
These are brief notes for the lecture on Monday November 30, 2009: they are not complete,
but they are a guide to what I want to say on those days. They are guaranteed to be
incorrect.

6.4. Gram-Schmidt Orthonormalization

The Gram-Schmidt algorithm constructs an orthogonal or orthonormal basis for any sub-
space W 6= {0} of Rn. We start with a couple of examples before developing the algorithm:

Example: Let W = Span(x1, x2) where x1 =

3
6
0

 and x2 =

1
2
2

. Find an orthogonal

basis for W .

Now find an orthonormal basis for W :
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Example: Let W = Span(x1, x2, x3) where x1 =


1
1
1
1

, x2 =


0
1
1
1

 and x3 =


0
0
1
1

. Clearly

the vectors are linearly independent, so W is a three-dimensional subspace of R4. Find an
orthogonal basis for W .

Now find an orthonormal basis for W :
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Let’s now analyze the theory of this. Suppose that we have a subspace W < Rn, and that
we have an orthogonal basis {u1, u2, . . . , uk} for W . Now suppose that v is a vector in Rn

but v 6∈ W .

Since v 6∈ W , {u1, u2, . . . , uk}, v spans a strictly bigger space than W . If we now compute
the projections onto each of the vectors {u1, u2, . . . , uk}, and subtract from v, then we obtain
a vector

uk+1 = v − c1u1 − c2u2 − · · · − ckuk

which is orthogonal to each of the vectors in {u1, u2, . . . , uk}. It is clear that this spans
Span({u1, u2, . . . , uk, v}).

Now, suppose that we have a basis {v1, v2, . . . , vn} for Rn, which is not necessarily orthogonal.
We can convert this into an orthogonal basis for Rn as follows.

Let Wk = Span{v1, u2, . . . , vk}) be the span of the first k vectors in the basis. We will
assume that we’ve already constructed an orthogonal basis {u1, u2, . . . , uk} for Wk: if we
now proceed as above, with v = vk+1, then uk+1 is orthogonal to {u1, u2, . . . , uk}, and
{u1, u2, . . . , uk, k + 1} is a basis for Wk+1.

Theorem 11. Suppose W ≤ Rn has a basis {v1, v2, . . . , vp}. Then the procedure above
produces an orthogonal basis for W .

If we wish to find an orthonormal basis, then we can either proceed as above, and normalize
all the vectors at the end, or we can normalize along the way. Working by hand, it is
usually better to normalize at the end (it saves carrying along ugly square roots). Working
numerically on a computer, it is better to normalize along the way.

Theorem 12 (QR Factorization). Suppose that A is a m×n matrix with linearly independent
columns. Then there exist matrices Q and R so that

(1) A = QR.

(2) Q is m×n and the columns of Q form an orthonormal basis for Col(A), the column
space of A.

(3) R is an upper triangular, square matrix with positive entries on the diagonal.

Proof sketch: The columns of A are linearly independent, so they form a basis for Col(A).
Convert them to an orthonormal basis via the Gram Schmidt algorithm. Check that A = QR
with Q and R as claimed follows from the way we construct the orthonormal basis.

Note: this shows the existence of such a factorization. In fact, there are others, often
numerically better for computational purposes.
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6.5. Least Squares Problems

Problems often arise in practice in which, because of an approximation somewhere, we want
to solve an inconsistent system Ax = b. Since there is no solution, this might seem like a
hopeless task. However, we can take a slightly different perspective: a solution to

Ax = b

is also a vector which minimizes
‖b− Ax‖

(indeed, since this is a length, it is non-negative, so clearly if it is zero, it is as small as it
can be!)

Now, if there is no solution to Ax = b then the minimum value will not be zero: but we can
still look for a minimizing vector x̂: that is, a vector x̂ ∈ Rn so that

‖b− Ax̂‖ ≤ ‖b− Ax‖
for all x ∈ Rn. Such a vector is called a least squares solution of Ax = b.

Now, since Ax is a linear combination of the columns of A, we are looking for a vector
b̂ ∈ Col(A) which is closest to b. Clearly, the vector which does this is the projection b̂ of b
onto Col(A).

Note that if b̂ = Ax̂ is this projection, then b− b̂ is orthogonal to each column of A.

This implies that AT (b− b̂) = 0 (since the rows of AT are precisely the columns of A). Hence

AT (b− Ax̂) = 0

so that
AT b− AT Ax̂ = 0

or
AT b = AT Ax̂.

This shows the following:

Theorem 13. The set of least squares solutions to Ax = b coincides with the (non-empty)
set of solutions to AT Ax = AT b.

The fact that there exist such solutions to the latter equation follows from the fact that there
are least-squares solutions to the original equation.

Theorem 14. The matrix AT A is invertible if and only if the columns of A are linearly
independent. In this case, the equation Ax = b has a unique least squares solution, and it is
given by

x̂ = (AT A)−1AT b

Theorem 15. Given an m × n matrix A with linearly independent columns, let A = QR
be a QR-factorization of A. Then for each b ∈ Rm, the equation Ax = b has a unique
least-squares solution, given by

x̂ = R−1QT b.
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