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Abstract: For a variety of arithmetic properties P (such as the
one in the title) we investigate the number of subsets of the positive
integers ≤ x, that have that property. In so doing we answer some
questions posed by Cameron and Erdös.

1. Introduction.

In [CE] Cameron and Erdös investigated subsets of the positive integers ≤ x with

certain given properties P ; in particular, how large such sets can be, and how many there

are. The properties P that they were interested in are monotone decreasing, that is, if S

has property P , and T is a subset of S, then T has property P . Thus if S is a maximal

set of positive integers ≤ x with property P then one knows that there are ≥ 2|S| such

sets. In this paper we improve various estimates in [CE] for the number of sets satisfying

certain properties P :

In Theorem 3.5 of [CE], Cameron and Erdös showed that the number of sets of positive

integers ≤ x, in which any two elements have a common factor, lies between 2[x/2] and

x2[x/2]. Here we improve this to

Theorem 1. The number of sets of integers ≤ x, with any two elements having a common

factor, is

(1.1) 2[x/2] + 2[x/2]−N + O

(
2[x/2]−N exp

(
−C

x

log 2xlog log x

))
,
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for some absolute constant C > 0, where N , which will be defined in the proof, satisfies

(1.2) N = (e−γ + o(1))
x

log log x
,

and γ is the Euler-Mascheroni constant.

In Theorem 3.3 of [CE], Cameron and Erdös showed that the number of sets of positive

integers ≤ x, in which any two elements are coprime, lies between 2π(x)e(1/2+o(1))
√

x and

2π(x)e(2+o(1))
√

x. Here we improve this to

Theorem 2. The number of sets of integers ≤ x, with every pair of elements coprime, is

(1.3) 2π(x)e
√

x{1+O(log log x/log x)}.

In Section 4.3 of [CE], Cameron and Erdös conjectured that there are c(s)x+o(x) sets

of integers≤ x, with sum of reciprocals bounded by s, for some positive constant c(s). We

prove a quantitatative form of this conjecture here:

Theorem 3. The number, ν(x), of sets {a1, a2, . . . at} of positive integers ≤ x, with∑
i 1/ai ≤ s, is

(1.4) c(s)xeO(x3/4), where c(s) =
(
1 + e−f(s)

)
,

and f(s) is defined by

(1.5) s =
∫ ∞

f(s)

du

u(1 + eu)
.

Cameron and Erdos̈ observed that c(s) ≥ 21−e−s

, for all s. We can provide some

rather more accurate estimates based on an analysis of (1.4) and (1.5): As s → 0, we have

(1.6) c(s) = 1 + s (log (1/s) + log log (1/s) + O(1)) ;

as s →∞, we have

(1.7) c(s) = 2− Ce−2s + O(e−4s),
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for some constant C ≈ .8819384944 . . ..

2. Sets where any two elements have a common factor.

Proof of Theorem 1: Clearly there are 2[x/2] such sets that contain only even numbers.

We now count such sets that contain at least one odd number:

Let k be the largest integer for which q = p1p2 . . . pk ≤ x (where pj is the jth smallest

odd prime); by the Prime Number Theorem, k ∼ log x/log log x. Define

R = {n ≤ x : n is divisible by 2pj for some j ≤ k}.

Clearly any set of the form S∪{q}, where S is a subset of R, has the property that any two

elements have a common factor. The number of such subsets S is 2|R|, and |R| = [x/2]−N

where N is the number of integers 2m ≤ x that are coprime to q. From the combinatorial

sieve we obtain N ∼ φ(q)
q

x
2 , and then Mertens’ Theorem implies (1.2).

Our proof of the rest of Theorem 1 is based on the ideas of Pomerance given in

Cameron and Erdös [CE]:

We start by ordering the odd numbers ≤ x as q = m1,m2, . . . so that

φ(m1)
m1

≤ φ(m2)
m2

≤ φ(m3)
m3

≤ . . . .

Define fi(x) to be the number of sets of integers ≤ x, that contain mi but not

mi+1,mi+2, . . ., and for which every pair of integers in the set have a common factor.

If φ(mi)
mi

≥ 2/3 then

#{n ≤ x : (n, mi) > 1} ≤
∑
p|mi

x

p
≤ x

∑
p|mi

log
(

p

p− 1

)
= xlog

(
mi

φ(mi)

)
≤ xlog (3/2),

so that fi(x) ≤ 2xlog (3/2), which is part of the error term in (1.1).
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Define Am(x) to be the number of even integers ≤ x, that are coprime to m, and

ci = Ami
(x). Clearly fi(x) ≤ 2i−1+[x/2]−ci , and so, in order to complete the proof of

Theorem 1, we must show that

(2.1) ci(x)− i−N � x

log 2xlog log x
,

for all i ≥ 2 for which φ(mi)
mi

≤ 2/3.

Suppose that m = pr ≤ m′ = p′r ≤ x are odd, squarefree numbers, with p < x1/3.

Noting that |Ar(x)| = |Am(x)|+ |Ar(x/p)|, we see that

(2.2) |Am′(x)| − |Am(x)| = |Ar(x/p) \Ar(x/p′)| �
(

1
p
− 1

p′

)
x

log log x
� x

p2log log x
.

Thus, given any squarefree integer r ≤ x, r 6= q, we form a sequence r = r0, r1, . . . rj = q,

as follows: If ri = p1p2 . . . ph for some h < k, then then let ri+1 = riph+1. Otherwise we

construct ri+1 by dividing ri by its largest prime factor, and multiplying it by the smallest

odd prime that does not yet divide it.

Now as |Aq(x)| = N , and as the prime factors of q are all� log x, we find that, if i ≥ 2

then ci −N � x/log 2xlog log x by (2.2); which implies (2.1) for i � x/log 2xlog log x.

So we are left with those i for which φ(mi)
mi

≤ 2/3 and i � x/log 2xlog log x. We first

deal with those i ≤ 100x/log log x:

If A is any set of < i odd integers ≤ x then

φ(mi)
mi

≥ min
n≤x, n odd

n6∈A

φ(n)
n

.

So we choose A to be the set of those [x/log 3x] odd integers ≤ x, with the most distinct

prime factors.

Hardy and Ramanujan [HR] showed that there exists an absolute constant c such that

the number of integers ≤ x with exactly k distinct prime factors is

� x

log x

(log log x + c)k−1

(k − 1)!
;
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therefore the number of integers ≤ x with at least 10log log x distinct prime factors is

� x/log 10x. Thus, if n 6∈ A then n has ≤ 10log log x distinct prime factors, and so

φ(n)
n

≥
∏

p≤(log log x)2

(
1− 1

p

)
� 1

log log log x

by Mertens’ Theorem. Therefore, by the combinatorial sieve,

ci �
φ(mi)

mi
x � x

log log log x
,

which implies (2.1) in this range of i.

Finally we come to those i in the range 100x/log log x ≤ i ≤ x/2, with φ(mi)
mi

≤ 2/3:

An immediate consequence of Proposition 4 of [PS] is that

i <
3
20

x
φ(mi)

mi

/(
1− φ(mi)

mi

)
≤ 9

20
x

φ(mi)
mi

.

On the other hand, by the combinatorial sieve,

ci ≥
{

1
2

+ o(1)
}

x
φ(mi)

mi
>

{
10
9

+ o(1)
}

i;

and thus

ci − i ≥ i

10
≥ 10x

log log x
,

and so (2.1) is satisfied.

3. Sets where any two elements are coprime.

Proof of Theorem 2: Let t = π(
√

x). For the upper bound, note that the number of

composite elements of each set is ≤ t, as these elements must all have distinct prime factors

≤ x. All other elements are prime, and so the number of such sets is

≤ 2π(x)
t∑

i=0

(
[x]
i

)
� 2π(x) x

t

t!
� 2π(x)

(ex

t

)t

,
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which gives (1.3) by the Prime Number Theorem. (The proof here is the same as in

Theorem 3.3 of [CE], except that they made a computational error in the final step.)

To obtain the lower bound, we shall construct (1.3) such sets. Let

k = t

(
1− log log x

log x

)
and let

√
x < q1 < q2 < . . . < qk

be the k smallest primes larger than
√

x. Note that, using the Prime Number Theorem in

the form π(x) = x
log x (1 + O(1/log x)) we have

(3.1) qj = x1/2(1 + j/t + O(1/log x))

and so qk < 2
√

x.

We construct our sets as follows:

Each prime in the interval (2
√

x, x] is in our set or not as desired, giving 2π(x)−π(2
√

x)

different options.

We may put any number of the form pkqk in the set, where pk is a prime less than x/qk

(giving π(x/qk) choices).

Then any pk−1qk−1 where pk−1 is a prime ≤ x/qk−1 (giving π(x/qk−1 )− 1 choices).

We continue in this fashion, taking, in general, any pk−jqk−j , where pk−j is a prime

≤ x/qk−j , not already used as some pk−i, (giving us π(x/qk−j) − j choices), for j =

0, 1, . . . , k − 1.

Thus the number of different sets constructed is

2π(x)+O(
√

x/log x)
k∏

i=0

{
π

(
x

qi

)
− (k − i)

}
.

Now, by (3.1),

π

(
x

qi

)
− (k − i) = π

(
x1/2

1 + i/t

(
1 + O

(
1

log x

)))
− (k − i)

= t

{
1

1 + i/t
+ O

(
1

log x

)
− 1 +

log log x

log x
+

i

t

}
,
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using the Prime Number Theorem again,

= t

(
log log x

log x
+

(i/t)2

1 + i/t
+ O

(
1

log x

))
≥ t

log x
.

Therefore, the number of sets is at least

2π(x)+O(
√

x/log x)

(
t

log x

)k

,

which gives (1.3).

Remark: With some care it is possible to replace the log log x in (1.3) with (log log log x)2,

but we are currently unable to do better.

4. Sets whose sum of reciprocals is bounded.

Proof of Theorem 3: Let y = [x1/4], z = [x1/2], and xj = jx/z for y ≤ j ≤ z. A given

set of positive integers ≤ x, whose sum of reciprocals is bounded by s, has, say, bj integers

in the interval (xj , xj+1] for y ≤ j < z (with 0 ≤ bj ≤ x/z + 1), and so satisfies

(4.1)
z−1∑
j=y

bj

xj+1
≤ s.

So, if the bj are fixed with these values then the number of sets of integers ≤ x, with

precisely bj integers from the interval (xj , xj+1], is

(4.2) ≤ 2xy/z
∏

y≤j<z

(
[x/z] + 1

bj

)
.

So define αj := bj/([x/z] + 1) for each j. Clearly 0 ≤ αj ≤ 1 for each j, and, by (4.1),

they must satisfy

(4.3)
z−1∑
j=y

αj

j
≤ s

(
1 + O

(
1
y

))
.
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Moreover, by Stirling’s formula,(
[x/z] + 1

bj

)
� exp

(
O(log x) − x

z
(αj log αj + (1− αj)log (1− αj))

)
.

Noting that there are no more than (x/z + 1)z choices for the bj , we thus see that

ν(x) � exp

O(x3/4) − x

z
min

0≤αj≤1,y≤j<z

(4.3) holds

∑
y≤j<z

(αj log αj + (1− αj)log (1− αj))

 .

By the method of Lagrange multipliers we find that the minimum occurs when each αj =

1/
(
1 + eA/j

)
for some constant A > 0.

Now

z−1∑
j=y

αj

j
=
∫ z

y

dt

t(1 + eA/t)
+ O

(
1

yeA/y
+

1
zeA/z

)

=
∫ ∞

A/z

du

u(1 + eu)
+ O

(
1

yeA/y
+

1
(A/y)eA/y

+
1

zeA/z

)
.

To obtain equality in (4.3), we need to select A = x1/2f(s) + O(x1/4). Thus

−
∑

y≤j<z

αj log αj + (1− αj)log (1− αj) =
∑

y≤j<z

log
(
1 + e−A/j

)
+

A

j

1(
1 + eA/j

)
=
∫ z

y

((
1 + e−A/u

)
+

A

u
(
1 + eA/u

) )du + O(1).

By the substitution t = A/u, and the fact that

d
dt

log (1 + e−t)
t

=
1
t2

(
log (1 + e−t) +

t

1 + et

)
,

this last line is

zlog (1 + e−A/z) + O(1),

and so (1.4) is an upper bound for ν(x).



On the number of co-prime-free sets 9

To obtain a lower bound for ν(x) note that if we select integers bj such that

(4.4)
z−1∑
j=y

bj

xj
≤ s,

then the sum of the reciprocals of any set consisting of bj integers from the interval

(xj , xj+1), for each y ≤ j < z, is ≤ s. Clearly the number of such sets is

(4.5) ≥
∏

y≤j<z

(
[x/z]
bj

)
.

Now the idea is to select each bj = x/z
(
1 + eA/j

)
+ O(1), for some constant A > 0, so

that (4.4) is satisfied; this can be done by the choice A = x1/2f(s) + O(x1/4) (the proof

being almost identical to that for the upper bound). Now, when we estimate (4.5) with

this value for A, we proceed as in the upper bound, and show that (4.5) is at least (1.4).

Remarks: Cameron and Erdos̈ observed that any set of integers taken from [x/es, x] has

sum of reciprocals ≤ s, and thus c(s) ≥ 21−e−s

. We will derive (1.6) and (1.7):

If x is ‘large’ then ∫ ∞

x

du

u(1 + eu)
=

1
xex

{
1 + O

(
1
x

)}
,

which implies (1.6). On the other hand, (1.5) gives that, for f(s) < 1 (that is, s ‘large’),

(4.6) s = C1 +
1
2
log (1/f(s))−

∫ f(s)

0

(
1

1 + eu
− 1

2

)
du

u
,

where

C1 =
∫ ∞

1

du

u(1 + eu)
+
∫ 1

0

(
1

1 + eu
− 1

2

)
du

u
.

Therefore f(s) � e−2s, and so the last term in (4.6) is � f(s) � e−2s. Thus f(s) =

Ce−2s +O(e−4s), where C = e2C1 (which can be computed explicitly), which implies (1.7).
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