
Counting sets of integers, no k of which

sum to another

Neil J. Calkin Angela C. Taylor∗

School of Mathematics
Georgia Institute of Technology

Atlanta, GA 30332

∗Research for the second author was supported by a Georgia Institute of Technology Grad-
uate Research Assistantship.

1



Proposed Running Head: Counting sets of integers

Address for Proofs:
Neil J. Calkin or Angela C. Taylor
School of Mathematics
Georgia Institute of Technology
Atlanta, GA 30332

2



Abstract

We show that for every k ≥ 3 the number of subsets of {1, 2, . . . , n}
containing no solution to x1 + x2 + . . . + xk = y, where the xi need not
be distinct, is at most c2αn, where α = (k − 1)/k.
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A set S of positive integers is sum-free if S contains no x, y and z (not
necessarily distinct) such that x + y = z. Cameron and Erdös have shown
[3] that the number of sum-free sets contained in { 1

3n, 1
3n + 1, . . . , n} is c2

n
2 ,

and Alon [1], Calkin [2] and Erdös and Granville (personal communication) have
independently shown that the number of sum-free sets contained in {1, 2, . . . , n}
is o(2n( 1

2+ε)) for every ε > 0. Erdös has asked (personal communication) if the
number of sets contained in {1, 2, . . . , n} without a solution to x + y + z = t is
c2

2n
3 . In this paper, we answer this question in the affirmative and show more

generally that the number of sets contained in {1, 2, . . . , n} with no solution to
x1 + x2 + . . . + xk = y (with the xi not necessarily distinct) is at most c2αn,
where α = (k − 1)/k and k ≥ 3 . (Note that k = 2 corresponds to the sum-free
case mentioned above. It is interesting that we get a stronger result for k ≥ 3
than for k = 2, and we shall later show where the method used here fails for
k = 2.) We know this number must be at least c2αn, since if a set S has all
its elements in [n− αn, n], then the sum of any k elements of S will be greater
than n. Hence all 2αn subsets of [n−αn+1, n] will be included in this number.

In what follows, we will define

(∗)-free to mean having no solution to
∑k

i=1 xi = y

Fn = the set of (∗)-free sets in {1, 2, . . . , n}

fn = |Fn|

gn = the number of (∗)-free sets in {1, 2, . . . , n} which contain less than

εq elements greater than n− q

hn = the number of (∗)-free sets in {1, 2, . . . , n} which contain at least

εq elements greater than n− q

hn,l = the number of (∗)-free sets in {1, 2, . . . , n} which contain at least

εq elements greater than n− q and which have least element l

Theorem 1 Fix k ≥ 3, and let α = (k − 1)/k. There exists a constant c such
that the number of subsets of {1, 2, . . . , n} containing no solution to

k∑
i=1

xi = y

is at most c2αn.
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Proof The proof will be along the following lines: we shall split Fn into several
parts, where each part will be determined by the number of elements each set
has in [n−q+1, n] and by the size of its least element l. The reason we consider
the size of the least element in a set is that any set which contains many small
elements (in relation to n) cannot contain many medium or large elements, and
a set with many medium elements cannot contain many large elements. Hence,
the (∗)-free sets of greatest cardinality will be those with a large least element
l. Each subset of a (∗)-free set is clearly (∗)-free, so most of Fn will be those
sets with many elements in [n− q + 1, n] and a large least element l.

But first we must choose ε and q in an appropriate way. We will pick d such
that d > 1

2α−1 and then choose ε and q such that(
q

εq

)
εq <

1
2
2αq

and such that any set of εq elements in {1, 2, . . . , q} contains an arithmetic
progression of length at least 2d + 1. We are guaranteed the ability to do this
by [4].

We shall first consider the sets which have density less than ε in the largest q
elements of {1, 2, . . . , n}; that is, they have less than εq elements in [n−q+1, n].
The number of ways to get less than εq elements in [n− q + 1, n] is less than(

q

εq

)
εq

and this is less than 1
22αq, by our choice of ε and q. We multiply this by the

number of (∗)-free sets in {1, 2, . . . , n − q} and we see that the number gn of
(∗)-free sets in {1, 2, . . . , n} having fewer than εq elements in [n− q + 1, n] is at
most (

q

εq

)
εqfn−q <

1
2
2αqfn−q.

We shall now prove that the number of sets in Fn having at least εq elements
in [n− q + 1, n] is at most c2αn, where c is independent of n, and the result will
then follow by induction. First we shall state two lemmas due to Calkin [2].

Lemma 1 The number of binary sequences of length b without any pairs of 1s
at distance exactly 1, 3, 5, 7, . . . , 2d− 1, is at most 2

d+1
2d (b+2d).

Proof The number of sequences of length 2d without pairs of 1s at an odd
distance is exactly 2d+1 − 1. Thus the number of sequences of length b without
pairs of 1s at an odd distance less than 2d is at most

(2d+1 − 1)d
b
2d e < (2d+1)

b
2d +1 = 2

d+1
2d (b+2d)

as required.
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Lemma 2 Given an arithmetic progression b− da, b− (d− 1)a, . . . , b+ da, the
number of subsets of {1, 2, . . . , b− 1} having no pairs x, y such that x + y is an
element of the progression, is at most

2
d+1
2d (b+a(2d+1)).

Proof Write the elements of {1, 2, . . . , b− 1} in the following a sequences:

A1 = {1, b− 1, 1 + a, b− 1− a, 1 + 2a, b− 1− 2a, . . .},

A2 = {2, b− 2, 2 + a, b− 2− a, 2 + 2a, b− 2− 2a, . . .},
...

Aa = {a, b− a, 2a, b− 2a, 3a, b− 3a, . . .},

where each sequence has either d b
ae or b b

ac elements, and every element of
{1, 2, . . . , b} occurs in exactly one such sequence. Then, for any set S which
has no pair of elements summing to a member of the arithmetic progression,
the characteristic sequence of S is such that when written as a binary sequences
in the order given by A1, . . . , Aa, each of these binary sequences has the prop-
erty that there are no 1s at distance exactly 1, 3, 5, 7, . . . , 2d− 1. The number
of ways of choosing such a set S is thus at most the number of ways of choosing
a sequences of length b

a + 1, without 1s at an odd distance less than 2d. This is
at most

2
d+1
2d ( b

a +1+2d)a = 2
d+1
2d (b+a(2d+1))

as desired.
Now we shall place an upper bound on hn.

Lemma 3 The number hn of (∗)-free sets in {1, 2, . . . , n} which contain at least
εq elements greater than n− q is less than 2q+12αn + 2αn.

Proof If a set has l > n
k , then the set is clearly (∗)-free. Then any element of

[l, n] can be in the set, hence the number of sets with l > n
k is

2n−n
k = 2αn.

Now we shall consider the more interesting case where a set has l ≤ n
k . We

have an arithmetic progression t − da, t − (d − 1)a, . . . , t, t + a, . . . , t + da, and
least element l in our set S. Let Kl be the family of sets with least element
l. Then |Kl| is less than the number of subsets of [1, n] with no solution to
x1 + x2 + (k − 2)l = y. Now write x1 as z1 + l and x2 as z2 + l. Next we count
the number of subsets of [0, n− l] with no solution to
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z1 + z2 = t− da− kl

z1 + z2 = t− (d− 1)a− kl

...

z1 + z2 = t + da− kl

An upper bound for this is

2
d+1
2d (t−kl+1+a(2d+1)2(n−l)−(t−kl)+1

(where the first term is obtained as in Lemma 2 and the second term allows all
combinations of elements of [(n− l)− (t− kl), n− l] to be chosen)

= 2
d+1
2d (t−kl+1+a(2d+1))2(n−t)+12(k−1)l

= 2
d+1
2d (n−kl−(n−t−ad)+a(d+1)+1)2(n−t)+12(k−1)l

≤ 2
d+1
2d (n−kl)+

(d+1)2

2d a+ d+1
2d 2(n−t)+12(k−1)l

= 2
d+1
2d (n−kl)+ da

2 +a+ a
2d + d+1

2d 2(n−t)+12(k−1)l

≤ 2
d+1
2d (n−kl)+q2(n−t)+12(k−1)l

(since t ∈ [n − q + 1, n].) This is the point at which the difference between the
cases of k = 2 and k ≥ 3 arises. (We need 2

d+1
2d n < 2αn, but if k = 2 this cannot

happen since we have 2αn = 2
1
2 . ) Then, summing over l from 1 to n

k , we find
the number of (∗)-free sets with least element l ≤ n

k is

2q2
d+1
2d n 1− 2−

d+1
2d (n+k)

1− 2−
d+1
2d k

≤ 2q2αn2

= 2q+12αn.

So we have that hn < 2q+12αn + 2αn

Next we shall show that we may choose c independent of n. We know

fn ≤ gn + hn <
1
2
2αqfn−q + 2q+12αn + 2αn

so let c = 2q+3. Then if n ≤ q,

fn < c2αn.

Assume fr < c2αr for r < n. Then

fn < (
3c

4
+ 1)2αn

< c2αn

as desired
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