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THE NUMBER OF INDEPENDENT SETS IN A GRID GRAPH

NEIL J. CALKIN† and HERBERT S. WILF‡

Abstract. If f(m, n) is the (vertex) independence number of the m × n grid graph, then we show

that the double limit η =
def

limm,n→∞ f(m, n)
1

mn exists, thereby refining earlier results of Weber [2]

and Engel [1]. We establish upper and lower bounds for η, and prove that 1.503047782 . . . ≤ η ≤

1.5035148 . . .. Numerical computations suggest that the true value of η (the “hard square constant”)
is around 1.5030480824753323..
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Let Gm,n be the m×n grid graph. That is, the vertices of Gm,n are the (m+1)(n+1)
points (i, j) (0 ≤ i ≤ m, 0 ≤ j ≤ n) in the plane, and its edges are all of the pairs
(i, j), (i′, j′) of vertices for which |i − i′| + |j − j′| = 1. Let f(m, n) be the number of
independent sets of vertices in Gm,n. We study the growth of f(m, n). The figure below
shows an independent set S in G4,6.
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Fig. 1

Clearly Gm,n contains an independent set of size ≥ mn/2, and that set has ≥ 2mn/2

subsets, so certainly
lim inf
m,n→∞

f(m, n)
1

mn ≥
√

2 = 1.4142..

In [2], K. F. E. Weber showed the existence of the limits

lim
n→∞

f(m, n)1/mn and lim
n→∞

f(n, n)1/n2

,

and estimated their values. In [1], K. Engel proved some inequalities for these quantities,
deduced that 1.50304808 ≤ η ≤ 1.51316067, and conjectured that η = 1.50304808 · · ·.

We will prove that the double limit

η =
def

lim
m,n→∞

f(m, n)
1

mn (1)

exists, and that 1.503047782 . . . ≤ η ≤ 1.5035148 . . ., the latter by exhibiting (relatively)
easily computable upper and lower bounds. Numerical computations suggest that the true
value of η is around 1.5030480824753323..

1. The transfer matrix
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2 calkin and wilf

We use the transfer matrix method, in a manner that is similar to the way it was
used in [3]. Let S be an independent set in Gm,n. Consider the portion of S that lies in
a fixed column of the graph. This can be regarded as an (m + 1)-vector of 0’s and 1’s, in
which a 1 indicates that the vertex is in S, and a 0 indicates that the vertex is not in S.
The (m + 1)-vectors that can arise this way are those that have the property that no two
consecutive 1’s occur.

Example. Fig. 1 above shows an independent set S in G4,6. The portions of S that lie
in each of the 7 columns can be represented by the respective 5-vectors

(0, 1, 0, 1, 0), (1, 0, 0, 0, 0), (0, 0, 1, 0, 1), (0, 1, 0, 1, 0), (0, 0, 1, 0, 0), (0, 1, 0, 0, 0), (1, 0, 0, 1, 0).

Each of these 5-vectors has the property that no two consecutive 1’s occur.

Thus, for m, n fixed, we can think of assembling the independent sets of the grid graph
by gluing together columns that are chosen from the collection of possible columns, making
sure that when we glue an additional column onto the right hand edge of the structure,
the new column does not clash with the previous rightmost column.

The collection of possible columns Cm is the set of all (m + 1)-vectors v, of 0’s and
1’s, such that v contains no two consecutive 1’s. The number of these is well known to be
Fm+2, the Fibonacci number.

The condition that vectors v′, v′′ in Cm are a possible consecutive pair of columns in
an independent set of Gm,n is simply that they have no 1’s in common position, i.e., that
v′ · v′′ = 0 in the sense of the usual dot product of vectors over the reals.

Thus all possible independent sets in the grid graph are obtained by beginning with
some vector of Cm, and in general, having arrived at some sequence of vectors of Cm, adjoin
any vector of Cm that is orthogonal to the last one previously chosen, until (n +1) vectors
have been selected.

We define a matrix T = Tm, the transfer matrix of the problem, as follows. T is an
Fm+2 × Fm+2 symmetric matrix of 0’s and 1’s whose rows and columns are indexed by
vectors of Cm. The entry of T in position (v′,v′′) is 1 if the vectors v′,v′′ are orthogonal,
and is 0 otherwise. T depends only on m, not on n.

Let f(m, n,u) denote the number of independent sets of Gm,n whose rightmost column
vector is u. Then clearly we have

f(m, n + 1,v) =
∑

u∈Cm

f(m, n,u)Tu,v (n ≥ 0;v ∈ Cm),

or, in matrix-vector notation, fn+1 = T fn, with f0 = 1, the vector whose entries are all 1’s.
It follows that fn = Tn1, for all n ≥ 0. The number of independent sets of Gm,n is the
sum of the entries of the vector fn. Thus

f(m, n) = 1 · Tn1,

i.e., f(m, n) is the sum of all of the entries of the matrix Tn.
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Since T has nonnegative entries, its dominant eigenvector cannot be orthogonal to 1,
and so we have at once that limn→∞ f(m, n)1/n exists for each m, and is equal to Λm, the
largest eigenvalue of the (real, symmetric) transfer matrix T (the existence of that limit
also follows from an obvious subadditivity argument). It follows that

lim inf Λ
1/m
m = lim inf

m,n
f(m, n)1/mn ≤ lim sup

m,n
f(m, n)1/mn = lim sup Λ

1/m
m .

We remark in passing that some interesting generating functions can be found in
moderately explicit form. Indeed, since f(m, n) is the sum of the entries of Tn, we see
that for m fixed, the numbers f(m, n) can be read off as the coefficient of xn in the power
series expansion of the sum of the entries of the matrix (I − xT )−1.

For instance, take m = 2. The possible column vectors in an independent set are

(000), (001), (010), (100), (101).

If we index the rows and columns in this order, then the transfer matrix is

T =











1 1 1 1 1
1 0 1 1 0
1 1 0 1 1
1 1 1 0 0
1 0 1 0 0











. (2)

If we find the sum of the entries of (I −xT )−1 we see that f(2, n) is the coefficient of xn in

5 + 7 x − x2 − x3

1 − 2 x − 6 x2 + x4
= 5 + 17 x + 63 x2 + 227 x3 + 827 x4 + 2999 x5 + 10897 x6 + O(x7).

2. The lower bound

In this section we will first prove the existence of the limit η, and then by a slight
refinement of the argument, we will give a close lower bound for η.

By the maximum principle, since the transfer matrix T is real and symmetric, we
have, for every positive integer p,

Λp
m ≥ (1, T p

m1)

(1, 1)
, (3)

where we now explicitly exhibit the dependence of the transfer matrix on m by the sub-
script. But (1, T p

m1) = (1, Tm
p 1), since both sides count the independent sets in the grid

graph Gm,p. Thus, after taking mth roots we have

(Λ
1/m
m )p ≥

(

(1, Tm
p 1)

(1, 1)

)1/m

. (4)
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Now take the lim inf of both sides of this inequality, as m → ∞. We obtain

(lim inf
m→∞

Λ
1/m
m )p ≥ Λp

1+
√

5

2

. (5)

Now take the pth root, and the lim sup as p → ∞ to discover that

lim inf
m→∞

Λ
1/m
m ≥ lim sup

p→∞
Λ

1/p
p .

The reverse inequality being obvious, we have that the limit limm→∞ Λ
1/m
m exists, and

hence by (3) so does the limit

η = lim
m,n

f(m, n)1/mn = lim
m→∞

Λ
1/m
m . (6)

Next we will refine the above argument to obtain a good numerical lower bound for
η. We replace (4) by

Λp
m ≥ (T q

m1, T p
mT q

m1)

(T q
m1, T q

m1)
,

which by the maximum principle is true for every positive integer q. But the right side
can be rewritten as

(1, T q
mT p

mT q
m1)

(1, T q
mT q

m1)
=

(1, T p+2q
m 1)

(1, T 2q
m 1)

=
(1, Tm

p+2q1)

(1, Tm
2q1)

,

where we have again used the fact that ∀p, m : T p
m = Tm

p . Hence

ηp = lim
m→∞

(Λ
1/m
m )p ≥ Λp+2q

Λ2q
,

and so

η ≥
(

Λp+2q

Λ2q

)
1
p

. (7)

Example.

We now work out the case p = 2, q = 1 of this lower bound. The transfer matrix T2 is
shown in (2) above, and its largest eigenvalue is the largest zero of 1−6 x2 −2 x3 +x4 = 0,
i.e., Λ2 = 3.6313812604036 . . ..
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The transfer matrix T4 is 13 × 13, and it is given by

T4 =













































∅ v w x y z v∧x v∧y v∧z w∧y w∧z x∧z v∧x∧z

∅ 1 1 1 1 1 1 1 1 1 1 1 1 1
v 1 0 1 1 1 1 0 0 0 1 1 1 0
w 1 1 0 1 1 1 1 1 1 0 0 1 1
x 1 1 1 0 1 1 0 1 1 1 1 0 0
y 1 1 1 1 0 1 1 0 1 0 1 1 1
z 1 1 1 1 1 0 1 1 0 1 0 0 0
v∧x 1 0 1 0 1 1 0 0 0 1 1 0 0
v∧y 1 0 1 1 0 1 0 0 0 0 1 1 0
v∧z 1 0 1 1 1 0 0 0 0 1 0 0 0
w∧y 1 1 0 1 0 1 1 0 1 0 0 1 1
w∧z 1 1 0 1 1 0 1 1 0 0 0 0 0
x∧z 1 1 1 0 1 0 0 1 0 1 0 0 0
v∧x∧z 1 0 1 0 1 0 0 0 0 1 0 0 0













































.

The largest eigenvalue of T4 is the largest root of the equation

1 − 4t − 20t2 + 64t3 + 15t4 − 105t5 + 36t6 + 4t7 − t8 = 0,

namely Λ4 = 8.2032591937550246879103 . . . . Hence we have the lower bound

η ≥
(

Λ4

Λ2

)
1
2

= 1.502994159 . . . .

We have in fact worked out the case p = 2, q = 3, though we will not show the details
here, with the result that η ≥ 1.503047782 . . ..

3. The upper bound

In this section we will exhibit another transfer matrix problem with the property that
it provides upper bounds for the problem in which we are interested. Further, the upper
bounding problem will be independent of m, n, and will depend on a new integer parameter
p. There will be a valid upper bound for each positive integer p.

For each positive integer p, the largest eigenvalue of the transfer matrix T obviously
satisfies

Λm ≤ Trace(T 2p)1/2p, (8)

and indeed the right side approaches the left for p → ∞. But

Trace(T 2p) =
∑

Tx0,x1
Tx1,x2

· · ·Tx2p−1,x0
.

Now each term in this sum is 0 or 1, hence the sum is equal to the number of good 2p-tuples
of subsets of 1, 2, . . . , m, that is, the number of 2p-tuples (x0, x1, . . . , x2p−1) of subsets of
1, 2, . . . , m for which
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(a) each xi contains no two consecutive entries, and
(b) each consecutive (on the circle) pair of x’s is disjoint.

We will find another way to count these tuples that will enable us to eliminate the depen-
dence on m completely.

Define the associated transfer matrix B2p to be the matrix whose rows and columns
are indexed by all subsets of 2p abstract “objects” which contain no two objects that are
consecutive (on the circle). The matrix is Np × Np, where Np = F2p−1 + F2p+1, and the
F ’s are the Fibonacci numbers. The entries of this matrix are

(B2p)X,Y =

{

1, if X ∩ Y = ∅;
0, otherwise.

Note that this matrix is independent of m. Its utility rests in the following fact.

Proposition. The trace of T 2p is equal to the sum of all of the entries of the matrix

Bm−1
2p .

Proof. Consider a nonvanishing term of Trace(T 2p), say the term Tx0,x1
Tx1,x2

· · ·Tx2p−1,x0
.

Now each xi is a subset of 1, 2, . . . , m. Define sets

Sj =
{

k : (0 ≤ k ≤ 2p − 1) ∧ (j ∈ xk)
}

(j = 1, 2, . . . , m).

Then each Sj is a subset of 2p objects. Each Sj contains no two objects that are consecutive
on the circle for otherwise j would belong to two consecutive xk’s on the circle. Further
Si, Si+1 (on the circle) are disjoint, for otherwise two consecutive letters i, i+1 would both
belong to one of the xk’s, a contradiction.

Hence this collection of sets Sj corresponds to a nonvanishing expression

(B2p)S1,S2
(B2p)S2,S3

· · · (B2p)Sm−1,Sm
. (9)

But this is just one of the terms in the expansion of the sum of all of the entries of the
matrix Bm−1

2p , i.e., in the expansion of (1, Bm−1
2p 1).

Conversely, consider a nonvanishing term of (1, Bm−1
2p 1), say the term shown in (9)

above. Define a (2p)-tuple (x0, . . . , x2p−1) of subsets of 1, 2, . . . , m by

xj =
{

i : (1 ≤ i ≤ m) ∧ (j ∈ Si)
}

(j = 0, 1, . . . , 2p − 1).

Then each xi has no two consecutive entries, for otherwise j would belong to two consecu-
tive Si’s and one of the factors (B2p)Si,Si+1

would vanish. Likewise, each consecutive (on
the circle) pair of sets xj is disjoint, for otherwise some Si would contain two consecutive
(on the circle) values of j. This completes the proof of the proposition.

Now for each fixed positive integer p we have

Λm ≤ Trace(T 2p)1/2p = (1, Bm−1
2p 1).

If we take the mth root and then the limit as m → ∞, we find that

η = lim
m,n→∞

f(m, n)1/mn = lim sup
m→∞

Λ
1/m
m leξ

1/2p
2p ,
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where ξ2p is the largest eigenvalue of B2p.

Example.

We consider the case 2p = 6.
Here, Trace(T 6) is the number of good 6-tuples (u, v, w, x, y, z), such that each of the

six is a subset of [1, m], none of them contains any two consecutive elements, and all of
the pairs

(u, v), (v, w), (w, x), (x, y), (y, z), (z, u)

are disjoint pairs. Thus, a single letter i might belong to any of the 18 combinations

∅, u, v, w, x, y, z, u∧w, u∧x, u∧y, v∧x, v∧y, v∧z, w∧y, w∧z, x∧z, u∧w∧y, v∧x∧z.

The associated transfer matrix B6 is 18×18, and its entries are 1 or 0 depending on whether
the membership combination that is labeled by the row is disjoint from the membership
combination that is labeled by the column. The full matrix B6, with its lines labelled in
the order shown above, is































































1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1
1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0
1 1 1 0 1 1 1 0 1 1 1 1 1 0 0 1 0 1
1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 1 0
1 1 1 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1
1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 0
1 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1 0 1
1 0 1 1 0 1 1 0 0 0 0 1 1 1 1 0 0 0
1 0 1 1 1 0 1 0 0 0 1 0 1 0 1 1 0 1
1 1 0 1 0 1 1 1 0 1 0 0 0 1 1 1 1 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 1 1 0 0
1 1 0 1 1 1 0 1 1 1 0 0 0 1 0 0 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1
1 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0
1 0 1 0 1 0 1 0 0 0 1 0 1 0 0 1 0 1
1 1 0 1 0 1 0 1 1 1 0 0 0 1 0 0 1 0































































Calculation then reveals that the largest eigenvalue of B6 is the largest root of the
equation

−1 + 2t + 25t2 + 3t3 − 12t4 + t5 = 0,

namely 11.55170956604814509 . . .. Therefore

η = lim
m,n

f(m, n)1/mn ≤ 11.55170956604814509 . . .1/6 = 1.503514809475903023 . . . .
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