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Abstract. We present new explicit lower bounds for some Ramsey numbers. All the graphs
are cyclic, and are on a prime number of vertices. We give theoretical motivation for searching for
Ramsey graphs of prime order, and provide additional computational evidence that primes tend to
be better than composites.
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1. Introduction. A red–blue coloring of the edges of the complete graph Kn

(which we will regard as having vertex set {0, 1, 2, 3, . . . , n−1}) is cyclic if it is invariant
under the rotation i → i + 1 (mod n). For integers k, l ≥ 2, define the cyclic Ramsey
number C(k, l) to be the least N so that for all n ≥ N , every cyclic coloring of Kn

contains either a red Kk or a blue Kl. Clearly C(k, l) ≤ R(k, l). We note, however,
that not every n < C(k, l) is such that there exists a cyclic coloring without a red Kk

or a blue Kl.

Many authors have searched for lower bounds for Ramsey numbers amongst cyclic
graphs, and most of the best known explicit lower bounds come either from cyclic
graphs or from cyclic graphs together with a small number of additional vertices.

In this paper we present cyclic graphs which improve the previously best known
bounds for the classical Ramsey numbers R(4, 12), R(4, 15), R(5, 7) and R(5, 9). All
these graphs are of prime order. We were motivated to search for such graphs by
theoretical considerations, which we present in the final section.

2. New Bounds. The graphs were found by implicit enumeration of cyclic 2-
colorings. The program was written in Pascal and run on Sun SPARCstations (2,
10, or 20). We emphasize that the algorithm is straightforward and the hardware
unexceptional even by 1991 standards. The advantage that we had was knowing
to look at graphs of prime order. We suspect that in the past, when a complete
search revealed no cyclic Ramsey graphs of order n or n + 1, that researchers did not
continue the search over larger orders. We searched for cyclic graphs of order equal
to the smallest prime greater than or equal to the best known bound. The required
CPU times varied from 25 minutes (for R(5, 7)) to 10 days (for R(4, 15)).

R(5, 7) ≥ 80. This improves on the bound of 76 reported in [4]. In the 79 vertex
graph, the following edge differences are present: 6, 10, 12, 14, 17, 20, 21, 22, 24, 25, 26,
28, 34, 36, 37, 38. There is no such cyclic graph on 83 vertices.
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R(5, 9) ≥ 114. This appears to the be first bound reported [4]. In the 113 vertex
graph, the following edge differences are present: 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 28,
32, 34, 35, 39, 42, 43, 44, 46, 48, 52, 54, 55.

R(4, 12) ≥ 98. This improves on the bound of 97 reported in [4]. In the 97 vertex
graph, the following edge differences are present: 11, 19, 21, 22, 23, 29, 34, 35, 38, 39, 43,
44, 46, 47, 48.

R(4, 15) ≥ 128. This improves on the bound of 123 reported in [4]. In the 127 ver-
tex graph, the following edge differences are present: 14, 27, 28, 29, 38, 39, 41, 43, 44, 45,
47, 49, 51, 52, 58, 60, 62, 63.

We are grateful to the referee for bring to our attention that subsequent to our
submitting this paper, Piwakoski [2, 3] has improved our bounds for R(4, 12) to 106
and for R(4, 15) to 134. This immediately suggests searching for cyclic graphs of order
107 and 137 respectively.

Primes do not always fare better than composites. Besides the trivial case of
3-vertex graphs for R(3, 3), the smallest example occurs for R(4, 5): there is no cyclic
Ramsey graph on 23 vertices, but there is one on 24 vertices.

3. Computational Evidence That Primes Do Well. As we shall see, at
several points in the theoretical analysis, primes seem to show some advantage over
composites. We checked empirically for advantages of primes over composites with
regard to bounds for R(4, 4), R(5, 5), and R(6, 6). The results are given in Figures 1–
3, where shading denotes that a cyclic Ramsey graph is known to exist, and unshaded
areas indicate that no cyclic Ramsey graph is known. Primes show a slight advantage
in the first two cases, and a dramatic advantage in the third case: the largest known
ramsey graph of composite order has 74 vertices, while every prime number order
through 101 yields a ramsey graph, with the possible exception of 97.

4. The Standard Probabilistic Analysis Suggests That Primes Do Bet-
ter. The standard probabilistic lower bounds for R(k, l) are obtained as follows: let
0 < p < 1, randomly 2-color the edges of Kn, red with probability p, and blue with
probability 1 − p. Compute the expected number of red Kk’s and blue Kl’s: if this
expectation satisfies∑

|K|=k

Pr(K is a red clique) +
∑
|L|=l

Pr(L is a blue clique) < 1

then there exists a coloring of Kn with no red Kk and no blue Kl.
In the cyclic case, the existence of one monochromatic subgraph implies the

existence of many, since the image of a monochromatic clique under the rotation
i → i + 1 (mod n) is also a monochromatic clique. It is easy to see that in fact the
existence of one monochromatic clique of order k implies the existence of at least n

(n,k)

distinct cliques, and in particular, if n is prime, at least n distinct cliques. Hence, if

(n, k)
n

∑
|K|=k

Pr(K is a red clique) +
(n, l)

n

∑
|L|=l

Pr(L is a blue clique) < 1

where the expectations are now computed over all random cyclic colorings, then there
exists a cyclic coloring of the edges of Kn without a red Kk or a blue Kl. This
dependence on the greatest common divisors (n, k) and (n, l) suggests that we may
be slightly more successful in finding graphs of prime order.



4 N. J. CALKIN, P. ERDŐS AND C. A. TOVEY

However, as we shall see, the computation of the expectation is not sufficient to
obtain any bounds for C(k, l): indeed, we shall see that the expression above grows
at least as fast as n/

√
k for large n.

We shall concentrate on the first part of the sum: fix k, n, and for now set p = 1/2.
We wish to compute ∑

|K|=k

Pr(K is a red clique).

Define the difference of a pair of vertices i and j as min{|i− j|, n− |i− j|}. Note
that if a coloring is cyclic, then all edges with the same difference are the same color.
The differences D(K) of a set K of vertices are the differences between the pairs
comprising K ×K.

If a set K = {x1, x2, . . . , xk} ⊆ {0, 1, 2, . . . , n−1} has exactly i distinct differences,
i.e. |D(K)| = i, then the probability that K is a red clique in a random cyclic coloring
is 2−i. Define Ni,k,n to be the number of k-subsets of {0, 1, 2, . . . , n−1} having exactly
i distinct differences. Then the expected number of red k-cliques in a random cyclic
coloring of Kn is

(k
2)∑

i=bk/2c

Ni,k,n2−i.

If k 6 |n then Nj,k,n = 0 for j ≤ k− 2. Since the 2−i part of the summand is largest in
the range i ≤ k − 2, this appears as another slight advantage for prime values of n.

Proposition 4.1. For n prime and k <
√

n/2,

(k
2)∑

i=k−2

Ni,k,n2−i = Ω(n2/
√

k)

Proof: Clearly,

(k
2)∑

i=k−2

Ni,k,n2−i > 2−(2k−3)
2k−3∑

i=k−1

Ni,k,n.

To bound the latter sum, consider the bn/2c arithmetic progressions mod n of 2k− 2
terms beginning at 0 with common difference d : 0 < d < n/2. Each of these sets
has 2k − 3 distinct differences. From each progression we may remove k − 2 nonzero
elements in

(
2k−3
k−2

)
ways to form a collection of k-subsets. We claim these are all

distinct. It is obvious that those from the same progression are distinct, so it suffices
to show that no two progressions of 2k− 2 terms, starting at 0, can contain the same
k-subset. To see this, we first show that arithmetic progressions of integers with initial
term 0 can’t intersect in too many elements: let

A = {0, a, 2a, . . . , ka}

and

B = {0, b, 2b, . . . , kb}
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be two arithmetic progressions, with a < b, and (a, b) = 1 (otherwise just divide both
a and b by their greatest common divisor);we will show that

|A ∩B| > bk
b
c+ 1.

Since (a, b) = 1, if an element x is in their intersection, it is of the form ja and lb,
where b|j and a|l. Thus the elements of A in the intersection are a subset of

0, ba, 2ba, 3ba, . . . bbk
b
ca.

Hence there are at most bk
b c+ 1 of them.

We now consider arbitrary arithmetic progressions: by translating both progres-
sions, we may assume that

A = {0, a, 2a, 3a, . . . , ka}

and

B = {c, c + b, c + 2b, c + 3b, . . . , c + kb}.

Now, if c > 0 we can replace A by A\{0}∪{(k+1)a} without decreasing the size of the
intersection. Iterating this process, we see that we can translate until the arithmetic
progressions both start with 0, and we are in the case handled above.

We now show that two arithmetic progressions taken modulo n have the same
property, provided that k is much less than n (clearly it fails to be true if k is close
to n).

Since n is prime, by multiplying both arithmetic progressions by a−1 mod p, and
by rotating, we may assume

A = {0, 1, 2, 3, . . . , k}

and

B = {c, c + b, c + 2b, c + 3b, . . . , c + kb}.

Now, if we knew that B didn’t wrap around modulo n, then we would be able to
appeal to the statement for arithmetic progressions of integers above: we shall show
that there is a value d mod n so that neither dA mod n nor dB mod n wrap around.
Observe that since the progressions intersect in at least two elements then we have
e, f, g, h so that e = c + gb and f = c + hb, where each of e, f, g, h are at most k and
we may assume f > e. Then

f − e = (h− g)b;

if h < g, then we will replace the arithmetic progression B by the reverse arithmetic
progression (with common difference n− b and initial term c + kb). Thus we are now
in the situation where we have 0 ≤ e < f ≤ k, 0 ≤ g < h ≤ k, and

f − e = (h− g)b.

If we now let d = h− g, and consider the progressions A′ = dA and B′ = dB we see
that

A′ = {0, d, 2d, . . . , dk}
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and

B′ = {cd, cd + bd, cd + 2bd, . . . , cd + kbd}

(taken modulo n). Now, since d ≤ k and bd = f − e ≤ k (mod n), each of A′ and B′

has a small common difference. Indeed, the difference of A is d ≤ k and the difference
of B is bd ≤ k. Thus, provided that k2 < n

2 , A′ doesn’t wrap around (mod n), and
B′ wraps around at most once: moreover, if B′ wraps around we can rotate both
arithmetic progressions so that B′ starts at 0 and neither progression wraps around,
reducing us to the cases handled above. Thus we have shown that if the arithmetic
progressions modulo n intersect in many elements then they are the same arithmetic
progression.

Now since n is prime and d < n/2 each subset may be rotated n−1 times to yield
a total of

(bn/2c)n
(

2k − 3
k − 2

)
∼ n222k−3/

√
k

distinct k-subsets. Each of these subsets has at most 2k− 3 distinct differences, since
each is a subset of a progression having 2k − 3 distinct differences. Therefore,

2k−3∑
i=k−1

Ni,k,n = Ω(n222k−3/
√

k)

and the proposition follows.
From the proposition we see that a random cyclic graph has a large expected

number of monochromatic k-cliques, even if the graph is of order k2. Hence, standard
expected value arguments cannot be used to give bounds on R(k, l) that are exponen-
tial in min{k, l}. However, Alon and Orlitsky [1] have shown by more sophisticated
arguments that random cyclic graphs nonetheless give bounds on R(k, k) of order
ec
√

k.
A final advantage of primes may be the following: a natural way to investigate

bounds for Ni,k,n is to “grow” a set K randomly, counting the number of new distinct
differences when a vertex x is added to K. All |K| differences will be distinct only
if x does not satisfy any of a set of equations mod n derived from the vertices in K
(e.g. x can not be the mean of two points in K). When n is prime these equations
are solved over the field Zn and have unique solutions. But when n is composite there
can be multiple solutions, increasing the probability of duplicating a difference (e.g.
both 3 and 0 are midpoints of 2 and 4, mod 6).
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