Dependent sets of constant weight binary vectors

NEIL J. CALKIN
${ }^{1}$ School of Mathematics,
Georgia Institute of Technology,

Atlanta, GA 30332-0160

We determine lower bounds for the number of random binary vectors, chosen uniformly from vectors of weight k, needed to obtain a dependent set.

1. Introduction

In this paper we determine lower bounds for the number of random binary vectors of weight k needed to obtain a dependent set of vectors with probability 1.

We denote by $S_{n, k}$ the set of binary vectors having k 1's. If we choose a random sequence $\underline{u}_{1}, \underline{u}_{2}, \ldots, \underline{u}_{m}$ uniformly from $S_{n, k}$, how large must m be for these vectors to be dependent (over GF(2)) with probability 1 ?

In the case $k=1$ this is exactly the birthday problem: given a set of n elements, how long must a sequence chosen (with replacement) be before an element occurs at least twice with probability close to 1 . It is a standard combinatorics exercise to show that so long as $m / \sqrt{(} n) \rightarrow \infty$, a sequence of length m will almost surely contain a repetition as $n \rightarrow \infty$.

In the case $k=2$, we can view the vectors of weight two as being edges in a graph on $\{1,2, \ldots, n\}$: here a dependent set of vectors corresponds exactly to a set of edges which contain a cycle. There are two distinct modes of behaviour here: first, if the edges are chosen without replacement, and if the number of edges is $c n$ then the probability that there is a cycle is strictly less than 1 as $n \rightarrow \infty$ if $c<1 / 2$ and tends to 1 if $c \geq 1 / 2[2]$. If the edges are chosen with replacement, then if we choose $c n$ edges, there is a positive probability that we get a repeated edge. Hence the probability increases up to $c=1 / 2$, at which point we almost surely get a cycle.

In what follows, we will assume that k is a fixed integer greater than or equal to 3 .
Denote by $p_{n, k}(m)$ the probability that $\underline{u}_{1}, \underline{u}_{2}, \ldots, \underline{u}_{m}$ are linearly dependent. We will prove the following:

Theorem 1.1. For each k there is a constant β_{k} so that if $\beta<\beta_{k}$ then

$$
\lim _{n \rightarrow \infty} p_{n, k}(\beta n)=0
$$

Furthermore, $\beta_{k} \sim 1-\frac{e^{-k}}{\log (2)}$ as $k \rightarrow \infty$.
We obtain this theorem as a corollary of the following: let r be the rank of the set $\left\{\underline{u}_{1}, \underline{u}_{2}, \ldots, \underline{u}_{m}\right\}$, and let $s=m-r$ (equivalently, the dimension of the kernel of the matrix having columns $\left.\underline{u}_{1}, \underline{u}_{2}, \ldots, \underline{u}_{m}\right)$.

Theorem 1.2. a) If $\beta<\beta_{k}$ and $m=m(n)<\beta n$ then $E\left(2^{s}\right) \rightarrow 1$ as $n \rightarrow \infty$. b) If $\beta>\beta_{k}$ and $m=m(n)>\beta n$ then $E\left(2^{s}\right) \rightarrow \infty$ as $n \rightarrow \infty$.

Similar results have been obtained for different models by Balakin, Kolchin and Khokhlov $[1,3]$: their methods are completely different.

Our approach is the following: we consider a Markov chain derived from a suitable random walk on the hypercube 2^{n}; using this we will determine an exact expression for $E\left(2^{s}\right)$. We then estimate $E\left(2^{s}\right)$ to determine β_{k}.

2. A random walk on the hypercube, and an associated Markov chain

We define a random walk on the hypercube 2^{n} as follows: let $\underline{u}_{1}, \underline{u}_{2}, \ldots, \underline{u}_{m}, \ldots$ be vectors chosen uniformly at random from $S_{n, k}$. Define

$$
\underline{x}_{0}=\underline{0}, \quad \text { and } \quad \underline{x}_{i}=\underline{x}_{i-1}+\underline{u}_{i}
$$

(so the steps in the walk correspond to flipping k random bits).
We associate with this random walk the following Markov chain: we define y_{i} to be the weight of \underline{x}_{1}. Then $y_{0}, y_{1}, \ldots, y_{m}$, is a Markov chain with states $\{0,1, \ldots, n\}$. The transition matrix A for this chain, with $A=\left\{a_{p q}\right\}$, where $a_{p q}$ is the probability of moving from state q to state p is given by

$$
a_{p q}=\frac{\binom{q}{\frac{k-p+q}{2}}\binom{n-q}{k+p-q}}{\binom{n}{k}}
$$

where the binomial coefficients are interpreted to be 0 if $k+p+q$ is odd.

Theorem 2.1. The eigenvalues λ_{i} and corresponding eigenvectors \underline{e}_{i} for $A, i=0,1, \ldots, n$, are given by

$$
\begin{equation*}
\lambda_{i}=\sum_{t=0}^{k}(-1)^{t} \frac{\binom{i}{t}\binom{n-i}{k-t}}{\binom{n}{k}} \tag{2.1}
\end{equation*}
$$

and the j th component of \underline{e}_{i} is given by

$$
\underline{e}_{i}[j]=\sum_{t=0}^{j}(-1)^{t}\binom{i}{t}\binom{n-i}{j-t}
$$

Proof: We first show that \underline{e}_{i} is an eigenvector for A with eigenvalue λ_{i} : indeed the j th coefficient of $A \underline{e}_{i}$ is

$$
\sum_{l=0}^{n} \frac{\binom{l}{\frac{k-j+l}{2}}\binom{n-l}{\frac{k+j-l}{2}}}{\binom{n}{k}} \sum_{t=0}^{l}(-1)^{t}\binom{i}{t}\binom{n-i}{l-t}
$$

and the j th coefficient of $\lambda_{i} \underline{e}_{i}$ is

$$
\sum_{s=0}^{k}(-1)^{s} \frac{\binom{i}{s}\binom{n-i}{k-s}}{\binom{n}{k}} \sum_{t=0}^{j}(-1)^{t}\binom{i}{t}\binom{n-i}{j-t}
$$

Observe now that

$$
\sum_{t=0}^{j}(-1)^{t}\binom{i}{t}\binom{n-i}{j-t}=\sum_{t=0}^{i}(-1)^{i+t} 2^{t}\binom{i}{t}\binom{n-t}{j}
$$

since each is the coefficient of x^{j} in

$$
(1-x)^{i}(1+x)^{n-i}=\left(1-\frac{2}{1+x}\right)^{i}(1+x)^{n}
$$

Hence it is sufficient to show that

$$
\begin{aligned}
& \sum_{l=0}^{n}\binom{l}{\frac{k-j+l}{2}}\binom{n-l}{\frac{k+j-l}{2}} \sum_{t=0}^{j}(-1)^{t+i} 2^{t}\binom{i}{t}\binom{n-t}{j} \\
& =\sum_{s=0}^{k}(-1)^{s}\binom{i}{s}\binom{n-i}{k-s} \sum_{t=0}^{j}(-1)^{t}\binom{i}{t}\binom{n-i}{j-t} .
\end{aligned}
$$

We show this by multiplying both sides by $x^{j} y^{k}$ and summing over j and k. Writing $j=l-2 r+k$, the left hand side becomes

$$
\begin{gathered}
\sum_{l, k, r, t}\binom{l}{r}\binom{n-l}{k-r}\binom{i}{t}\binom{n-t}{l}(-1)^{i+t} 2^{t} x^{l+k-2 r} y^{k} \\
=\sum_{l, r, t}\binom{l}{r}\binom{i}{t}\binom{n-t}{l}(-1)^{i+t} 2^{t} x^{l-r}(1+x y)^{n-l} y^{r} \\
=\sum_{l, t}\binom{i}{t}\binom{n-t}{l}(-1)^{i+t} 2^{t}(1+x y)^{n-l}(x+y)^{l} \\
=\sum_{t}(-1)^{i+t}\binom{i}{t} 2^{t}(1+x y)^{t}(1+x)^{n-t}(1+y)^{n-t} \\
=(1+x)^{n}(1+y)^{n}\left(\frac{2(1+x y)}{(1+x)(1+y)}-1\right)^{i} \\
=(1-x)^{i}(1+x)^{n-i}(1-y)^{i}(1+y)^{n-i}
\end{gathered}
$$

Similarly the right hand side becomes

$$
\begin{gathered}
\sum_{j, k, s, t}\binom{i}{s}\binom{n-i}{k-s}\binom{i}{t}\binom{n-i}{j-t}(-1)^{s+t} x^{j} y^{k} \\
= \\
\sum_{s, t}\binom{i}{s}\binom{i}{t}(-1)^{s+t} x^{t} y^{s}(1+x)^{n-i}(1+y)^{n-i} \\
=(1-x)^{i}(1+x)^{n-i}(1-y)^{i}(1+y)^{n-i}
\end{gathered}
$$

as required. Hence \underline{e}_{i} is an eigenvector with eigenvalue λ_{i} for each i.
Moreover, we see that the \underline{e}_{i} 's are linearly independent (as vectors over Q): indeed: we have:

Lemma 2.2. Let U be the matrix whose columns are $\underline{e}_{0}, \underline{e}_{1}, \ldots, \underline{e}_{n}$. Then $U^{2}=2^{n} I$, and if Λ is the diagonal matrix of eigenvalues, then $A=1 / 2^{n} U \Lambda U$.

Proof: The $i j$ th entry of U^{2} is

$$
\sum_{l=0}^{n} \underline{e}_{l}[i] \underline{e}_{j}[l]=\sum_{l, s, t}(-1)^{s}\binom{l}{s}\binom{n-l}{i-s}(-1)^{t}\binom{j}{t}\binom{n-j}{l-t}
$$

Multiplying by x^{i} and summing over i we obtain

$$
\begin{gathered}
\sum_{i, l, s, t}(-1)^{s+t}\binom{l}{s}\binom{n-l}{i-s}\binom{j}{t}\binom{n-j}{l-t} x^{i} \\
=\sum_{l, s, t}(-1)^{s+t}\binom{l}{s}\binom{j}{t}\binom{n-j}{l-t}(1+x)^{n-l} x^{s} \\
=\sum_{l, t}(-1)^{t}\binom{j}{t}\binom{n-j}{l-t}(1+x)^{n-l}(1-x)^{l} \\
=\sum_{t}(-1)^{t}\binom{j}{t}(1+x)^{j} 2^{n-j}\left(\frac{1-x}{1+x}\right)^{t} \\
=2^{n} x^{j}
\end{gathered}
$$

from which we see that $U^{2}=2^{n} I$. Hence the eigenvectors are linearly independent as claimed.
Observation: the eigenvectors do not depend upon k : hence the matrices A and A^{\prime} corresponding to distinct values of k commute. This corresponds roughly to the idea that when walking around the hypercube it doesn't matter if you take a step of size l then a step of size k, or a step of size k then a step of size l.

We can now compute the probability that $\underline{u}_{1}, \underline{u}_{2}, \ldots, \underline{u}_{t}$ sum to $\underline{0}$: indeed, this is exactly the 00th coefficient in A^{t}, which is equal to

$$
\sum_{i=0}^{n} \frac{1}{2^{n}} \lambda_{i}^{t}\binom{n}{i}
$$

(since $A=1 / 2^{n} U \Lambda U$).
Hence if $\underline{u}_{1}, \underline{u}_{2}, \ldots, \underline{u}_{m}$ are vectors with k 1's chosen independently at random, then the expected number of subsequences $\underline{u}_{a_{1}}, \underline{u}_{a_{2}}, \ldots, \underline{u}_{a_{t}}$ which sum to $\underline{0}$ is exactly

$$
E\left(2^{s}\right)=\sum_{t=0}^{m}\binom{m}{t} \sum_{i=0}^{n} \frac{1}{2^{n}} \lambda_{i}^{t}\binom{n}{i}=\sum_{i=0}^{n} \frac{1}{2^{n}}\binom{n}{i}\left(1+\lambda_{i}\right)^{m} .
$$

3. Asymptotics of λ_{i}

In order to estimate the size of $E\left(2^{s}\right)$, we require asymptotics for the value of λ_{i}.

Lemma 3.1. a) $\left|\lambda_{i}\right|<1$ for all $0 \leq i \leq n$.
b) If $i>\frac{n}{2}$ then $\lambda_{i}=(-1)^{k} \lambda_{n-i}$.
c) Let $0<c<\frac{1}{2}$. If $i=c n$ then

$$
\lambda_{i}=\left(1-\frac{2 i}{n}\right)^{k}-\frac{4\binom{k}{2}}{n}\left(1-\frac{2 i}{n}\right)^{k-2} \frac{i}{n}\left(1-\frac{i}{n}\right)+O\left(\frac{k^{3}}{c^{2} n^{2}}\right)
$$

Proof: Parts a) and b) are immediate from the definition of λ_{i}. To prove part c), since k is fixed, we have

$$
\begin{gathered}
\binom{n}{k}=\frac{n^{k}}{k!}\left(1-\frac{\binom{k}{2}}{n}+O\left(\frac{k^{3}}{n^{2}}\right)\right) \\
\binom{i}{t}=\frac{i^{t}}{t!}\left(1-\frac{\binom{t}{2}}{i}+O\left(\frac{t^{3}}{i^{2}}\right)\right) \\
\binom{n-i}{k-t}=\frac{(n-i)^{k-t}}{(k-t)!}\left(1-\frac{\binom{k-t}{2}}{n-i}+O\left(\frac{(k-t)^{3}}{(n-i)^{2}}\right)\right) .
\end{gathered}
$$

Hence

$$
\frac{\binom{i}{t}\binom{n-i}{k-t}}{\binom{n}{k}}=\left(\frac{i}{n}\right)^{t}\left(1-\frac{i}{n}\right)^{k-t}\binom{k}{t}\left(1+\frac{\binom{k}{2}}{n}-\frac{\binom{t}{2}}{i}-\frac{\binom{k-t}{2}}{n-i}+O\left(\frac{k^{3}}{c^{2} n^{2}}\right)\right)
$$

and

$$
\begin{gathered}
\lambda_{i}=\sum_{t=0}^{k}(-1)^{t}\left(\frac{i}{n}\right)^{t}\left(1-\frac{i}{n}\right)^{k-t}\binom{k}{t}\left(1+\frac{\binom{k}{2}}{n}-\frac{\binom{t}{2}}{i}-\frac{\binom{k-t}{2}}{n-i}+O\left(\frac{k^{3}}{c^{2} n^{2}}\right)\right) \\
=\left(1-\frac{2 i}{n}\right)^{k}+\frac{\binom{k}{2}}{n}\left(1-\frac{2 i}{n}\right)^{k}-\frac{\binom{k}{2}}{i}\left(\frac{i}{n}\right)^{2}\left(1-\frac{2 i}{n}\right)^{k-2} \\
-\frac{\binom{k}{2}}{n-i}\left(\frac{n-i}{n}\right)^{2}\left(1-\frac{2 i}{n}\right)^{k-2}+O\left(\frac{k^{3}}{c^{2} n^{2}}\right) \\
=\left(1-\frac{2 i}{n}\right)^{k}+\frac{\binom{k}{2}}{n}\left(1-\frac{2 i}{n}\right)^{k-2}\left(\left(1-\frac{2 i}{n}\right)^{2}-\frac{i}{n}-\frac{n-i}{n}\right)+O\left(\frac{k^{3}}{c^{2} n^{2}}\right)
\end{gathered}
$$

$$
\begin{aligned}
& =\left(1-\frac{2 i}{n}\right)^{k}-\frac{4\binom{k}{2}}{n}\left(1-\frac{2 i}{n}\right)^{k-2}\left(-\frac{4 i}{n}+4 \frac{i^{2}}{n}\right)+O\left(\frac{k^{3}}{c^{2} n^{2}}\right) \\
& =\left(1-\frac{2 i}{n}\right)^{k}-\frac{4\binom{k}{2}}{n}\left(1-\frac{2 i}{n}\right)^{k-2}\left(\frac{i}{n}\right)\left(1-\frac{i}{n}\right)+O\left(\frac{k^{3}}{c^{2} n^{2}}\right)
\end{aligned}
$$

as claimed.
Observe that since we are assuming that $k \geq 3$ throughout, when i is close to $\frac{n}{2}$, say $\frac{n}{2}-i=\frac{n^{\theta}}{2}$, we have

$$
\lambda_{i}=\left(\frac{1}{n^{1-\theta}}\right)^{k}-\frac{4\binom{k}{2}}{n}\left(\frac{1}{n^{1-\theta}}\right)^{k-2}+O\left(\frac{k^{3}}{n^{2}}\right)
$$

Then, provided that $\theta<1-\frac{1}{k}$, we see that if $\frac{n}{2}-i=\frac{n^{\theta}}{2}$, then $\lambda_{i} n \rightarrow 0$ as $n \rightarrow \infty$. In the estimation of $E\left(2^{s}\right)$ we will use this to show that the middle part of the sum is asymptotic to 1 .

4. Asymptotics of $E\left(2^{s}\right)$

Define

$$
f(\alpha, \beta)=-\log 2-\alpha \log (\alpha)-(1-\alpha) \log (1-\alpha)+\beta \log \left(1+(1-2 \alpha)^{k}\right)
$$

and let $\left(\alpha_{k}, \beta_{k}\right)$ be the root of

$$
\begin{aligned}
f(\alpha, \beta) & =0 \\
\frac{\partial f(\alpha, \beta)}{\partial \alpha} & =0
\end{aligned}
$$

We shall show:

Lemma 4.1. If $\beta<\beta_{k}$ and $m<\beta$ n then $\sum_{i} 2^{-n}\binom{n}{i}\left(1+\lambda_{i}\right)^{m} \rightarrow 1$ as $n \rightarrow \infty$, and if $\beta>\beta_{k}$ and $m>\beta n$ then $\sum_{i} 2^{-n}\binom{n}{i}\left(1+\lambda_{i}\right)^{m} \rightarrow \infty$ as $n \rightarrow \infty$.

Proof: we proceed as follows: since our goal is to show that the behaviour of $E\left(2^{s}\right)$ changes when m goes from below $\beta_{k} n$ to above $\beta_{k} n$, and since our value β_{k} is less than 1 , we may assume that $\frac{m}{n}<1-\delta$ for some $\delta>0$. We shall show:
a) the extreme tails of the sum for $E\left(2^{s}\right)$ are small
b) the middle range of the sum contributes 1 to the sum
c) and d) the rest of the sum is small if $\frac{m}{n}<\beta<\beta_{k}$ and large if $\frac{m}{n}>\beta>\beta_{k}$.
a) there is an $\epsilon>0$ so that

$$
\sum_{i=0}^{\epsilon n} 2^{-n}\binom{n}{i}\left(1+\lambda_{i}\right)^{m} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Indeed,

$$
\sum_{i=0}^{\epsilon n} 2^{-n}\binom{n}{i}\left(1+\lambda_{i}\right)^{m}<\sum_{i=0}^{\epsilon n} 2^{m-n}\binom{n}{i}
$$

$$
<n \epsilon 2^{m-n}\binom{n}{\epsilon n}
$$

and provided ϵ is sufficiently small, this tends to 0 (indeed, if $-\delta \log 2-\epsilon \log \epsilon+\epsilon<0$ then the sum tends to 0).

Similarly,

$$
\sum_{i=(1-\epsilon) n}^{n} 2^{-n}\binom{n}{i}\left(1+\lambda_{i}\right)^{m} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Hence, if $E\left(2^{s}\right) \rightarrow \infty$ for some $m<(1-\delta) n$, we must have the major contribution from

$$
\sum_{i=\epsilon n}^{(1-\epsilon) n} 2^{-n}\binom{n}{i}\left(1+\lambda_{i}\right)^{m} .
$$

b) We now show that the middle range of the sum contributes 1 to $E\left(2^{s}\right)$. Indeed, in the range $\frac{n}{2}-n^{4 / 7}<i<\frac{n}{2}+n^{4 / 7}$

$$
\left(1+\lambda_{i}\right)^{m}=\left(1+o\left(\frac{1}{n}\right)\right)^{m}=1+o(1)
$$

we have

$$
\sum_{i=\frac{n}{2}-n^{4 / 7}}^{\frac{n}{2}+n^{4 / 7}} 2^{-n}\binom{n}{i}\left(1+\lambda_{i}\right)^{m} \sim \sum_{1=\frac{n}{2}-n^{4 / 7}}^{\frac{n}{2}+n^{4 / 7}} 2^{-n}\binom{n}{i} \rightarrow 1 \text { as } n \rightarrow \infty .
$$

c) We now show that we can widen the interval about the middle:

$$
\sum_{i=\frac{n}{2}(1-\epsilon)}^{\frac{n}{2}(1+\epsilon)} 2^{-n}\binom{n}{i}\left(1+\lambda_{i}\right)^{m} \rightarrow 1
$$

Since $\lambda_{n-i}=(-1)^{k} \lambda_{i}$, it suffices to show that

$$
\sum_{i=\frac{n}{2}(1-\epsilon)}^{\frac{n}{2}-n^{4 / 7}} 2^{-n}\binom{n}{i}\left(1+\lambda_{i}\right)^{m} \rightarrow 0
$$

In this range,

$$
\lambda_{i}<\epsilon^{k}-\frac{\binom{k}{2}}{n} \epsilon^{k-2}+O\left(\frac{k^{3}}{n^{2}}\right) .
$$

Hence

$$
\left(1+\lambda_{i}\right)^{m}<e^{n \epsilon^{k}} e^{-\binom{k}{2} \epsilon^{k-2}}
$$

and since $k \geq 3$, the $n \epsilon^{k}$ term in the exponent is dominated by the $-n \epsilon^{2}$ term from the binomial coefficient, provided that ϵ is sufficiently small.
d) We now consider the remainder of the sum (or rather, the part in $\left(0, \frac{n}{2}\right)$: if k is even, the remaining part follows by symmetry, and if k is odd, then $\left(1+\lambda_{i}\right)^{m}<1$ for $i>n / 2$, and the remaining part tends to 0).

Define

$$
f(\alpha, \beta)=-\log 2-\alpha \log \alpha-(1-\alpha) \log (1-\alpha)+\beta \log \left(1+(1-2 \alpha)^{k}\right)
$$

Then if $f\left(\frac{i}{n}, \frac{m}{n}\right)<\gamma<0$ the corresponding term of the sum is exponentially small, and if $f\left(\frac{i}{n}, \frac{m}{n}\right)>\gamma>0$ the corresponding term of the sum is exponentially large. Thus, if $f\left(\alpha, \frac{m}{n}\right)<\gamma<0$ for all α in $(\epsilon, 1-\epsilon)$, we have

$$
\sum_{i=\epsilon n}^{\frac{n}{2}(1-\epsilon)} 2^{-n}\binom{n}{i}\left(1+\lambda_{i}\right)^{m}<n e^{\gamma n+o(n)} \rightarrow 0
$$

and if $f\left(\alpha, \frac{m}{n}\right)>\gamma>0$ for some α in $(\epsilon, 1-\epsilon)$, then

$$
\sum_{i=\epsilon n}^{\frac{n}{2}(1-\epsilon)} 2^{-n}\binom{n}{i}\left(1+\lambda_{i}\right)^{m}>\binom{n}{\alpha n}\left(1+\lambda_{\alpha n}\right)^{m} 2^{-n}>e^{\gamma n+o(n)} \rightarrow \infty .
$$

Now let β_{k} be so that if $\beta<\beta_{k}$ then $f(\alpha, \beta)<0$ for all α in $(\epsilon, 1-\epsilon)$, and if $\beta>\beta_{k}$ then there is an alpha in $(\epsilon, 1-\epsilon)$ so that $f(\alpha, \beta)>0$. Thus we wish to find α_{k}, β_{k} so that

$$
f\left(\alpha_{k}, \beta_{k}\right)=0 \text { and } \frac{\partial}{\partial \alpha} f(\alpha, \beta)=0
$$

As k goes to ∞, the value of β_{k} is asymptotic to

$$
1-\frac{e^{-k}}{\log 2}-\frac{1}{2 \log 2}\left(k^{2}-2 k+\frac{2 k}{\log 2}-1\right) e^{-2 k}+O\left(k^{4}\right) e^{-3 k} .
$$

To see this, we observe first that

$$
\alpha_{k}=e^{-k}
$$

and

$$
\beta_{k}=1-\frac{e^{-k}}{\log 2}
$$

are close to a root (by considering a small constant times the error term, and expanding out $f(\alpha, \beta)$, we see that both $f(\alpha, \beta)$ and $\frac{\partial}{\partial \alpha} f(\alpha, \beta)$ change sign as the constant changes). Furthermore, there are no other roots α in $(0,1 / 2)$ and β in (0,1): indeed, we note
(i) that for any root of the two equations, indeed, for any root of $f(\alpha, \beta)$ with $\alpha \in\left(0, \frac{1}{2}\right)$, either $\alpha \rightarrow 0$ as $k \rightarrow \infty$ or $\alpha \rightarrow \frac{1}{2}$ as $k \rightarrow \infty$.
(ii) if α is close to $\frac{1}{2}$, then there it is not part of a root (by expanding out $f(\alpha, \beta)$ in terms of α and observing that the term involving β is of order α^{k}, and since $k \geq 3$ and $\beta \leq 1$, we cannot have a root.
(iii) by considering the expansion in α, we observe that $k \alpha \rightarrow 0$ as $k \rightarrow \infty$. (iv) now, by expanding out both $f(\alpha, \beta)$ and $\frac{\partial}{\partial \alpha} f(\alpha, \beta)$, we see that the root is as claimed. Using a symbolic algebra package (in our case Maple), it is easy now to see that β_{k} has an asymptotic expansion

$$
\beta_{k} \sim 1-\frac{e^{-k}}{\log 2}-\frac{1}{2 \log 2}\left(k^{2}-2 k+\frac{2 k}{\log 2}-1\right) e^{-2 k}+O\left(k^{4}\right) e^{-3 k}
$$

as k goes to infinity.
This completes the proof of the lemma.
Now, since $E\left(2^{s}\right)=\sum_{i} 2^{-n}\binom{n}{i}\left(1+\lambda_{i}\right)^{m}$ this completes the proof of theorem 1.2, and Theorem 1.1 follows by the simple observation that since s is integer valued, the probability that $2^{s}>1$ is less than $E\left(2^{s}\right)-1$.

References

[1] G. V. Balakin, V. F. Kolchin and V. I. Khokhlov. Hypercycles in a random hypergraph Diskretnaya Matematika 3, No. 3, 1-2-108 (1991) (in Russian).
[2] P. Erdös and A. Renyi. On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci. 5,17-61 (1960).
[3] V. F. Kolchin and V. I. Khokhlov. On the number of cycles in a non-equiprobably random graph. Diskretnaya Matematika 2, No.3,137-145 (1990) (in Russian).

