
These are brief notes for the lecture on Friday September 24, 2010: they are not complete,
but they are a guide to what I want to say today. They are not guaranteed to be correct.

3.1. Determinants, continued

Recall, we defined the determinant of an n × n square matrix A in the following fashion:
we row reduced A, using only row switches and row replacement operations, until it was in
echelon form U (with ij entry uij). Then if the number of row switches is k, the determinant
of A is

(−1)k
n∏
i=1

uii.

We deduced from this some useful properties, and we stated some others.

One property which follows is that if A has column form [a1, a2, . . . , an], then we can regard
the determinant of an n× n matrix as a function of n variables, each of which is a vector in
Rn,

det(A) = f(a1, a2, . . . , an).

Then f has the property that

(1) If we switch two vectors, say ai and aj, then we replace the determinant by its
negative, so

f(a1, . . . , ai, . . . , aj, an) = −f(a1, . . . , aj, . . . , ai, an)

Such a function is called alternating. If such a function has a vector appearing as an
argument in two different positions, by switching those two positions, we see that
the determinant must be zero: so, repeated columns implies determinant 0.

(2) If we replace ai by ai + caj, then the determinant is unchanged. With a bit of
work, this can be converted to the following: we can replace a sum of two vectors
as follows;

f(b1 + c1, a2, a3, . . . , an) = f(b1, a2, a3, . . . , an) + f(c1, a2, a3, . . . , an).

Similar behaviour happens in every column. Such a function f is called multilinear.

(3) If we evaluate the determinant on the identity, we get 1. That is, if e1, e2, . . . , en are
the standard basis for Rn, then

f(e1, e2, . . . , en) = 1

Now, it turns out that there is exactly one function of n vectors from Rn having these three
properties (which is, of course, the determinant). This is usually taken to be the “proper
definition” of the determinant: the unique multilinear alternating n-form on Rn which is 1
on the standard basis.

You will probably not need to know this unless you are a math major!
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A consequence is the following: if the first column of A has only one non-zero value, in the
jth row, we can compute the determinant as follows:

Hence we can write the first column of A as a sum a11e1 + a21e2 + · · ·+ an1en, and then use
linearity to obtain what is called the “co-factor expansion” of the determinant of A.
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This is of little use computationally, but does enable us to prove a theoretically nice for-
mula for the determinant. A permutation σ of {1, 2, . . . , n} is a 1-1 and onto function
σ : {1, 2, . . . , n} → {1, 2, . . . , n}. Any such function can be viewed as switching pairs of
numbers (e.g. 1,2,3,4 is replaced by 3,2,1,4 [switching 1 and 3] etc). There may be multi-
ple ways to obtain a permutation by switching, but the parity of the number of switches
(whether there is an even number or an odd number) is always the same, and is called the
sign of σ. The set of permutations on {1, 2, . . . , n} is called Sn.

Theorem 1. Let A be an n×n matrix, with entries aij. Then the determinant of A is given
by

det(A) =
∑
σ∈Sn

(−1)sign(σ)
n∏
i=1

aiσ(i)

This means that the determinant is a sum of terms, each of which is a product of n elements,
exactly one element from each row and column. The term gets a + or a − associated with
it according to the sign of the corresponding permutation. This will have an implication for
eigenvalues and eigenvectors later in the course.

The determinant of a matrix has a concrete geometric interpretation too:

Theorem 2. Let A be an n × n matrix, and let T : Rn → Rn be the corresponding linear
transformation. The unit cube in Rn is formed by the standard basis vectors e1, . . . , en,
and has volume equal to 1. The vectors Te1, . . . , T en define a parallelepiped in Rn, and the
volume of the parallelepiped is equal to |det(A)|. The sign of the determinant is determined
by whether the parallelepiped has been “reflected” or not.

This interpretation is why determinants appear so often in multivariate calculus!
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