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Abstract. We show that the number of subsets of {1, 2, ..., n}
with no solution to x1 +x2 + ...+xk = y1 +y2 + ..+yl for k ≥ 4l−1
is at most c2θn where θ = k−l

k .

1. Introduction

A set S of positive integers is sum-free if x + y = z has no solution
in S. Similarly, a set S of positive integers is (k, l) sum-free if x1+
x2 + ... + xk = y1 + y2 + ... + yl has no solution in S. Cameron and
Erdös have shown [5] that the number of sum-free sets contained in
{1

3
n, ..., n} is c2

n
2 , and Alon [1], Calkin [3] and Erdös and Granville

(personal communication) have independently shown that the number

of sum-free sets contained in {1, 2, ..., n} is o
(
2n( 1

2
+ε)

)
for every ε > 0.

Calkin and Taylor [4] have shown that the number of (k, 1) sum-free
sets in {1, 2, ..., n} is c2θn for k ≥ 3 and θ = k−1

k
. Bilu [2] has shown

that the number of (4, 3) sum-free sets, and consequently, the number
of (k + 1, k) sum-free sets is at most c2(n+1)/2 for k ≥ 3. We extend the
results of Calkin and Taylor in a different direction by showing that
for k ≥ 4l − 1, the number of (k, l) sum-free sets in {1, 2, ..., n} is at
most c2θn where θ = k−l

k
. Note that the number of (k, l) sum-free sets

in {1, 2, ..., n} is at least c2θn because any subset of { l
k
n, ..., n} is (k, l)

sum-free, and there are 2n− l
k
n = 2θn such subsets. Our main result is

the following theorem.

Theorem 1. For fixed k, l with k ≥ 4l− 1, let θ = k−l
k

. There exists a
constant c depending on k such that the number of subsets of {1, 2, ..., n}
containing no solution to x1 +x2 + ...+xk = y1 +y2 + ...+yl is at most
c2θn.
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2. Preliminaries

We will denote by [a,b] the set [a,b]∩Z. We will fix a large constant
q, depending on k and l, and consider separately those sets with respec-
tively few (less than εq) and many (at least εq) elements in {n−q, ..., n}
for some fixed ε. We will see that there are relatively few sets of the
former type and that those of the latter will contain long arithmetic
progressions which we will make use of in our proof.

Specifically we define:

(1) x1 + x2 + ... + xk = y1 + y2 + ... + yl

(∗)-free to mean a set having no solution to (1)

fn = the number of (∗)-free sets in {1, 2, ..., n}
gn = the number of (∗)-free sets in {1, 2, ..., n} which contain less

than εq elements greater than n− q.

hn,m = the number of (∗)-free sets in {1, 2, ..., n} which contain at

least εq elements greater than n− q and have least element m.

hn =
n∑

m=1

hn,m = the number of (∗)-free sets in {1, 2, ..., n} which

contain at least εq elements greater than n− q.

d = max

(⌈
1

2θ − 1

⌉
, 8l

)
We will make use of the following theorem of Szemerédi [6]:

Theorem (Szemerédi). Given d, ε > 0 there exists qo so that if q > qo

then any subset S of {1, 2, ..., q} with |S| > εq contains an arithmetic
progression of length greater than 2d.

Thus we may choose ε > 0, and q sufficiently large so that

(1) If a subset S of {n − q + 1, ..., n} is such that |S| > εq then
there is an arithmetic progression of length at least 2d + 1.

(2)
(

q
εq

)
εq < 2θq−1.

3. Counting sets with fewer than εq elements in
[n− q + 1, n]

We first find a bound on gn, i.e., how many (∗)- free sets there are
in {1, 2, ..., n} which contain less than εq elements greater than n− q.
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The number of ways to get fewer than εq elements in [n− q + 1, n] is
εq∑

i=1

(
q

εq − i

)
≤ εq

(
q

εq

)
< 2θq−1

If we now multiply this by the number of (∗)-free sets in {1, 2, ..., n−q},
we obtain an upper bound for gn of

2θq−1fn−q.

Next, we will bound hn and the result will follow by induction.

4. Counting sets with more than εq elements in [n− q + 1, n]

In this section we will find bounds on hn,m for various values of the
least element, m, of a set. Let us first consider the case where m > l

k
n.

The number of (k, l)-sum-free sets with m > l
k
n does not exceed the

number of subsets of [ l
k
n + 1, n], which is less than 2θn.

We are left with the case where m ≤ l
k
n. In this case we will use

the arithmetic progression of length 2d + 1 in [n− q + 1, n] that we are
guaranteed by Szemerédi. Call this progression t−da, t−(d−1)a, ..., t+
da. To make use of this progression, we will need the following lemma
due to Calkin [3].

Lemma 2. Given an arithmetic progression b−da, b−(d−1)a, ..., b+da,
the number of subsets of {0, 1, ..., b− 1} having no pairs x, y such that
x + y is an element of the progression, is at most

2
d+1
2d

(b+a(2d+1))+1.

Clearly, hn,m is less than the number of subsets of {m, ..., n} having
no solution to x1 + x2 + (k − 2)m = y1 + y2 + ... + yl. Making the
substitutions z1 = x1 + m and z2 = x2 + m, we have hn,m less than
the number of subsets A of {0, ...n −m} such that for any z1, z2 ∈ A
and y1, ..., yl ∈ A + m we have z1 + z2 6= y1 + y2 + ... + yl. Various
substitutions for y1through yl will give us the desired result.

We will split the interval {1, ..., l
k
n} into overlapping intervals Ip =

[αpn, βpn], p = 1, ..., l and Jp = [α′pn, β′pn] for p = 1, ..., l − 1 where

αp =
p t

n
− 1

k − l + p− 1
βp =

kp− 2l − 1
d
kp

k(k − l + p− 2)− 1
d
k(k − l + p)

α′p =
k(p− 1) + 2l + 1

d
(p + 1)k

k(k − l + p + 1) + 1
d
k(k − l + p + 1)

β′p =
(p + 1) t

n
− 1

k − l + p

and look at the cases m ∈ Ip, p = 1, ..., l m ∈ Jp, p = 1, .., l − 1
separately.
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5. Sets with m ∈ Ip for p = 1, ..., l

We know that hn,m is less than the number of subsets A of {0, ..., n−
m} such that for any z1, z2 ∈ A and y1, ..., yl ∈ A+m we have z1 +z2 6=
y1+y2+...+yl. Therefore, letting y1 ∈ {t− da, t− (d− 1)a, ..., t + da},
y2, y3, ..., yp = t, and yp+1, ..., yl = m, the number hn,m is still less
than the number of subsets of {0, ..., n−m} with no solution to

(2) z1 + z2 = (pt− (k − l + p)m) + ia for i = −d, ..., d

By Lemma 1 there are at most 2
d+1
2d

(pt−(k−l+p)m+a(2d+1))+1 subsets of
{0, 1, ..., pt − (k − l + p)m − 1} with no solution to (2). Note that we
know pt − (k − l + p)m ≤ n − m. If we now allow any subset of the
remaining elements in {pt− (k − l + p)m, ..., n−m} we have

hn,m ≤ 2
d+1
2d

(pt−(k−l+p)m+a(2d+1))+12(n−m)−(pt−(k−l+p)m)+1

= 2γpn+δpm+ d+1
2d

(a(2d+1))+2+(n−t)p(1− d+1
2d

)

where γp = 1+ p
2

(
1
d
− 1

)
and δp = 1

2
(k − l + p)

(
1− 1

d

)
−1. Our choice

of βp, γp, and δp insure that γp + δpβp = θ. Also note that (n− t) < q,
so for εp = ql + 2

(3) hn,m < 2γpn+δpm+εp

Therefore ∑
m∈Ip

hn,m <
∑
m∈Ip

2γpn+δpm+εp

= 2γpn+εp
∑
m∈Ip

2δpm

≤ 2γpn+εp

(
2(βpn+1)δp − 2αpδpn

2δp − 1

)
= 2(γp+δpβp)n+εp

(
2δp − 2−δp(βp−αp)n

2δp − 1

)
,

so there exists a cp for which

(4)
∑
m∈Ip

hn,m < cp2
θn

6. Sets with m ∈ Jp for p = 1, ..., l − 1

Again we will use the fact that hn,m is less than the number of
sets A of {0, ..., n − m} such that for any z1, z2 ∈ A and y1, ..., yl ∈
A + m we have z1 + z2 6= y1 + y2 + ... + yl. This time we will use the
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substitutions y1 ∈ {t− da, t− (d− 1)a, ..., t + da}, y2, y3, ..., yp+1 =
t, and yp+2, ..., yl = m. We are now looking at sets with no solution to

(5) z1 + z2 = ((p + 1)t− (k − l + p + 1)m) + ia i = −d, ..., d.

Using Lemma 1 for an upper bound on the number of subsets of
{0, 1, ..., (p + 1)t− (k − l + p + 1)m− 1} with no solution to (5) we
have

hn,m ≤ 2
d+1
2d

((p+1)t−(k−l+p+1)m+a(2d+1))+1

= 2γ′
pn−δ′

pm+ d+1
2d

(a(2d+1)−(p+1)(n−t))+1

where γ′p = d+1
2d

(p + 1) and δ′p = d+1
2d

(k − l + p + 1). Note that we have
not counted any subsets of {(p + 1)t− (k − l + p + 1)m, ..., n−m} be-
cause this set is empty for m ∈ Jp. To be precise, this set may con-
tain one element; this happens when m = βp′n. Here, our choice of
α′p, γ′p, and δ′p insure that γ′p − δ′pα

′
p = θ. For ε′p = q, we have

hn,m < 2γ′
pn−δ′

pm+ε′
p . Therefore∑

m∈Jp

hn,m <
∑
m∈Jp

2γ′
pn−δ′

pm+ε′
p

= 2γ′
pn+ε′

p

∑
m∈Jp

2−δ′
pm

≤ 2γ′
pn+ε′

p

(
2−α′

pδ′
pn − 2−(β′

pn+1)δ′
p

1− 2−δ′
p

)
= 2(γ′

p−δ′
pα′

p)n+ε′
p

(
1− 2−δ′

p((β′
p−α′

p)n+1)

1− 2−δ′
p

)
.

Again, there is a c′p for which

(6)
∑
m∈Jp

hn,m < c′p2
θn

7. Checking that Ip and Jp cover [0, l
k
n]

In this section we prove that

[0, ...,
l

k
n] ⊆ I1 ∪ J1 ∪ I2 ∪ J2 ∪ ... ∪ Il−1 ∪ Jl−1 ∪ Il.
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It suffices to show that:

α1 ≤ 0, βl =
l

k
,

αp+1 = βp′ (1 ≤ p ≤ l − 1),

αp′ ≤ βp (1 ≤ p ≤ l − 1).

Here the first two are obvious. It remains to prove αp′ ≤ βp, which is
equivalent to showing

k(p− 1) + 2l + 1
d
k(p + 1)

k(k − l + p + 1) + 1
d
k(k − l + p + 1)

≤
kp− 2l − 1

d
kp

k(k − l + p− 2)− 1
d
k(k − l + p)

for 1 ≤ p ≤ l − 1. Since d > 3, both denominators are positive and we
can cross multiply and get the following equivalent expression

1

d
(k − l)

(
2k − 2− 1

d
k

)
≤ (k − l) (k − 4l + 4p− 2) .

The right hand side of the above expression is smallest when p = 1 so
we must have the following

k ≥
4l − 2− 2

d(
1− 1

d

)2 since k > l.

Since we know k ≥ 4l − 1, if we can show that
4l−2− 2

d

(1− 1
d)

2 ≤ 4l − 1 , then

we are done. Notice

4l − 2− 2
d(

1− 1
d

)2 ≤ 4l − 2(
1− 1

d

)2 ≤ 4l − 1

as soon as

d ≥ d0(l) :=
1

1−
√

4l−2
4l−1

so d ≥ 8l will suffice.
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8. Putting it all together

Now, since we have bounded hn,m for all values of m, we are in a
position to bound hn.

hn =
n∑

m=1

hn,m

=
∑

m≤ l
k
n

hn,m +
∑

m> l
k
n

hn,m

=
l∑

p=1

∑
m∈Ip

hn,m +
l−1∑
p=1

∑
m∈Jp

hn,m +
∑

m> l
k
n

hn,m

≤
l∑

p=1

cp2
θn +

l−1∑
p=1

c′p2
θn + 2θn

≤ ch2
θn

for some ch depending upon k and l. Note that we do not claim these
bounds to be tight.

We now have bounds on gn and hn and are able to bound fn, or the
total number of (∗)-free sets in {1, 2, ..., n}. We will show that we can
choose c independent of n.

Proof of Theorem 1: Our proof will proceed by induction. Let us
first notice that the work we have done so far insures that

fn = gn + hn(7)

≤ 2θq−1fn−q + ch2
θn

Observe that fn < 2q2θn for 1 ≤ n ≤ q: hence if we set c > max(2ch, 2
q)

then we obtain

fn <
( c

2
+ ch

)
2θn

< c2θn

which is our desired result. �
We are grateful to a referee for pointing out that the assumption

k ≥ 4l− 1 can be relaxed to k ≥ 4l− gcd(k, l): indeed, if the assertion
holds for a pair (k, l), then it also holds for (dk, dl).

9. Conjectures

We believe that our result is still true for all k ≥ 2l but that sig-
nificantly different techniques must be used to prove it. Note that our
intervals Ip and Jp are no longer guaranteed to overlap if k < 4l−1. For
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k = 2l we have sum-free sets as a special case (l=1), so we also make
the weaker conjecture that the number of (k, l) sum-free sets contained
in {1, 2, ..., n} is c2θn for θ = k−l

k
and k > 2l.

It is also natural to ask whether an asymptotic result is true: that
is, does there exist a constant c such that

fn ∼ c2θn

as n → ∞? Computational evidence for sum-free sets suggests that
this is not the case: there seems to be a parity effect so that for even n
and for odd n there are different asymptotic results. This reflects the
fact that there are two distinct large sum-free sets: the odd numbers,
and the numbers in [n/2, n]. Since this is not the case for (k, l) sum-free
sets, we conjecture that there is such a constant.
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