, and to write the
general solution down in parametric form (as a particular solution plus the parametric form
of the solution to the homogeneous problems).

What are these elementary row operations? Can we represent them by matrices?

Denoting rows r and s by Rr and Rs, the row operations are:

(1) Interchange rows Rr and Rs of a matrix.

(2) For a non-zero c ∈ R, replace Rr by cRr.

(3) Replace Rr (row r) by Rr − cRs

Now, if A has column form [a1, a2, . . . , an] and B has the appropriate size, then BA has
column form [Ba1, Ba2, . . . , Ban].

Hence, if for each of the elementary row operations we can find a matrix which represents
that operation on a vector, it will also represent the same operation on A.

(1) The matrix M having (i, j)-entry mij representing interchanging Rr and Rs agrees
with the identity matrix except for four entries:

mrr = 0 mrs = 1
msr = 1 mss = 0

(2) The matrix M representing replacing row Rr by cRr agrees with the identity matrix
except for the (r, r)-entry, which is mrr = c.

(3) The matrix M representing replacing Rr by Rr−cRs agrees with the identity matrix
except for the the (r, s)-entry, which is mrs = −c.

Exercise: for a matrix having 4 rows, write down the elementary matrices which

(1) switches R1 and R3

(2) replace R2 by 3R2
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(3) replaces R2 by R2 + 7R4

Exercise: write down the inverse for each of the elementary matrices above.

Note: Suppose that we have a matrix A and that we perform a sequence of elementary
row operations, having matrices E1, E2, . . . ,Ek. Then applying just the first operation we
obtain a matrix E1A: applying the second operation, you obtain E2E1A, applying the third,
E3E2E1A, and so after applying all of the operations we end up with

B = EkEk−1 . . . E2E1A.

We’ve seen already that an n×n matrix A is invertible if and only if every equation Ax = b
has a unique solution: this is true if and only if the row reduced echelon form of A has a
pivot in every row and column, which is if and only if the row reduced echelon form is In.

Hence
In = EkEk−1 . . . E2E1A

and we see that

A−1 = EkEk−1 . . . E2E1

EkEk−1 . . . E2E1In.

This gives us a way to compute A−1 by hand: augment A by the matrix In, and row reduce
the resulting n × 2n matrix. If A is invertible, then of course, the first half of the columns
will row reduce to the identity. The remaining columns will give A−1.

We state this as a theorem:

Theorem 7. An n × n matrix A is invertible if and only if A ∼ In, in which case the
sequence of elementary row operations which transform A to the identity also transform the
identity matrix In to A−1.
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