
These are brief notes for the lecture on Wednesday November 11, 2009: they are not complete,
but they are a guide to what I want to say today. They are not guaranteed to be correct.

5.3. Diagonalization

Definition. An n × n matrix A is said to be diagonalizable if there exists a an invertible
matrix P and a diagonal matrix D (both of which must be n × n) so that A = PDP−1 (or
equivalently, since P is invertible, AP = PD): that is, A is similar to a diagonal matrix.

Some matrices turn out not to be diagonalizable: we’ll see shortly that, for example,

A =

(
0 1
0 0

)
is not diagonalizable.

Eigenvalues and eigenvectors turn out to be exactly what we need to study diagonalization
of matrices. In fact, we can characterize exactly when a square matrix can be diagonalized.

Theorem 6 (The Diagonalization Theorem). An n × n matrix A is diagonalizable if and
only if it has n linearly independent eigenvectors. In fact, A = PDP−1, with D a diagonal
matrix, if and only if the columns of P are n linearly independent eigenvectors of A. In this
case the diagonal entries of D are the eigenvalues of A, with the jjth entry of D being the
eigenvalue corresponding to the eigenvector which is the jth column of A.

So, this means that we can diagonalize an n× n matrix A if and only if we can find a basis
for Rn consisting of eigenvectors of A. Before we see why this is, let’s revisit the matrix

A =

(
0 1
0 0

)
above.

The characteristic equation for A is λ2 = 0, so the only eigenvalue is 0. Now, the null space
of A is 1 dimensional, so we can only find one linearly independent eigenvector. Hence by
the theorem, A cannot be diagonalized!

Proof of the theorem: If P is invertible, and A = PDP−1, then AP = PD. If

P = [v1 v2 . . . vn]

and D has diagonal entries λ1, . . . λn, then PD has columns

PD = [λ1v1 λ2v2 . . . λnvn].

Hence Avj = λjvj, and vj is an eigenvector of A. Since P is invertible, its columns are
linearly independent, and hence we have n linearly independent eigenvectors of A.

Conversely, if we have n linearly independent eigenvectors, v1, . . . vn (having corresponding
eigenvalues λ1, . . . λn respectively), we construct a matrix P having them as columns. Then

AP = [λ1v1 λ2v2 . . . λnvn] = PD

Since the n vectors in Rn are linearly independent, P is invertible and hence

A = PDP−1
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and A is diagonalizable. �

Corollary. An n× n matrix A having n distinct eigenvalues is diagonalizable.

Proof: We saw earlier that eigenvectors corresponding to distinct eigenvalues are linearly
independent. Each eigenvalue has at least one corresponding eigenvector: hence we have n
linearly independent eigenvectors, and A is diagonalizable.

How to find eigenvalues numerically
The characteristic equation is nice theoretical tool, but it is not the best way to find eigen-
values numerically, especially if the matrix has floating point entries.

Here are two methods which give more success.

To simplify things, we will assume that A is n×n and is diagonalizable, so that it has n real
eigenvalues, and that they all have distinct sizes,

|λ1| > |λ2 > · · · > |λn|
with eigenvectors vj corresponding to λj.

The power method will enable us to find λ1 and a corresponding eigenvector. Suppose we
have a vector x ∈ Rn, so that

x = c1v1 + · · ·+ cnvn
Then if we multiply x by A k times, we obtain

Akx = c1A
kv1 + · · ·+ cnA

kvn

= c1λ
k
1v1 + · · ·+ cnλ

k
nvn

If we divide both sides by λk1, we get

1

(λ1)k
Akx = c1v1 + c2

(
λ2

λ1

)k

v2 + · · ·+ cn

(
λn
λ1

)k

vn.

The coefficients cj

(
λj

λ1

)k
for j ≥ 2 tend to zero as k → ∞. This means, so long as c1 6= 0,

that as k gets large, Akx points in nearly the same direction as v1.
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This gives rise to
The Power Method

(1) Select an initial vector x0 whose largest entry is 1.

(2) For k = 0, 1, . . .

(a) Compute Axk

(b) Let µk be an entry in Axk whose absolute value is as large as possible.

(c) Compute xk+1 = (1/µk)Axk.

(3) For almost all choices of x0, the sequence {µk} approaches the dominant eigenvalue
λ1, and the sequence {xk} approaches a corresponding eigenvector.

This method works fastest when λ1 is much bigger than the other eigenvalues. We can
exploit this, if we have a good guess at an eigenvalue using the inverse power method.

Suppose that A has an eigenvalue λj, which we don’t know, but we have an estimate α 6= λj
which is closer to λ than to any other eigenvalue. We will consider the matrix B = (A−αI)−1:
it is not hard to show that B has the same eigenvectors as A, and that its eigenvalues are

1

λ1 − α
,

1

λ2 − α
, . . . ,

1

λn − α
.

So, if α is closer to λj than to any other eigenvalue of A, the eigenvalue 1
λj−α is dominant.

We exploit this as follows:

The Inverse Power Method

(1) Select an initial estimate α close enough to λ.

(2) Select an initial vector x0 whose largest entry is 1.

(3) For k = 0, 1, . . .

(a) Solve (A− αI)y
k

= xk for y
k
.

(b) Let µk be an entry in y
k

whose absolute value is as large as possible.

(c) Compute νk = α + (1/µk).

(d) Compute xk+1 = (1/µk)yk.

(4) For almost all choices of x0, the sequence {νk} approaches the eigenvalue λ of A,
and the sequence {xk} approaches a corresponding eigenvector.
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