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We determine lower bounds for the number of random binary vectors, chosen uni-
formly from vectors of weight k, needed to obtain a dependent set.

1. Introduction

In this paper we determine lower bounds for the number of random binary vectors of
weight k needed to obtain a dependent set of vectors with probability 1.

We denote by Sy, the set of binary vectors having k 1’s. If we choose a random
sequence uq, Us, . . ., U, uniformly from S, ;, how large must m be for these vectors to
be dependent (over GF(2)) with probability 17

In the case k = 1 this is exactly the birthday problem: given a set of n elements, how
long must a sequence chosen (with replacement) be before an element occurs at least
twice with probability close to 1. It is a standard combinatorics exercise to show that so
long as m/ \/(n) — 00, a sequence of length m will almost surely contain a repetition as
n — 0o.

In the case k = 2, we can view the vectors of weight two as being edges in a graph on
{1,2,...,n}: here a dependent set of vectors corresponds exactly to a set of edges which
contain a cycle. There are two distinct modes of behaviour here: first, if the edges are
chosen without replacement, and if the number of edges is ¢n then the probability that
there is a cycle is strictly less than 1 as n — oo if ¢ < 1/2 and tends to 1 if ¢ > 1/2[2].
If the edges are chosen with replacement, then if we choose cn edges, there is a positive
probability that we get a repeated edge. Hence the probability increases up to ¢ = 1/2,
at which point we almost surely get a cycle.

In what follows, we will assume that k is a fixed integer greater than or equal to 3.

Denote by py, (m) the probability that u,,u,,...,u,, are linearly dependent. We will
prove the following:
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Theorem 1.1. For each k there is a constant By so that if B < By then
lim p, x(Bn) = 0.
n—oo

Furthermore, B ~ 1 — % as k — oo.

We obtain this theorem as a corollary of the following: let r be the rank of the set
{uy, gy ..., u,,}, and let s = m — r (equivalently, the dimension of the kernel of the
matrix having columns uy, us, . .., U,, ).

Theorem 1.2. a) If § < B and m = m(n) < Bn then E(2°) — 1 asn — oo. b) If
B8 > Br and m = m(n) > fn then E(2°) — 0o as n — oo.

Similar results have been obtained for different models by Balakin, Kolchin and Khokhlov
[1, 3]: their methods are completely different.

Our approach is the following: we consider a Markov chain derived from a suitable
random walk on the hypercube 2"; using this we will determine an exact expression for
E(2%). We then estimate F(2°) to determine Sy.

2. A random walk on the hypercube, and an associated Markov chain

We define a random walk on the hypercube 2" as follows: let u,, us, ..., 4,,, ... be vectors
chosen uniformly at random from .S, j. Define

zo=0, and xz,=2;, ;+uy

(so the steps in the walk correspond to flipping k random bits).

We associate with this random walk the following Markov chain: we define y; to be
the weight of z;. Then yo,y1,.-.,Ym, is a Markov chain with states {0,1,...,n}. The
transition matrix A for this chain, with A = {a,,}, where a,, is the probability of moving
from state ¢ to state p is given by

(1) (%)
®

where the binomial coefficients are interpreted to be 0 if & + p + ¢ is odd.

Apq =

Theorem 2.1.  The eigenvalues \; and corresponding eigenvectorse; for A,i=0,1,...,n,
are given by

k i\ (n—1
n= oy ) @)

=0 (&)

and the jth component of e, is given by

eili) = ti;(—l)t(i) C: Z)
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Proof: We first show that e, is an eigenvector for A with eigenvalue A;: indeed the jth
coefficient of Ag; is

Observe now that

2 (G20 S ()

t=0

since each is the coefficient of z7 in

(1_x)i(1+m)"i=(1_ 2 )i(l—&—x)".

Hence it is sufficient to show that

5 () () = () )

=0

()T (6

We show this by multiplying both sides by z7y* and summing over j and k. Writing

j=1—2r+k, the left hand side becomes

2 (GO ey

Lk,rt
B0
-3 () ("7 vz e

= S ()2

2(1 + zy) : _1)i

R (e

= (1—a2) (14+2)" (1 —y)'(1+y)" "
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Similarly the right hand side becomes

= ()06 )

Jikss,t

=S () () evrtrasaas g

s,t

=(1-a)(1+2)" " 1-y'QA+y""
as required. Hence ¢; is an eigenvector with eigenvalue A; for each 1.

Moreover, we see that the ¢;’s are linearly independent (as vectors over @Q): indeed: we
have:

Lemma 2.2. Let U be the matriz whose columns are eg, €y, ..,¢e,. Then U? = 2",
and if A is the diagonal matriz of eigenvalues, then A = 1/2"UAU.

Proof: The ijth entry of U? is

%elmejm =3 L) 0)

l,s,

Multiplying by z* and summing over i we obtain

o (661
(-t

= 2"yl

from which we see that U? = 2"I. Hence the eigenvectors are linearly independent as
claimed.
Observation: the eigenvectors do not depend upon k: hence the matrices A and A’
corresponding to distinct values of k& commute. This corresponds roughly to the idea
that when walking around the hypercube it doesn’t matter if you take a step of size [
then a step of size k, or a step of size k then a step of size [.

We can now compute the probability that u;, us, . .., u, sum to 0: indeed, this is exactly
the 00th coefficient in A?, which is equal to

"1 n
2271)\§<i)

=0
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(since A =1/2"UAU).

Hence if w;,us,...,u,, are vectors with k 1’s chosen independently at random, then
the expected number of subsequences w, ,u,,,---,u,, which sum to 0 is exactly
T m o= 1 n "1 /n
E(2%) = —\ =) — L+XA)™.
=2 ()2 () - X m () o

3. Asymptotics of )\;

In order to estimate the size of E(2%), we require asymptotics for the value of \;.

Lemma 3.1. a) [A\| <1 for all 0 <i<n.
b) If i > 5 then \; = (=1)* X
¢) Let 0 < ¢ < &. If i = cn then

N\ k k k=2 . ) )
4 3

n (1B JAGQ) (AN T i (K
n n n n n c2n?

Proof: Parts a) and b) are immediate from the definition of A;. To prove part c), since

k is fixed, we have

()5 (-8 o)

()-a(i-9eo(2))

(i) = o (- (o (=),
)

ey () (-0 () (- -9 o 2))
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N k N\ k-2 .
4 2 3
(B A (my
n n n c2n?
N k N k=2 . )
4 3
(o EY 4G AVFEEA WYL
n n n n n c2n?

as claimed.
Observe that since we are assuming that k£ > 3 throughout, when i is close to 3, say
5—i= 20, we have
N Foa®y o1 N\ Ok:3
T\nte) T 1o + n2
Then, provided that § < 1 — 7, we see that if § —i = %9, then \;n — 0 as n — oo.

In the estimation of F(2°) we will use this to show that the middle part of the sum is
asymptotic to 1.

4. Asymptotics of E(2°)
Define
fla, B) = —log2 — alog(a) — (1 — ) log(1 — o) 4 Blog(1 + (1 — 2a)¥)
and let (ag, Bx) be the root of

fla,8) =0
of@.B)
oo B

‘We shall show:

Lemma 4.1. If 8 < B, and m < Bn then ) 2~ ”( )(1+)\)m—>1asn—>oo, and if
B> B, and m > fBn then 3, 27" (1) (1 + A;))™ — o0 as n — oc.

Proof: we proceed as follows: since our goal is to show that the behaviour of E(2%)
changes when m goes from below (in to above (yn, and since our value (y is less than
1, we may assume that 7 <1 —¢ for some ¢ > 0. We shall show:
a) the extreme tails of the sum for E(2°) are small
b) the middle range of the sum contributes 1 to the sum

) and d) the rest of the sum is small if 7% < 3 < ¢ and large if ™* > 8 > (.
) there is an € > 0 so that

Z2‘”< ) (1+X)" —>0asn— oo

C
a

Indeed,

22— () (14 X\)™ iQW”(?)
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< ne2™ " ( " )
en

and provided e is sufficiently small, this tends to 0 (indeed, if —dlog2 — eloge +¢ < 0
then the sum tends to 0).

Similarly,

E 2”<n> (1+X)™ —0asn— oo
i
i=(1—e)n

Hence, if E(2°) — oo for some m < (1 — d)n, we must have the major contribution from

(1—e)n

3 oo (’;) (L+2)™.

i=€en
b) We now show that the middle range of the sum contributes 1 to E(2%). Indeed, in the
range 4 —n¥T << %+n4/7

14+ X)" = <1+o <i))m =14o0(1)

2y nd/7 24nt/7

3 2‘"(?)(1+)\i)m~ 3 2_”<?>—>135n—>oo.

i=2—n4/7 1=2—n4/7

we have

¢) We now show that we can widen the interval about the middle:

%(1+e)

Yo (’Z‘) (1+1)™ — 1.

i:%(l—e)

Since A,—; = (—1)*);, it suffices to show that

%—n4/7
S oo (n) (1+ )™ = 0.
i
i:%(l—e)
In this range,
k -
_ k?
)\i<ek—%ek 2—|—O<n2>.

Hence

(IT+2)"< e o= (3)¢
and since k > 3, the ne® term in the exponent is dominated by the —ne? term from the
binomial coefficient, provided that € is sufficiently small.
d) We now consider the remainder of the sum (or rather, the part in (0, §): if & is even,
the remaining part follows by symmetry, and if k is odd, then (1+ X;)™ < 1 for i > n/2,
and the remaining part tends to 0).

Define

fla,B) = —log2 —aloga — (1 — a)log(l —a) + Blog(1 + (1 — 204)}“).
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Then if f %, ™) <7 < 0 the corresponding term of the sum is exponentially small, and
if f( %, ™) > v > 0 the corresponding term of the sum is exponentially large. Thus, if
fla, ™) <y <0 forall ain (e, 1 — €), we have

z(1-¢)

(3

and if f(a, ™) >~ > 0 for some « in (¢,1 — ¢€), then

3010

(o (1) naas s
1 an

Now let 8 be so that if 8 < G then f(«,5) < 0 for all ain (¢,1—¢), and if § > [ then
there is an alpha in (¢, 1 — €) so that f(a,3) > 0. Thus we wish to find ay, G so that

f(ag, Br) = 0 and ﬁf(a,ﬁ) =0.

Ja
As k goes to oo, the value of G is asymptotic to
—k
e 1 2k
1— — ——— (k> -2k + — — 1)e™F + O(k*)e3*.
log 2 21og2( +log2 Je " £ O e
To see this, we observe first that
ap = ek
and
—k
e
fr=1- log 2

are close to a root (by considering a small constant times the error term, and expanding
out f(a, ), we see that both f(«, ) and %f(a, () change sign as the constant changes).
Furthermore, there are no other roots « in (0,1/2) and ( in (0,1): indeed, we note
(i) that for any root of the two equations, indeed, for any root of f(«, 3) with a € (0, %),
eithera—>0ask—>ooora—>%ask—>oo.
(ii) if « is close to %, then there it is not part of a root (by expanding out f(«, () in
terms of o and observing that the term involving 3 is of order o*, and since k > 3 and
B <1, we cannot have a root.
(iii) by considering the expansion in «, we observe that kaw — 0 as k — oco. (iv) now,
by expanding out both f(a, ) and %f(a, (), we see that the root is as claimed. Using
a symbolic algebra package (in our case Maple), it is easy now to see that §j has an
asymptotic expansion

ek 1
log2  2log?2
as k goes to infinity.

This completes the proof of the lemma.

Now, since E(2°) = >2,27"(7)(1 + A\;)™ this completes the proof of theorem 1.2,
and Theorem 1.1 follows by the simple observation that since s is integer valued, the
probability that 2° > 1 is less than E(2°) — 1.

(k* — 2k + 2k De 2 + O(k*)e=3*

~1
P log 2
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