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Abstract. We show that certain natural aperiodic sum-free sets
are incomplete, that is that there are infinitely many n not in S
which are not a sum of two elements of S.

1. Introduction

An old question (ascribed to Dickson by Guy 1 [6] and rediscovered
in a more general setting by Cameron [4]) asks whether a sum-free
set constructed in a greedy fashion from a finite initial set will be
ultimately periodic. Cameron, Calkin and Finch have investigated this
question, and it seems that the answer may be “no”: in particular,
the sum-free sets {1, 3, 8, 20, 26 . . . } and {2, 15, 16, 23, 27 . . . } are not
known to be ultimately periodic. The approach taken by these authors
is to compute a large number of elements of the respective sets, and to
investigate the structure. Unfortunately there is currently no way to
show that these sets are aperiodic (though there is good evidence [2, 3]
to suggest that they are).

An alternative approach to answering Dickson’s question in the neg-
ative would be to take a sum-free set already known to be aperiodic,
and to show that it was complete. In this paper we shall show that
this approach will fail for a natural set of aperiodic sum-free sets.

2. Definitions

Given a set S of positive integers, we denote by S + S the set of
pairwise sums, S + S = {x + y | x, y ∈ S}. A set S is said to be
sum-free if S ∩ (S + S) = ∅, that is if there do not exist x, y, z ∈ S for
which x + y = z.

We call a sum-free set complete if there is an n0 such that for all
n > n0, n ∈ S∪(S+S), that is either n ∈ S or there exist x, y ∈ S with
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x + y = n. Equivalently, S is complete if and only if it is constructed
greedily from a finite set.

We call S ultimately periodic with period m if its characteristic func-
tion is ultimately periodic with period m, that is if there exists a posi-
tive integer no such that for all n > n0, n ∈ S if and only if n + m ∈ S:
otherwise we say that S is aperiodic.

The following sets Sα are a natural set of aperiodic sum-free sets:
for α irrational, define

Sα =
{
n|{nα} ∈ (

1

3
,
2

3
)
}

where {x} denotes the fractional part of x.
Clearly, Sα is aperiodic: indeed, if Sα were ultimately periodic with

period m, then for sufficiently large k, km 6∈ Sα. However, since mα
is irrational, {kmα} is dense on (0, 1) as k runs through the positive
integers.

Since the sets Sα all have density 1
3

and it is easily seen that Sα ∪
(Sα + Sα) has density 1, it might be hoped that amongst the Sα we
might find a complete set, thus answering Dickson’s question in the
negative (it is clear that not every Sα can be complete, since the set of
complete sum-free sets is countable, and there are uncountably many
Sα). We prove below that this is not the case.

3. Preliminaries

We need an understanding of when n 6∈ Sα ∪ (Sα + Sα).

Lemma 1. n ∈ Sα + Sα if and only if either
(i) {nα} = 1

3
− ε, where 0 < ε < 1

3
and there exists an m < n with

2
3
− {mα} = δ < ε

or
(ii) {nα} = 2

3
+ ε, where 0 < ε < 1

3
and there exists an m < n with

{mα} − 1
3

= δ < ε.
Further, we may choose m ≤ n

2
or δ ≤ ε

2
.

Proof: Suppose that n ∈ Sα + Sα. Then either {nα} ∈ (0, 1
3
) or

{nα} ∈ (2
3
, 1). Suppose the former. Let m1, m2 ∈ Sα, with m1 + m2 =

n, and

{m1α} =
2

3
− δ1, and {m2α} =

2

3
− δ2.

Then {(m1 + m2)α} = {4
3
− δ1 − δ2} = {1

3
− (δ1 + δ2)} and since

{nα} = 1
3
− ε, we have δ1 + δ2 = ε. Since m1 + m2 = n, the smaller of

m1 and m2 is at most n
2
, and since δ1 + δ2 = ε, the smaller of δ1 and δ2

is at most ε
2
.
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Conversely, if there is an m with 2
3
− {mα} = δ < ε then clearly

(n−m) ∈ Sα, and so n ∈ Sα + Sα.
The case where {nα} ∈ (2

3
, 1) is handled similarly.

We also require the following basic facts about continued fractions
(cf [7]):

Lemma 2. If θ is irrational, with continued fraction convergents ai

bi

and continued fraction expansion

q0 +
1

q1 +
1

q2 +
1

q3 +
1

q4 + . . .

then for every i,
(i) a2i

b21
< θ < a2i+1

b2i+1

(ii) aibi+1 − ai+1bi = ±1
(iii) ai+1 = qiai + ai−1, bi+1 = qibi + bi−1

(iv)
∣∣∣ai

bi
− θ

∣∣∣ < 1
bibi+1

(v) If a, b ∈ Z with 0 < b < bn+1, and b 6= bn, then |a− bθ| > |an− bnθ|.

4. The Result

Theorem 1. For every irrational α, the set Sα is incomplete.

Proof: Consider the continued fraction convergents ai

bi
to β = 3α.

Suppose i is even: then
ai

bi

< β, so biβ > ai.

Hence if ai ≡ 2 (mod 3), then 0 < biβ − ai < 1
bi+1

so

0 < {biα} −
2

3
<

1

3bi+1

,

and by Lemma 2(v), we see that there are no a, b, with b < bi and
|bβ − a| < |biβ − ai|. Hence bi 6∈ Sα ∪ (Sα + Sα).

Similarly, if i is odd, and a ≡ 1 (mod 3) then

ai

bi

> β, so biβ < ai

and

0 <
1

3
− {biα} <

1

3bi+1
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and so bi 6∈ Sα ∪ (Sα + Sα).
In the remainder of the proof we may thus assume that for all i

sufficiently large,

a2i 6≡ 2 (mod 3) and a2i+1 6≡ 1 (mod 3).

Further, since aibi+1 − ai+1bi = ±1, we have (ai, ai+1) = 1, and so
ai, ai+1 cannot both be divisible by 3.

Hence one of the following situations occurs:
(i) a2i ≡ 1 (mod 3), a2i+1 ≡ 2 (mod 3) for infinitely many i,
(ii) a2i−1 ≡ 0 (mod 3), a2i ≡ 1 (mod 3) for infinitely many i,
(i) a2i ≡ 0 (mod 3), a2i+1 ≡ 2 (mod 3) for infinitely many i.
Case (i): We will show that b2i+1 − b2i 6∈ Sα ∪ (Sα + Sα).
Let

{b2iα} =
1

3
+ ε2i

{b2i+1α} =
2

3
− ε2i+1.

Then

{(b2i+1 − b2i)α} =
1

3
− ε2i+1 − ε2i,

so b2i+1 − b2i 6∈ Sα.
Further, for every a, b with 1 ≤ b < b2i+1, b 6= b2i we have∣∣∣∣23 − {bα}

∣∣∣∣ ≥ ∣∣∣∣bα− a

3

∣∣∣∣
=

1

3
|bβ − a|

>
1

3
|b2iβ − a2i|

= ε2i

>
1

2
(ε2i+1 + ε2i)

Thus there is no b < b2i+1 − b2i with

2

3
− 1

2
(ε2i+1 + ε2i) < {bα} <

2

3
.

Hence by Lemma 1, b2i+1 − b2i 6∈ Sα + Sα.
Case (ii): we will show that b2i + b2i−1 6∈ Sα ∪ (Sα + Sα)
Let

{b2i−1α} = 1− ε2i−1

{b2iα} =
1

3
+ ε2i.
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Then

{(b2i−1 + b2i)α} =
1

3
− (ε2i−1 − ε2i)

so b2i + b2i−1 6∈ Sα. Further, for every a, b with 1 ≤ b < b2i, b 6= b2i−1

we have ∣∣∣∣{bα} − 2

3

∣∣∣∣ ≥ ∣∣∣∣bα− a

3

∣∣∣∣
=

1

3
|bβ − a|

>
1

3
|b2i−1β − a2i−1|

= ε2i−1.

Now, since 1
2
(b2i + b2i−1) < b2i there is no b < 1

2
(b2i + b2i−1) with

2

3
− (ε2i−1 − ε2i) < {bα} <

2

3
.

Hence, by Lemma 1, b2i−1 + b2i 6∈ Sα + Sα.
Case (iii) is proved in a similar fashion to case (ii), obtaining b2i+b2i+1 6∈
Sα ∪ (Sα + Sα), completing the proof of the theorem.

5. Open Questions

In this section we present some open questions in related areas.

(1) The sets considered above show that there are aperiodic max-
imal sum-free sets for which S ∪ (S + S) omits about log n
elements up to n. Are there maximal aperiodic sum-free sets
which omit o(log n) elements?

(2) If there are no aperiodic complete sum-free sets, then there is
a function M = M(n) so that if S is a sum-free set, and if
S ∪ (S + S) contains all integers greater than n, then S has
period ≤ M . How fast must M(n) grow?

(3) Erdös [5] and Alon and Kleitman [1] have shown using similar
ideas that if S is a set of n integers, then there is a sum-free
subset of S of cardinality greater than n

3
. Is n

3
best possible?

(4) By considering α chosen uniformly at random from the interval
( 1

m2−1
, m

m2−1
) we see that any set of S of n positive integers

contains a subset of cardinality n
m+1

with the property that it
has no solutions to the equation x1 + x2 + · · · + xm = y. Is
this best possible? In particular, if cm is such that any set S
of cardinality n contains a subset of cardinality cmn with no
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solutions to x1 + x2 + · · ·+ xm = y then what is the behaviour
of cm as m →∞? Does cm → 1? To 0?

(5) Similarly, we see that if S = {s1, s2, s3, . . . } then there is a
subset S ′ = {si1 , si2 , si3 , . . . } having no solution to x1 + x2 +
· · ·+ xm = y for which

lim
n→∞

in
n

=
1

m + 1
.

Is 1
m+1

best possible here?
(6) Call a set strongly m-sum-free if it contains no solution to x1 +

x2 + · · · + xj = y for 2 ≤ j ≤ m. Given a set S of n positive
integers, how large a strongly m-sum-free set must it contain?
Let dm be such that S must contain a set of size dmn. What
is the behaviour of dm as m → ∞? Is it possible that dm is
bounded away from 0?

(7) Which sets S having no solutions to x1 +x2 + · · ·+xm = y have
the greatest density? In particular, if k is the least integer not
dividing m− 1 then the set of integers congruent to 1 (mod k)
has no solutions. Is this best possible? This is easy to show
when m = 2, and has been shown by  Luczak (personal commu-
nication) in the case m = 3. The first interesting case is thus
m = 7. (Note added in proof: it appears (personal communi-
cation) that Schoen has shown that this is best possible).

(8) Cameron [4] has considered a probability measure on the set
of all sum-free sets: does {S|∃α s.t. S ⊆ Sα} have positive
measure?
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