These are brief notes for the lecture on Wednesday November 11, 2009: they are not complete,
but they are a guide to what I want to say today. They are not guaranteed to be correct.

5.3. Diagonalization
DEFINITION. An n X n matrix A is said to be diagonalizable if there exists a an invertible
matriz P and a diagonal matriz D (both of which must be n x n) so that A = PDP~! (or

equivalently, since P is invertible, AP = PD): that is, A is similar to a diagonal matriz.

Some matrices turn out not to be diagonalizable: we’ll see shortly that, for example,
01
= o)

Eigenvalues and eigenvectors turn out to be exactly what we need to study diagonalization
of matrices. In fact, we can characterize exactly when a square matrix can be diagonalized.

is not diagonalizable.

THEOREM 6 (The Diagonalization Theorem). An n x n matriz A is diagonalizable if and
only if it has n linearly independent eigenvectors. In fact, A = PDP~', with D a diagonal
matriz, if and only if the columns of P are n linearly independent eigenvectors of A. In this
case the diagonal entries of D are the eigenvalues of A, with the jj'" entry of D being the
eigenvalue corresponding to the eigenvector which is the j* column of A.

So, this means that we can diagonalize an n x n matrix A if and only if we can find a basis
for R" consisting of eigenvectors of A. Before we see why this is, let’s revisit the matrix

A= (8 (1)) above.

The characteristic equation for A is A2 = 0, so the only eigenvalue is 0. Now, the null space
of A is 1 dimensional, so we can only find one linearly independent eigenvector. Hence by
the theorem, A cannot be diagonalized!

Proof of the theorem: If P is invertible, and A = PDP~!, then AP = PD. If
P=v; v, ... v,
and D has diagonal entries Ay, ... \,, then PD has columns
PD = [Mv; Avy ... Ao, ).

Hence Av; = Aju;, and v; is an eigenvector of A. Since P is invertible, its columns are
linearly independent, and hence we have n linearly independent eigenvectors of A.

Conversely, if we have n linearly independent eigenvectors, vy, ...v, (having corresponding
eigenvalues Ay, ...\, respectively), we construct a matrix P having them as columns. Then

AP = [Mv; Avy ... Ao, ] = PD
Since the n vectors in R" are linearly independent, P is invertible and hence
A=pPDpP™!
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and A is diagonalizable. O

COROLLARY. An n x n matriz A having n distinct eigenvalues is diagonalizable.

Proof: We saw earlier that eigenvectors corresponding to distinct eigenvalues are linearly
independent. Each eigenvalue has at least one corresponding eigenvector: hence we have n
linearly independent eigenvectors, and A is diagonalizable.

How to find eigenvalues numerically
The characteristic equation is nice theoretical tool, but it is not the best way to find eigen-
values numerically, especially if the matrix has floating point entries.

Here are two methods which give more success.

To simplify things, we will assume that A is n x n and is diagonalizable, so that it has n real
eigenvalues, and that they all have distinct sizes,
’)\1’ > |)\2 > e > |)\n‘

with eigenvectors v,

v; corresponding to A;.

The power method will enable us to find A\; and a corresponding eigenvector. Suppose we
have a vector x € R", so that
T=Cu; + -+,
Then if we multiply z by A k times, we obtain
Arg =i ARy 4+ 4 e, AR,
= cl)\lfyl 4+ 4 cn)\flyn
If we divide both sides by \¥, we get

1 Ao\ )"
(Al)kAkizclﬂ1+CZ (/\—j) Vg + -+ Gy <A_1) U,

k
The coefficients ¢; (;—i) for 7 > 2 tend to zero as k — oo. This means, so long as ¢; # 0,

that as k gets large, A¥z points in nearly the same direction as v, .




This gives rise to
The Power Method

(1) Select an initial vector x, whose largest entry is 1.

(2) For k=0,1,...
(a) Compute Az,
(b) Let ug be an entry in Az, whose absolute value is as large as possible.
(c) Compute z;,,, = (1/px)Azy,.

(3) For almost all choices of z,, the sequence {4} approaches the dominant eigenvalue
A1, and the sequence {z, } approaches a corresponding eigenvector.

This method works fastest when A; is much bigger than the other eigenvalues. We can
exploit this, if we have a good guess at an eigenvalue using the inverse power method.

Suppose that A has an eigenvalue \;, which we don’t know, but we have an estimate o # A;
which is closer to A than to any other eigenvalue. We will consider the matrix B = (A—al)™!:
it is not hard to show that B has the same eigenvectors as A, and that its eigenvalues are

1 1 1
M—a' —a T\ —a

So, if « is closer to A; than to any other eigenvalue of A, the eigenvalue %a is dominant.
J

A

We exploit this as follows:
The Inverse Power Method
(1) Select an initial estimate « close enough to A.
(2) Select an initial vector x, whose largest entry is 1.
(3) For k=0,1,...
(a) Solve (A —al)y, =, fory,.
(b) Let ux be an entry in Y, whose absolute value is as large as possible.
(c¢) Compute v, = o+ (1/p).
(d) Compute 2, = (1/p)y,.

(4) For almost all choices of z,, the sequence {1} approaches the eigenvalue A of A,
and the sequence {z, } approaches a corresponding eigenvector.



