Counting sets of integers, no k of which sum to another

Neil J. Calkin Angela C. Taylor*
School of Mathematics
Georgia Institute of Technology Atlanta, GA 30332

[^0]Proposed Running Head: Counting sets of integers

Address for Proofs:
Neil J. Calkin or Angela C. Taylor
School of Mathematics
Georgia Institute of Technology
Atlanta, GA 30332

Abstract

We show that for every $k \geq 3$ the number of subsets of $\{1,2, \ldots, n\}$ containing no solution to $x_{1}+x_{2}+\ldots+x_{k}=y$, where the x_{i} need not be distinct, is at most $c 2^{\alpha n}$, where $\alpha=(k-1) / k$.

A set S of positive integers is sum-free if S contains no x, y and z (not necessarily distinct) such that $x+y=z$. Cameron and Erdös have shown [3] that the number of sum-free sets contained in $\left\{\frac{1}{3} n, \frac{1}{3} n+1, \ldots, n\right\}$ is $c 2^{\frac{n}{2}}$, and Alon [1], Calkin [2] and Erdös and Granville (personal communication) have independently shown that the number of sum-free sets contained in $\{1,2, \ldots, n\}$ is $o\left(2^{n\left(\frac{1}{2}+\epsilon\right)}\right)$ for every $\epsilon>0$. Erdös has asked (personal communication) if the number of sets contained in $\{1,2, \ldots, n\}$ without a solution to $x+y+z=t$ is $c 2^{\frac{2 n}{3}}$. In this paper, we answer this question in the affirmative and show more generally that the number of sets contained in $\{1,2, \ldots, n\}$ with no solution to $x_{1}+x_{2}+\ldots+x_{k}=y$ (with the x_{i} not necessarily distinct) is at most $c 2^{\alpha n}$, where $\alpha=(k-1) / k$ and $k \geq 3$. (Note that $k=2$ corresponds to the sum-free case mentioned above. It is interesting that we get a stronger result for $k \geq 3$ than for $k=2$, and we shall later show where the method used here fails for $k=2$.) We know this number must be at least $c 2^{\alpha n}$, since if a set S has all its elements in $[n-\alpha n, n]$, then the sum of any k elements of S will be greater than n. Hence all $2^{\alpha n}$ subsets of $[n-\alpha n+1, n]$ will be included in this number.

In what follows, we will define

$$
\begin{aligned}
& \text { (*)-free to mean having no solution to } \sum_{i=1}^{k} x_{i}=y \\
& \mathcal{F}_{n}=\text { the set of }(*) \text {-free sets in }\{1,2, \ldots, n\} \\
& f_{n}=\left|\mathcal{F}_{n}\right|
\end{aligned}
$$

$g_{n}=$ the number of $(*)$-free sets in $\{1,2, \ldots, n\}$ which contain less than ϵq elements greater than $n-q$
$h_{n}=$ the number of $(*)$-free sets in $\{1,2, \ldots, n\}$ which contain at least

$$
\epsilon q \text { elements greater than } n-q
$$

$h_{n, l}=$ the number of $(*)$-free sets in $\{1,2, \ldots, n\}$ which contain at least ϵq elements greater than $n-q$ and which have least element l

Theorem 1 Fix $k \geq 3$, and let $\alpha=(k-1) / k$. There exists a constant c such that the number of subsets of $\{1,2, \ldots, n\}$ containing no solution to

$$
\sum_{i=1}^{k} x_{i}=y
$$

is at most $c 2^{\alpha n}$.

Proof The proof will be along the following lines: we shall split \mathcal{F}_{n} into several parts, where each part will be determined by the number of elements each set has in $[n-q+1, n]$ and by the size of its least element l. The reason we consider the size of the least element in a set is that any set which contains many small elements (in relation to n) cannot contain many medium or large elements, and a set with many medium elements cannot contain many large elements. Hence, the $(*)$-free sets of greatest cardinality will be those with a large least element l. Each subset of a $(*)$-free set is clearly $(*)$-free, so most of \mathcal{F}_{n} will be those sets with many elements in $[n-q+1, n]$ and a large least element l.

But first we must choose ϵ and q in an appropriate way. We will pick d such that $d>\frac{1}{2 \alpha-1}$ and then choose ϵ and q such that

$$
\binom{q}{\epsilon q} \epsilon q<\frac{1}{2} 2^{\alpha q}
$$

and such that any set of ϵq elements in $\{1,2, \ldots, q\}$ contains an arithmetic progression of length at least $2 d+1$. We are guaranteed the ability to do this by [4].

We shall first consider the sets which have density less than ϵ in the largest q elements of $\{1,2, \ldots, n\}$; that is, they have less than ϵq elements in $[n-q+1, n]$. The number of ways to get less than ϵq elements in $[n-q+1, n]$ is less than

$$
\binom{q}{\epsilon q} \epsilon q
$$

and this is less than $\frac{1}{2} 2^{\alpha q}$, by our choice of ϵ and q. We multiply this by the number of $(*)$-free sets in $\{1,2, \ldots, n-q\}$ and we see that the number g_{n} of $(*)$-free sets in $\{1,2, \ldots, n\}$ having fewer than ϵq elements in $[n-q+1, n]$ is at most

$$
\binom{q}{\epsilon q} \epsilon q f_{n-q}<\frac{1}{2} 2^{\alpha q} f_{n-q} .
$$

We shall now prove that the number of sets in \mathcal{F}_{n} having at least ϵq elements in $[n-q+1, n]$ is at most $c 2^{\alpha n}$, where c is independent of n, and the result will then follow by induction. First we shall state two lemmas due to Calkin [2].

Lemma 1 The number of binary sequences of length b without any pairs of $1 s$ at distance exactly $1,3,5,7, \ldots, 2 d-1$, is at most $2^{\frac{d+1}{2 d}(b+2 d)}$.

Proof The number of sequences of length $2 d$ without pairs of 1 s at an odd distance is exactly $2^{d+1}-1$. Thus the number of sequences of length b without pairs of 1 s at an odd distance less than $2 d$ is at most

$$
\left(2^{d+1}-1\right)^{\left\lceil\frac{b}{2 d}\right\rceil}<\left(2^{d+1}\right)^{\frac{b}{2 d}+1}=2^{\frac{d+1}{2 d}(b+2 d)}
$$

as required.

Lemma 2 Given an arithmetic progression $b-d a, b-(d-1) a, \ldots, b+d a$, the number of subsets of $\{1,2, \ldots, b-1\}$ having no pairs x, y such that $x+y$ is an element of the progression, is at most

$$
2^{\frac{d+1}{2 d}(b+a(2 d+1))}
$$

Proof Write the elements of $\{1,2, \ldots, b-1\}$ in the following a sequences:

$$
\begin{gathered}
A_{1}=\{1, b-1,1+a, b-1-a, 1+2 a, b-1-2 a, \ldots\}, \\
A_{2}=\{2, b-2,2+a, b-2-a, 2+2 a, b-2-2 a, \ldots\}, \\
\vdots \\
A_{a}=\{a, b-a, 2 a, b-2 a, 3 a, b-3 a, \ldots\},
\end{gathered}
$$

where each sequence has either $\left\lceil\frac{b}{a}\right\rceil$ or $\left\lfloor\frac{b}{a}\right\rfloor$ elements, and every element of $\{1,2, \ldots, b\}$ occurs in exactly one such sequence. Then, for any set S which has no pair of elements summing to a member of the arithmetic progression, the characteristic sequence of S is such that when written as a binary sequences in the order given by A_{1}, \ldots, A_{a}, each of these binary sequences has the property that there are no 1 s at distance exactly $1,3,5,7, \ldots, 2 d-1$. The number of ways of choosing such a set S is thus at most the number of ways of choosing a sequences of length $\frac{b}{a}+1$, without 1 s at an odd distance less than $2 d$. This is at most

$$
2^{\frac{d+1}{2 d}\left(\frac{b}{a}+1+2 d\right) a}=2^{\frac{d+1}{2 d}(b+a(2 d+1))}
$$

as desired.
Now we shall place an upper bound on h_{n}.
Lemma 3 The number h_{n} of $(*)$-free sets in $\{1,2, \ldots, n\}$ which contain at least ϵq elements greater than $n-q$ is less than $2^{q+1} 2^{\alpha n}+2^{\alpha n}$.

Proof If a set has $l>\frac{n}{k}$, then the set is clearly $(*)$-free. Then any element of $[l, n]$ can be in the set, hence the number of sets with $l>\frac{n}{k}$ is

$$
2^{n-\frac{n}{k}}=2^{\alpha n}
$$

Now we shall consider the more interesting case where a set has $l \leq \frac{n}{k}$. We have an arithmetic progression $t-d a, t-(d-1) a, \ldots, t, t+a, \ldots, t+d a$, and least element l in our set S. Let \mathcal{K}_{l} be the family of sets with least element l. Then $\left|\mathcal{K}_{l}\right|$ is less than the number of subsets of $[1, n]$ with no solution to $x_{1}+x_{2}+(k-2) l=y$. Now write x_{1} as $z_{1}+l$ and x_{2} as $z_{2}+l$. Next we count the number of subsets of $[0, n-l]$ with no solution to

$$
\begin{gathered}
z_{1}+z_{2}=t-d a-k l \\
z_{1}+z_{2}=t-(d-1) a-k l \\
\vdots \\
z_{1}+z_{2}=t+d a-k l
\end{gathered}
$$

An upper bound for this is

$$
2^{\frac{d+1}{2 d}(t-k l+1+a(2 d+1)} 2^{(n-l)-(t-k l)+1}
$$

(where the first term is obtained as in Lemma 2 and the second term allows all combinations of elements of $[(n-l)-(t-k l), n-l]$ to be chosen)

$$
\begin{gathered}
=2^{\frac{d+1}{2 d}(t-k l+1+a(2 d+1))} 2^{(n-t)+1} 2^{(k-1) l} \\
=2^{\frac{d+1}{2 d}(n-k l-(n-t-a d)+a(d+1)+1)} 2^{(n-t)+1} 2^{(k-1) l} \\
\leq 2^{\frac{d+1}{2 d}(n-k l)+\frac{(d+1)^{2}}{2 d} a+\frac{d+1}{2 d}} 2^{(n-t)+1} 2^{(k-1) l} \\
=2^{\frac{d+1}{2 d}(n-k l)+\frac{d a}{2}+a+\frac{a}{2 d}+\frac{d+1}{2 d}} 2^{(n-t)+1} 2^{(k-1) l} \\
\quad \leq 2^{\frac{d+1}{2 d}(n-k l)+q} 2^{(n-t)+1} 2^{(k-1) l}
\end{gathered}
$$

(since $t \in[n-q+1, n]$.) This is the point at which the difference between the cases of $k=2$ and $k \geq 3$ arises. (We need $2^{\frac{d+1}{2 d} n}<2^{\alpha n}$, but if $k=2$ this cannot happen since we have $2^{\alpha n}=2^{\frac{1}{2}}$.) Then, summing over l from 1 to $\frac{n}{k}$, we find the number of $(*)$-free sets with least element $l \leq \frac{n}{k}$ is

$$
\begin{gathered}
2^{q} 2^{\frac{d+1}{2 d} n} \frac{1-2^{-\frac{d+1}{2 d}(n+k)}}{1-2^{-\frac{d+1}{2 d} k}} \\
\leq 2^{q} 2^{\alpha n} 2 \\
=2^{q+1} 2^{\alpha n}
\end{gathered}
$$

So we have that $h_{n}<2^{q+1} 2^{\alpha n}+2^{\alpha n}$
Next we shall show that we may choose c independent of n. We know

$$
f_{n} \leq g_{n}+h_{n}<\frac{1}{2} 2^{\alpha q} f_{n-q}+2^{q+1} 2^{\alpha n}+2^{\alpha n}
$$

so let $c=2^{q+3}$. Then if $n \leq q$,

$$
f_{n}<c 2^{\alpha n}
$$

Assume $f_{r}<c 2^{\alpha r}$ for $r<n$. Then

$$
\begin{aligned}
f_{n}< & \left(\frac{3 c}{4}+1\right) 2^{\alpha n} \\
& <c 2^{\alpha n}
\end{aligned}
$$

as desired

References

[1] Noga Alon. Independent sets in regular graphs and sum-free subsets of finite groups. Israel J. Math., 73:247-256, 1991.
[2] Neil J. Calkin. On the number of sum-free sets. Bull. London Math. Soc., 22:141-144, 1990.
[3] P. J. Cameron and P. Erdös. On the number of sets of integers with various properties. In Richard A. Mollin, editor, Number Theory, pages 61-79. Walter de Gruyter, 1990.
[4] E. Szemeredi. On sets of integers containing no k elements in arithmetic progression. Acta. Arith., 27:199-245, 1975.

[^0]: *Research for the second author was supported by a Georgia Institute of Technology Graduate Research Assistantship.

