
These are brief notes for the lecture on Monday September 13, 2010: they are not complete,
but they are a guide to what I want to say today. They are not guaranteed to be correct.

2.2. Matrix Inverses, continued

Recall the matrices corresponding to elementary row operations Denoting rows r and s by
Rr and Rs, the row operations are:

(1) Interchange rows Rr and Rs of a matrix.

(2) For a non-zero c ∈ R, replace Rr by cRr.

(3) Replace Rr (row r) by Rr − cRs

Now, if A has column form [a1, a2, . . . , an] and B has the appropriate size, then BA has
column form [Ba1, Ba2, . . . , Ban].

Hence, if for each of the elementary row operations we can find a matrix which represents
that operation on a vector, it will also represent the same operation on A.

(1) The matrix M having (i, j)-entry mij representing interchanging Rr and Rs agrees
with the identity matrix except for four entries:

mrr = 0 mrs = 1
msr = 1 mss = 0

(2) The matrix M representing replacing row Rr by cRr agrees with the identity matrix
except for the (r, r)-entry, which is mrr = c.

(3) The matrix M representing replacing Rr by Rr−cRs agrees with the identity matrix
except for the the (r, s)-entry, which is mrs = −c.

Exercise: for a matrix having 4 rows, write down the elementary matrices which

(1) switches R1 and R3

(2) replace R2 by 3R2

(3) replaces R2 by R2 + 7R4
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Exercise: write down the inverse for each of the elementary matrices above.

Note: Suppose that we have a matrix A and that we perform a sequence of elementary
row operations, having matrices E1, E2, . . . ,Ek. Then applying just the first operation we
obtain a matrix E1A: applying the second operation, you obtain E2E1A, applying the third,
E3E2E1A, and so after applying all of the operations we end up with

B = EkEk−1 . . . E2E1A.

We’ve seen already that an n×n matrix A is invertible if and only if every equation Ax = b
has a unique solution: this is true if and only if the row reduced echelon form of A has a
pivot in every row and column, which is if and only if the row reduced echelon form is In.

Hence
In = EkEk−1 . . . E2E1A

and we see that

A−1 = EkEk−1 . . . E2E1

EkEk−1 . . . E2E1In.

This gives us a way to compute A−1 by hand: augment A by the matrix In, and row reduce
the resulting n × 2n matrix. If A is invertible, then of course, the first half of the columns
will row reduce to the identity. The remaining columns will give A−1.

We state this as a theorem:

Theorem 7. An n × n matrix A is invertible if and only if A ∼ In, in which case the
sequence of elementary row operations which transform A to the identity also transform the
identity matrix In to A−1.
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Example: Let A =

1 2 −1
2 3 1
3 5 1

. Find A−1.

2.3. Characterization of Invertible Matrices

At the beginning of our discussion of inverses, we discussed inverses in terms of linear trans-
formations. We formalize that discussion now.

Theorem 8. Let A be an n× n matrix (and this is essential): the following conditions are
equivalent:

(1) A is invertible.

(2) A ∼ In.

(3) A has n pivots.

(4) Ax = 0 has only the trivial solution.

(5) The columns of A are linearly independent.

(6) The linear transformation T : x 7−→ Ax is 1-1.

(7) For every b ∈ Rn, the equation Ax = b has at least one solution.

(8) The columns of A span Rn

(9) The linear transformation T : x 7−→ Ax is onto.

(10) ∃C so that CA = In.

(11) ∃D so that DA = In.

(12) AT is invertible.

Proof: To prove a number of statements are equivalent, it is often easiest to show a chain of
beginning and ending at one of the statements. Here, it is easiest to do the following chains:

(1) =⇒ (10) =⇒ (4) =⇒ (3) =⇒ (2) =⇒ (1)

(1) =⇒ (11) =⇒ (7) =⇒ (1)
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(7) ⇐⇒ (8) ⇐⇒ (9)

(4) ⇐⇒ (5) ⇐⇒ (6)

(1) ⇐⇒ (12)

Finally to bring things full circle, we summarize how we started the discussion of inverses:

Theorem 9. Let T : Rn −→ Rn be a linear transformation, and let A be the corresponding
matrix. Then T is invertible if and only if A is invertible, in which case T−1x = A−1x.
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