These are brief notes for the lecture on Monday September 13, 2010: they are not complete, but they are a guide to what I want to say today. They are not guaranteed to be correct.

2.2. Matrix Inverses, continued

Recall the matrices corresponding to elementary row operations Denoting rows r and s by R_r and R_s , the row operations are:

- (1) Interchange rows R_r and R_s of a matrix.
- (2) For a non-zero $c \in \mathbb{R}$, replace R_r by cR_r .
- (3) Replace R_r (row r) by $R_r cR_s$

Now, if A has column form $[\underline{a}_1, \underline{a}_2, \ldots, \underline{a}_n]$ and B has the appropriate size, then BA has column form $[B\underline{a}_1, B\underline{a}_2, \ldots, B\underline{a}_n]$.

Hence, if for each of the elementary row operations we can find a matrix which represents that operation on a vector, it will also represent the same operation on A.

(1) The matrix M having (i, j)-entry m_{ij} representing interchanging R_r and R_s agrees with the identity matrix except for four entries:

m_{rr}	=	0	m_{rs}	=	1
m_{sr}	=	1	m_{ss}	=	0

- (2) The matrix M representing replacing row R_r by cR_r agrees with the identity matrix except for the (r, r)-entry, which is $m_{rr} = c$.
- (3) The matrix M representing replacing R_r by $R_r cR_s$ agrees with the identity matrix except for the (r, s)-entry, which is $m_{rs} = -c$.

Exercise: for a matrix having 4 rows, write down the elementary matrices which

(1) switches R_1 and R_3

(2) replace R_2 by $3R_2$

(3) replaces R_2 by $R_2 + 7R_4$

Exercise: write down the inverse for each of the elementary matrices above.

Note: Suppose that we have a matrix A and that we perform a sequence of elementary row operations, having matrices E_1, E_2, \ldots, E_k . Then applying just the first operation we obtain a matrix E_1A : applying the second operation, you obtain E_2E_1A , applying the third, $E_3E_2E_1A$, and so after applying all of the operations we end up with

$$B = E_k E_{k-1} \dots E_2 E_1 A$$

We've seen already that an $n \times n$ matrix A is invertible if and only if every equation $A\underline{x} = \underline{b}$ has a unique solution: this is true if and only if the row reduced echelon form of A has a pivot in every row and column, which is if and only if the row reduced echelon form is I_n .

Hence

$$I_n = E_k E_{k-1} \dots E_2 E_1 A$$

and we see that

$$A^{-1} = E_k E_{k-1} \dots E_2 E_1$$
$$E_k E_{k-1} \dots E_2 E_1 I_n.$$

This gives us a way to compute A^{-1} by hand: augment A by the *matrix* I_n , and row reduce the resulting $n \times 2n$ matrix. If A is invertible, then of course, the first half of the columns will row reduce to the identity. The remaining columns will give A^{-1} .

We state this as a theorem:

THEOREM 7. An $n \times n$ matrix A is invertible if and only if $A \sim I_n$, in which case the sequence of elementary row operations which transform A to the identity also transform the identity matrix I_n to A^{-1} .

Example: Let $A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 3 & 1 \\ 3 & 5 & 1 \end{pmatrix}$. Find A^{-1} .

2.3. Characterization of Invertible Matrices

At the beginning of our discussion of inverses, we discussed inverses in terms of linear transformations. We formalize that discussion now.

THEOREM 8. Let A be an $n \times n$ matrix (and this is essential): the following conditions are equivalent:

- (1) A is invertible.
- (2) $A \sim I_n$.
- (3) A has n pivots.
- (4) $A\underline{x} = \underline{0}$ has only the trivial solution.
- (5) The columns of A are linearly independent.
- (6) The linear transformation $T: \underline{x} \longmapsto A\underline{x}$ is 1-1.
- (7) For every $\underline{b} \in \mathbb{R}^n$, the equation $A\underline{x} = \underline{b}$ has at least one solution.
- (8) The columns of A span \mathbb{R}^n
- (9) The linear transformation $T: \underline{x} \longmapsto A\underline{x}$ is onto.
- (10) $\exists C \text{ so that } CA = I_n$.
- (11) $\exists D \text{ so that } DA = I_n$.
- (12) A^T is invertible.

Proof: To prove a number of statements are equivalent, it is often easiest to show a chain of beginning and ending at one of the statements. Here, it is easiest to do the following chains:

$$\begin{array}{cccc} (1) \implies (10) \implies (4) \implies (3) \implies (2) \implies (1) \\ (1) \implies (11) \implies (7) \implies (1) \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{array}$$

$$\begin{array}{rcl} (7) \iff (8) \iff (9) \\ (4) \iff (5) \iff (6) \\ (1) \iff (12) \end{array}$$

Finally to bring things full circle, we summarize how we started the discussion of inverses: THEOREM 9. Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be a linear transformation, and let A be the corresponding matrix. Then T is invertible if and only if A is invertible, in which case $T^{-1}\underline{x} = A^{-1}\underline{x}$.