On the expected performance of a parallel algorithm for finding maximal independent subsets of a random graph

Neil J. Calkin and A. M. Frieze* Department of Mathematics Carnegie Mellon University Pittsburgh, PA and L. Kucera Faculty of Mathematics, Dept. of Applied Mathematics, Charles University, Malostranske' na'm.25, 11800 Prague Czechoslovakia

Abstract

We consider the parallel greedy algorithm of Coppersmith, Raghavan and Tompa [CRT] for finding the lexicographically first maximal independent set of a graph. We prove an $\Omega(\log n)$ bound on the expected number of iterations for most edge densities. This complements the $O(\log n)$ bound proved in Calkin and Frieze [CF].

^{*}Research supported in part by NSF Grant CCR-8900112

1 Introduction

In this note we consider the problem of finding the lexicographically first maximal independent set (LFMIS) in a random graph. Coppersmith, Raghavan and Tompa [CRT] describe a parallel version of the standard greedy algorithm for this problem:

Suppose we are given a graph $G = (V, E), V = [n] = \{1, 2, ..., n\}$. For $Z \subseteq V$ we let

$$\Gamma^+(Z) = \{ x \notin Z : xz \in E \text{ for some } z < x, z \in Z \},\$$

and

$$\Gamma^{-}(Z) = \{ x \notin Z : xz \in E \text{ for some } z > x, z \in Z \}.$$

Note that we have implicitly oriented the edges from low to high.

algorithm PARALLEL GREEDY (G);

```
begin

GIS \leftarrow \emptyset;

until G has no vertices do

begin

let S = \{a : \Gamma^-(a) = \emptyset\};

GIS \leftarrow GIS\cup S;

remove S \cup \Gamma(S) from G

end

output GIS
```

end

It is easy to see ([CRT], Lemma 2.1) that GIS is the LFMIS. Cook [C] showed that the problem of computing the LFMIS of a graph is complete for P and so is not in NC unless NC=P. PARALLEL–GREEDY can be implemented on a CRCW PRAM in O(1) time per iteration if one processor is allocated to each edge of G.

Coppersmith, Raghavan and Tompa showed that if T(n, p) denotes the *expected* number of iterations $\tau = \tau(G)$ when $G = G_{n,p}$ then $T(n,p) = O(\frac{(\log n)^2}{\log \log n})$. ($G_{n,p}$ is the random graph with vertex set [n] where each edge occurs independently with probability p = p(n).).

They conjectured that $T(n,p) = O(\log n)$ and subsequently Calkin and Frieze [CF] proved

Theorem 1

(a) $\frac{\alpha \log n}{4 \log \log n} \leq T(n,p)$ for $\frac{1}{n} \leq p \leq \frac{1}{n^{\alpha}}$ where $0 < \alpha \leq 1$ is constant (b) $T(n,p) = O(\log n)$. The hidden constant in (b) is independent of p.

Note that our inequalities are only claimed for n large.

The upper bounds and lower bounds in Theorem 1 are slightly different. It leaves open the possibility that $T(n,p) = O(\frac{\log n}{\log \log n})$ throughout. The aim of this paper is to shed more light on this problem, and to prove

Theorem 2 Assume $0 \le \alpha < 1$, α constant. (a) $T(n,p) \le \frac{3\log n}{(1-\alpha)\log\log n}$ for $p \le \frac{(\log n)^{\alpha}}{n}$, (b) $T(n,p) = \Omega(\log n)$ for $\alpha \ge p \ge \frac{1}{n^{\alpha}}$, where the hidden constant in (b) depends on α .

Proof:

(a) Let $G = G_1 \supseteq G_2 \supseteq G_3 \supseteq \ldots$ denote the sequence of graphs produced by each iteration of the algorithm.

For $v \in V(G_t)$ and $t \ge 1$ let $\alpha(t, v)$ = the length of the longest directed path in G_t which ends at v (a path $(v_1, v_2, \ldots v_k)$, is directed if $v_1 < v_2 < \ldots v_k$.)

Clearly, if $v \in V(G_{t+1})$ then $\alpha(t+1, v) \leq \alpha(t, v) - 2$. Hence

$$\tau(G) \le \frac{1}{2} \max\{v \in V(G) : \alpha(1, v)\}.$$

Thus

$$\Pr(\tau(G_{n,p}) \ge k) \le \operatorname{E}(\# \text{ of directed paths of length } 2k)$$
$$= \binom{n}{2k} p^{2k-1}$$
$$\le n \left(\frac{nep}{2k}\right)^{2k-1}$$
$$\le n \left(\frac{e(\log n)^{\alpha}}{2k}\right)^{2k-1}.$$

Hence, with $k_0 = \lceil \frac{2 \log n}{(1-\alpha) \log \log n} \rceil$,

$$T(n,p) = \sum_{k=1}^{n} \Pr(\tau(G_{n,p}) \ge k)$$

$$\le k_0 + n \sum_{k=k_0+1}^{n} \left(\frac{e(\log n)^{\alpha}}{2k}\right)^{2k_0-1}$$

$$\le k_0 + 2n \left(\frac{e(\log n)^{\alpha}}{2k_0}\right)^{2k_0-1}$$

$$\le k_0 + 2n \left(\frac{A \log \log n}{(\log n)^{1-\alpha}}\right)^{2k_0-1}$$

where $A = e(1 - \alpha)/4$,

$$= k_0 + o(1).$$

This completes the proof of (a). (b) This is somewhatless trivial. Let

$$V_t = V(G_t)$$

= { vertices remaining at the start of round t }
$$S_t = \text{Set } S \text{ found in round } t$$

= { sources found in round t },
$$N_t = \Gamma(S_t) \cap V_t$$

= { neighbours of S_t deleted in round t }.

Suppose $i \ge 2$ and A_t , B_t , $1 \le t \le i - 1$ is some disjoint collection of subsets of V. Then we have $S_t = A_t$, $N_t = B_t$ for $1 \le t \le i - 1$ if and only if (2a) $v \in A_t$ implies $\Gamma^-(v) \subseteq \bigcup_{s=1}^{t-1} B_s$ and $\Gamma^-(v) \cap B_{t-1} \ne \emptyset$, $1 \le t \le i - 1$ (when t = 1, drop the second condition) (2b) $v \in B_t$ implies $\Gamma^-(v) \cap \bigcup_{s=1}^{t-1} A_s = \emptyset$ and $\Gamma^-(v) \cap A_t \ne \emptyset$, $1 \le t \le i - 1$ and i-1

$$v \in C = V - \bigcup_{t=1}^{i-1} (A_t \cup B_t)$$
 implies

(3a) $\Gamma^{-}(v) \cap \bigcup_{t=1}^{i-1} A_t = \emptyset,$ (3b) $\Gamma^{-}(v) \cap (B_{i-1} \cup C) \neq \emptyset.$ Suppose now that we choose sets A_t , B_t , $1 \le t \le i - 1$ satisfying (2) and condition on the event

$$\mathcal{E} = \{ S_t = A_t, \ N_t = B_t, \ V_i = C : \ 1 \le t \le i - 1 \}.$$

It is important to establish the conditional distribution of the sets $\Gamma_i^-(v) = \Gamma^-(v) \cap V_i, v \in V_i, i \ge 2$. For $v \in V_i$ let $R_v^i = [v-1] \cap (V_i \cup B_{i-1})$ and $r_v = |R_v^i|$. Claim 1

(i) The sets $\Gamma_i^-(v)$, $v \in V_i$ are stochastically independent,

(ii) $\Gamma_i^-(v)$ is a random subset of R_v^i chosen through r_v Bernoulli trials conditioned on the occurrence of at least one success, i. e.

tioned on the occurrence of at least one success, i. e. (4) $\Pr(|\Gamma_i^-(v)| = k) = {r_v \choose k} p^k (1-p)^{r_v-k} / (1-(1-p)^{r_v}), 1 \le k \le r_v$ and each k-subset is equally likely.

Proof (of Claim) To prove (i) simply observe that condition (3) on $v \in C$ only involves edges directed into v, and that the conditions in (2) only involve edges directed into V - C.

Now consider (ii). $v \in V_2$ if and only if $\Gamma_i^-(v) \neq \emptyset$ and $\Gamma_i^-(v) \cap S_1 = \emptyset$ and these conditions are equivalent to (ii). We can now proceed inductively. Fix $v \in V_i$. If $v \notin S_i \cup N_i$ then we learn (a) $\Gamma_i^-(v) \cap V_i \neq \emptyset$, then (ii) $\Gamma_i^-(v) \cap S_i = \emptyset$ and so finally that

$$\Gamma_i^-(v) \cap (V_i - S_i) = \Gamma_i^-(v) \cap R_v^{i+1} \neq \emptyset.$$

Thus (4) continues to hold.

End of proof (of claim). We now continue with the proof of our Theorem. Choose β , $\alpha < \beta < 1$. Now choose $i \leq \tau = \lceil \frac{(1-\alpha)\log n}{10} \rceil$ and assume that $V_i = \{x_1 < x_2 < \ldots < x_s\}$. Partition V_i into X_1, X_2, Y where $X_1 = \{x_1, x_2, \ldots x_a\}, a = \lceil \log n/p \rceil, X_2 = \{x_{a+1}, x_{a+2}, \ldots x_b\}, b = \lceil (\log n)^2/p \rceil$, and Y is the rest of V_i . We will show that a good proportion of Y is likely to remain in V_{i+1} , when V_i is large enough so that the above partition is actually possible.

Observe first that the proof of Claim 1 implies that if $r = |B_{i-1} \cap [x_j - 1]|$ then

(5)
$$\Pr(x = x_j \in S_i) = (1 - (1 - p)^r)(1 - p)^{j-1}/(1 - (1 - p)^{r_x})$$

 $\leq (1 - p)^{j-1}.$

(At least one success is required in the r trials corresponding to $B_{i-1} \cap [x_j - 1]$ and no further successes.)

So if $\mathcal{A}_i = \{S_i \cap (X_2 \cup Y) = \emptyset\}$ then

(6) $\Pr(\bar{\mathcal{A}}_i) \le \sum_{j>a} (1-p)^{j-1} = \frac{(1-p)^a}{p} \le \frac{1}{np}.$ Let

$$\mathcal{B}_i = \{ \Gamma^-(y) \cap X_2 \neq \emptyset, \forall y \in Y \}$$

It follows from Claim 1(ii) that if $y \in Y$ then

$$\Pr(\Gamma^{-}(y) \cap X_2 = \emptyset) \leq (1-p)^{b-a} \leq n^{-(1-o(1))\log n}$$

and so

(7) $\operatorname{Pr}(\bar{\mathcal{B}}_i) \leq n^{-(1-o(1))\log n}$.

Note that (6), (7) can be taken as true even if $Y = \emptyset$.

Let us now consider the size of S_i . Let $\delta_j = 1$ if $x_j \in S_i$ and $\delta_j = 0$ otherwise. It follows from Claim 1(i) that $\delta_1, \delta_2, \ldots, \delta_s$ are independent random variables. Also

$$E(|S_i|) = \sum_{j=1}^{s} \Pr(\delta_j = 1)$$

$$\leq \sum_{j=1}^{s} (1-p)^{j-1}$$

$$\leq \frac{1}{p}.$$

Note that we have $\Pr(\delta_j = 1) \leq (1-p)^{j-1}$ regardless of the history of the algorithm to this point. It follows that $|S_1| + |S_2| + \ldots + |S_i|$ is dominated by the sum of independent random variables each of which is the sum of a large number of independent 0-1 random variables. It follows from Theorem 1 of Hoeffding [H] that if

$$C_i = \{|S_1| + |S_2| + \ldots + |S_i| < \frac{(1-\alpha)\log n}{2p}\}$$

then

$$\Pr(\bar{\mathcal{C}}_i) \le \left(\frac{2ei}{(1-\alpha)\log n}\right)^{(1-\alpha)\log n/2p}$$

(Hoeffding proves that if Z_1, Z_2, \ldots, Z_m are independent random variables with $0 \le Z_j \le 1, j = 1, 2, ..., m$ and $E(Z_1 + Z_2 + \dots + Z_m) = m\mu$ then

$$\Pr(Z_1 + Z_2 + \dots + Z_m \ge m(\mu + t)) \le \left(\left(\frac{\mu}{\mu + t} \right)^{\mu + t} \left(\frac{1 - \mu}{1 - \mu - t} \right)^{1 - \mu - t} \right)^m.$$

So if $t = (\theta - 1)\mu$

$$\Pr(Z_1 + Z_2 + \dots + Z_m \ge \theta m \mu) \le \left(\theta^{-\theta} e^{\theta - 1}\right)^{m\mu} < \left(\frac{e}{\theta}\right)^{\theta m \mu}$$

We use this inequality with $m\mu = \frac{i}{p}$ and $\theta m\mu = \frac{(1-\alpha)\log n}{2p}$.) Note that $C_{\tau} \subseteq C_{\tau-1} \subseteq \cdots \subseteq C_1$ and (8) $\Pr(\bar{C}_{\tau}) \leq n^{-(1-\alpha)\log(5/e)/2\alpha}$.

Consider the size of $Y \cap V_{i+1}$. Using Claim 1(ii) we see that, given $\mathcal{A}_i \cap \mathcal{B}_i$, the edges joining X_1 to Y are unconditioned. So, by another use of [H], (9) $\Pr(|V_{i+1}| \le \left(1 - \frac{1}{(\log n)^2}\right) |Y|(1-p)^{|S_i|} | \mathcal{A}_i \cap \mathcal{B}_i, |S_i|) \le \exp\left\{-\frac{|Y|(1-p)^{|S_i|}}{2(\log n)^4}\right\}$ since if $y \in Y$ then $\Pr(y \in V_{i+1} | \mathcal{A}_i \cap \mathcal{B}_i, |S_i|) = (1-p)^{|S_i|}$. Now let

$$\mathcal{D}_i = \left\{ |V_i| > \left(1 - \frac{2}{(\log n)^2}\right)^{i-1} n(1-p)^{|S_1| + |S_2| + \dots + |S_{i-1}|} \right\}.$$

Then we have

(10) $\operatorname{Pr}(\bar{\mathcal{D}}_{i+1}) \leq \operatorname{Pr}(\bar{\mathcal{A}}_i \cap \bar{\mathcal{B}}_i \cap \bar{\mathcal{C}}_i \cap \bar{\mathcal{D}}_i) + \operatorname{Pr}(\bar{\mathcal{D}}_{i+1} \mid \mathcal{A}_i \cap \mathcal{B}_i \cap \mathcal{C}_i \cap \mathcal{D}_i).$ Now if $\mathcal{C}_i \cap \mathcal{D}_i$ occurs then

$$|V_i|(1-p)^{|S_i|} \geq n \left(1 - \frac{2}{(\log n)^2}\right)^{i-1} (1-p)^{|S_1| + |S_2| + \dots + |S_i|}$$

$$\geq n \left(1 - \frac{2}{(\log n)^2}\right)^{i-1} (1-p)^{(1-\alpha)\log n/2p}$$

$$= (1 - o(1))n^{1 + \frac{1-\alpha}{2p}\log(1-p)}$$

and $|Y| \ge |V_i| - \frac{(\log n)^2}{p} \ge (1 - \frac{1}{\log n)^2})|V_i|$. Now, since C_i , \mathcal{D}_i refer to the history of the algorithm prior to the construction

of $Y \cap V_{i+1}$ we may again argue as in (9) that

$$\Pr(\bar{\mathcal{D}}_{i+1} \mid \mathcal{A}_i \cap \mathcal{B}_i \cap \mathcal{C}_i \cap \mathcal{D}_i) \le \exp\left\{-\frac{(1-o(1))n^{1+\frac{1-\alpha}{2p}\log(1-p)}}{2(\log n)^4}\right\}.$$

Thus, from (6), (7), (8), (10) and the above

$$\Pr(\bar{\mathcal{D}}_{i+1}) \le \Pr(\bar{\mathcal{D}}_i) + o((\log n)^{-1})$$

and so

$$\begin{aligned} \Pr(\bar{\mathcal{D}}_{i+1}) &\leq & \Pr(\bar{\mathcal{D}}_1) + o(1) \\ &= & o(1). \end{aligned}$$

since $\bar{\mathcal{D}}_1 = \emptyset$. Thus $\Pr(\bar{\mathcal{D}}_{\tau}) = o(1)$. Combining this with $\Pr(\mathcal{C}_{\tau}) = 1 - o(1)$ we see that

$$\Pr(V_{\tau} = \emptyset) = o(1)$$

and this proves part (b) of the Theorem.

References

[CF] N. Calkin and A. Frieze, 'Probabilistic Analysis Of A Parallel Algorithm For Finding Maximal Independent Sets', Random Structures and Algorithms 1 (1990) 39-50

[CO] S. A. Cook, 'A taxonomy of problems with fast algorithms', Information and Control 64(1985) 2-22.

[CRT] D. Coppersmith, P. Raghavan and M. Tompa, 'Parallel graph algorithms that are efficient on average', Information and Computation 81 (1989) 318-333.

[H] W. Hoeffding, 'Probability inequalities for sums of bounded random variables', J. Amer. Statist. Assoc. 58 (1963) 18-30