$Combinatorics,\ Probability\ and\ Computing\ (2003)\ 00,\ 000-000. \quad \textcircled{O}\ 2003\ Cambridge\ University\ Press\ DOI:\ 10.1017/S0000000000000\ Printed\ in\ the\ United\ Kingdom$

Dependent sets of constant weight binary vectors

NEIL J. CALKIN

¹ School of Mathematics, Georgia Institute of Technology,

Atlanta, GA 30332-0160

We determine lower bounds for the number of random binary vectors, chosen uniformly from vectors of weight k, needed to obtain a dependent set.

1. Introduction

In this paper we determine lower bounds for the number of random binary vectors of weight k needed to obtain a dependent set of vectors with probability 1.

We denote by $S_{n,k}$ the set of binary vectors having k 1's. If we choose a random sequence $\underline{u}_1, \underline{u}_2, \ldots, \underline{u}_m$ uniformly from $S_{n,k}$, how large must m be for these vectors to be dependent (over GF(2)) with probability 1?

In the case k = 1 this is exactly the birthday problem: given a set of n elements, how long must a sequence chosen (with replacement) be before an element occurs at least twice with probability close to 1. It is a standard combinatorics exercise to show that so long as $m/\sqrt{(n)} \to \infty$, a sequence of length m will almost surely contain a repetition as $n \to \infty$.

In the case k = 2, we can view the vectors of weight two as being edges in a graph on $\{1, 2, ..., n\}$: here a dependent set of vectors corresponds exactly to a set of edges which contain a cycle. There are two distinct modes of behaviour here: first, if the edges are chosen without replacement, and if the number of edges is cn then the probability that there is a cycle is strictly less than 1 as $n \to \infty$ if c < 1/2 and tends to 1 if $c \ge 1/2[2]$. If the edges are chosen with replacement, then if we choose cn edges, there is a positive probability that we get a repeated edge. Hence the probability increases up to c = 1/2, at which point we almost surely get a cycle.

In what follows, we will assume that k is a fixed integer greater than or equal to 3.

Denote by $p_{n,k}(m)$ the probability that $\underline{u}_1, \underline{u}_2, \ldots, \underline{u}_m$ are linearly dependent. We will prove the following:

Neil J. Calkin

Theorem 1.1. For each k there is a constant β_k so that if $\beta < \beta_k$ then

$$\lim p_{n,k}(\beta n) = 0.$$

Furthermore, $\beta_k \sim 1 - \frac{e^{-k}}{\log(2)}$ as $k \to \infty$.

We obtain this theorem as a corollary of the following: let r be the rank of the set $\{\underline{u}_1, \underline{u}_2, \ldots, \underline{u}_m\}$, and let s = m - r (equivalently, the dimension of the kernel of the matrix having columns $\underline{u}_1, \underline{u}_2, \ldots, \underline{u}_m$).

Theorem 1.2. a) If $\beta < \beta_k$ and $m = m(n) < \beta n$ then $E(2^s) \to 1$ as $n \to \infty$. b) If $\beta > \beta_k$ and $m = m(n) > \beta n$ then $E(2^s) \to \infty$ as $n \to \infty$.

Similar results have been obtained for different models by Balakin, Kolchin and Khokhlov [1, 3]: their methods are completely different.

Our approach is the following: we consider a Markov chain derived from a suitable random walk on the hypercube 2^n ; using this we will determine an exact expression for $E(2^s)$. We then estimate $E(2^s)$ to determine β_k .

2. A random walk on the hypercube, and an associated Markov chain

We define a random walk on the hypercube 2^n as follows: let $\underline{u}_1, \underline{u}_2, \ldots, \underline{u}_m, \ldots$ be vectors chosen uniformly at random from $S_{n,k}$. Define

$$\underline{x}_0 = \underline{0}, \quad \text{and} \quad \underline{x}_i = \underline{x}_{i-1} + \underline{u}_i$$

(so the steps in the walk correspond to flipping k random bits).

We associate with this random walk the following Markov chain: we define y_i to be the weight of \underline{x}_1 . Then y_0, y_1, \ldots, y_m , is a Markov chain with states $\{0, 1, \ldots, n\}$. The transition matrix A for this chain, with $A = \{a_{pq}\}$, where a_{pq} is the probability of moving from state q to state p is given by

$$a_{pq} = \frac{\binom{q}{\binom{k-p+q}{2}}\binom{n-q}{\frac{k+p-q}{2}}}{\binom{n}{k}}$$

where the binomial coefficients are interpreted to be 0 if k + p + q is odd.

Theorem 2.1. The eigenvalues λ_i and corresponding eigenvectors \underline{e}_i for A, i = 0, 1, ..., n, are given by

$$\lambda_{i} = \sum_{t=0}^{k} (-1)^{t} \frac{\binom{i}{t} \binom{n-i}{k-t}}{\binom{n}{k}}$$
(2.1)

and the *j*th component of \underline{e}_i is given by

$$\underline{e}_i[j] = \sum_{t=0}^j (-1)^t \binom{i}{t} \binom{n-i}{j-t}.$$

Proof: We first show that \underline{e}_i is an eigenvector for A with eigenvalue λ_i : indeed the *j*th coefficient of $A\underline{e}_i$ is

$$\sum_{l=0}^{n} \frac{\binom{l}{k-j+l}\binom{n-l}{\frac{k+j-l}{2}}}{\binom{n}{k}} \sum_{t=0}^{l} (-1)^{t} \binom{i}{t} \binom{n-i}{l-t}$$

and the *j*th coefficient of $\lambda_i \underline{e}_i$ is

$$\sum_{s=0}^{k} (-1)^{s} \frac{\binom{i}{s}\binom{n-i}{k-s}}{\binom{n}{k}} \sum_{t=0}^{j} (-1)^{t} \binom{i}{t} \binom{n-i}{j-t}$$

Observe now that

$$\sum_{t=0}^{j} (-1)^{t} \binom{i}{t} \binom{n-i}{j-t} = \sum_{t=0}^{i} (-1)^{i+t} 2^{t} \binom{i}{t} \binom{n-t}{j},$$

since each is the coefficient of x^j in

$$(1-x)^{i}(1+x)^{n-i} = \left(1-\frac{2}{1+x}\right)^{i}(1+x)^{n}.$$

Hence it is sufficient to show that

$$\sum_{l=0}^{n} \binom{l}{\frac{k-j+l}{2}} \binom{n-l}{\frac{k+j-l}{2}} \sum_{t=0}^{j} (-1)^{t+i} 2^{t} \binom{i}{t} \binom{n-t}{j}$$
$$= \sum_{s=0}^{k} (-1)^{s} \binom{i}{s} \binom{n-i}{k-s} \sum_{t=0}^{j} (-1)^{t} \binom{i}{t} \binom{n-i}{j-t}.$$

We show this by multiplying both sides by $x^j y^k$ and summing over j and k. Writing j = l - 2r + k, the left hand side becomes

$$\begin{split} \sum_{l,k,r,t} \binom{l}{r} \binom{n-l}{k-r} \binom{i}{t} \binom{n-t}{l} (-1)^{i+t} 2^t x^{l+k-2r} y^k \\ &= \sum_{l,r,t} \binom{l}{r} \binom{i}{t} \binom{n-t}{l} (-1)^{i+t} 2^t x^{l-r} (1+xy)^{n-l} y^r \\ &= \sum_{l,t} \binom{i}{t} \binom{n-t}{l} (-1)^{i+t} 2^t (1+xy)^{n-l} (x+y)^l \\ &= \sum_t (-1)^{i+t} \binom{i}{t} 2^t (1+xy)^t (1+x)^{n-t} (1+y)^{n-t} \\ &= (1+x)^n (1+y)^n \left(\frac{2(1+xy)}{(1+x)(1+y)} - 1 \right)^i \\ &= (1-x)^i (1+x)^{n-i} (1-y)^i (1+y)^{n-i}. \end{split}$$

Similarly the right hand side becomes

$$\sum_{j,k,s,t} {i \choose s} {n-i \choose k-s} {i \choose t} {n-i \choose j-t} (-1)^{s+t} x^j y^k$$
$$= \sum_{s,t} {i \choose s} {i \choose t} (-1)^{s+t} x^t y^s (1+x)^{n-i} (1+y)^{n-i}$$
$$= (1-x)^i (1+x)^{n-i} (1-y)^i (1+y)^{n-i}$$

as required. Hence \underline{e}_i is an eigenvector with eigenvalue λ_i for each i.

Moreover, we see that the \underline{e}_i 's are linearly independent (as vectors over Q): indeed: we have:

Lemma 2.2. Let U be the matrix whose columns are $\underline{e}_0, \underline{e}_1, \ldots, \underline{e}_n$. Then $U^2 = 2^n I$, and if Λ is the diagonal matrix of eigenvalues, then $A = 1/2^n U \Lambda U$.

Proof: The ijth entry of U^2 is

$$\sum_{l=0}^{n} \underline{e}_{l}[i]\underline{e}_{j}[l] = \sum_{l,s,t} (-1)^{s} \binom{l}{s} \binom{n-l}{i-s} (-1)^{t} \binom{j}{t} \binom{n-j}{l-t}$$

Multiplying by x^i and summing over i we obtain

$$\sum_{i,l,s,t} (-1)^{s+t} \binom{l}{s} \binom{n-l}{i-s} \binom{j}{t} \binom{n-j}{l-t} x^{i}$$

$$= \sum_{l,s,t} (-1)^{s+t} \binom{l}{s} \binom{j}{t} \binom{n-j}{l-t} (1+x)^{n-l} x^{s}$$

$$= \sum_{l,t} (-1)^{t} \binom{j}{t} \binom{n-j}{l-t} (1+x)^{n-l} (1-x)^{l}$$

$$= \sum_{t} (-1)^{t} \binom{j}{t} (1+x)^{j} 2^{n-j} \left(\frac{1-x}{1+x}\right)^{t}$$

$$= 2^{n} x^{j}$$

from which we see that $U^2 = 2^n I$. Hence the eigenvectors are linearly independent as claimed.

Observation: the eigenvectors do not depend upon k: hence the matrices A and A' corresponding to distinct values of k commute. This corresponds roughly to the idea that when walking around the hypercube it doesn't matter if you take a step of size l then a step of size k, or a step of size k then a step of size l.

We can now compute the probability that $\underline{u}_1, \underline{u}_2, \ldots, \underline{u}_t$ sum to $\underline{0}$: indeed, this is exactly the 00th coefficient in A^t , which is equal to

$$\sum_{i=0}^{n} \frac{1}{2^n} \lambda_i^t \binom{n}{i}$$

(since $A = 1/2^n U \Lambda U$).

Hence if $\underline{u}_1, \underline{u}_2, \ldots, \underline{u}_m$ are vectors with k 1's chosen independently at random, then the expected number of subsequences $\underline{u}_{a_1}, \underline{u}_{a_2}, \ldots, \underline{u}_{a_t}$ which sum to $\underline{0}$ is exactly

$$E(2^{s}) = \sum_{t=0}^{m} \binom{m}{t} \sum_{i=0}^{n} \frac{1}{2^{n}} \lambda_{i}^{t} \binom{n}{i} = \sum_{i=0}^{n} \frac{1}{2^{n}} \binom{n}{i} (1+\lambda_{i})^{m}$$

3. Asymptotics of λ_i

In order to estimate the size of $E(2^s)$, we require asymptotics for the value of λ_i .

Lemma 3.1. a) $|\lambda_i| < 1$ for all $0 \le i \le n$. b) If $i > \frac{n}{2}$ then $\lambda_i = (-1)^k \lambda_{n-i}$. c) Let $0 < c < \frac{1}{2}$. If i = cn then

$$\lambda_{i} = \left(1 - \frac{2i}{n}\right)^{k} - \frac{4\binom{k}{2}}{n} \left(1 - \frac{2i}{n}\right)^{k-2} \frac{i}{n} \left(1 - \frac{i}{n}\right) + O\left(\frac{k^{3}}{c^{2}n^{2}}\right)$$

Proof: Parts a) and b) are immediate from the definition of λ_i . To prove part c), since k is fixed, we have

$$\binom{n}{k} = \frac{n^k}{k!} \left(1 - \frac{\binom{k}{2}}{n} + O\left(\frac{k^3}{n^2}\right) \right)$$
$$\binom{i}{t} = \frac{i^t}{t!} \left(1 - \frac{\binom{t}{2}}{i} + O\left(\frac{t^3}{i^2}\right) \right)$$
$$\binom{n-i}{k-t} = \frac{(n-i)^{k-t}}{(k-t)!} \left(1 - \frac{\binom{k-t}{2}}{n-i} + O\left(\frac{(k-t)^3}{(n-i)^2}\right) \right).$$

Hence

$$\frac{\binom{i}{t}\binom{n-i}{k-t}}{\binom{n}{k}} = \left(\frac{i}{n}\right)^t \left(1 - \frac{i}{n}\right)^{k-t} \binom{k}{t} \left(1 + \frac{\binom{k}{2}}{n} - \frac{\binom{t}{2}}{i} - \frac{\binom{k-t}{2}}{n-i} + O\left(\frac{k^3}{c^2n^2}\right)\right)$$

and

$$\begin{aligned} \lambda_i &= \sum_{t=0}^k (-1)^t \left(\frac{i}{n}\right)^t \left(1 - \frac{i}{n}\right)^{k-t} \binom{k}{t} \left(1 + \frac{\binom{k}{2}}{n} - \frac{\binom{t}{2}}{i} - \frac{\binom{k-t}{2}}{n-i} + O\left(\frac{k^3}{c^2 n^2}\right) \right) \\ &= \left(1 - \frac{2i}{n}\right)^k + \frac{\binom{k}{2}}{n} \left(1 - \frac{2i}{n}\right)^k - \frac{\binom{k}{2}}{i} \left(\frac{i}{n}\right)^2 \left(1 - \frac{2i}{n}\right)^{k-2} \\ &\quad - \frac{\binom{k}{2}}{n-i} \left(\frac{n-i}{n}\right)^2 \left(1 - \frac{2i}{n}\right)^{k-2} + O\left(\frac{k^3}{c^2 n^2}\right) \\ &= \left(1 - \frac{2i}{n}\right)^k + \frac{\binom{k}{2}}{n} \left(1 - \frac{2i}{n}\right)^{k-2} \left(\left(1 - \frac{2i}{n}\right)^2 - \frac{i}{n} - \frac{n-i}{n}\right) + O\left(\frac{k^3}{c^2 n^2}\right) \end{aligned}$$

Neil J. Calkin

$$= \left(1 - \frac{2i}{n}\right)^{k} - \frac{4\binom{k}{2}}{n} \left(1 - \frac{2i}{n}\right)^{k-2} \left(-\frac{4i}{n} + 4\frac{i^{2}}{n}\right) + O\left(\frac{k^{3}}{c^{2}n^{2}}\right)$$
$$= \left(1 - \frac{2i}{n}\right)^{k} - \frac{4\binom{k}{2}}{n} \left(1 - \frac{2i}{n}\right)^{k-2} \left(\frac{i}{n}\right) \left(1 - \frac{i}{n}\right) + O\left(\frac{k^{3}}{c^{2}n^{2}}\right)$$

as claimed.

Observe that since we are assuming that $k \ge 3$ throughout, when *i* is close to $\frac{n}{2}$, say $\frac{n}{2} - i = \frac{n^{\theta}}{2}$, we have

$$\lambda_i = \left(\frac{1}{n^{1-\theta}}\right)^k - \frac{4\binom{k}{2}}{n} \left(\frac{1}{n^{1-\theta}}\right)^{k-2} + O\left(\frac{k^3}{n^2}\right)$$

Then, provided that $\theta < 1 - \frac{1}{k}$, we see that if $\frac{n}{2} - i = \frac{n^{\theta}}{2}$, then $\lambda_i n \to 0$ as $n \to \infty$. In the estimation of $E(2^s)$ we will use this to show that the middle part of the sum is asymptotic to 1.

4. Asymptotics of $E(2^s)$

Define

 $f(\alpha,\beta) = -\log 2 - \alpha \log(\alpha) - (1-\alpha)\log(1-\alpha) + \beta \log(1+(1-2\alpha)^k)$

and let (α_k, β_k) be the root of

$$\begin{aligned} f(\alpha,\beta) &= 0\\ \frac{\partial f(\alpha,\beta)}{\partial \alpha} &= 0 \end{aligned}$$

We shall show:

Lemma 4.1. If $\beta < \beta_k$ and $m < \beta n$ then $\sum_i 2^{-n} {n \choose i} (1 + \lambda_i)^m \to 1$ as $n \to \infty$, and if $\beta > \beta_k$ and $m > \beta n$ then $\sum_i 2^{-n} {n \choose i} (1 + \lambda_i)^m \to \infty$ as $n \to \infty$.

Proof: we proceed as follows: since our goal is to show that the behaviour of $E(2^s)$ changes when m goes from below $\beta_k n$ to above $\beta_k n$, and since our value β_k is less than 1, we may assume that $\frac{m}{n} < 1 - \delta$ for some $\delta > 0$. We shall show:

- a) the extreme tails of the sum for $E(2^s)$ are small
- b) the middle range of the sum contributes 1 to the sum
- c) and d) the rest of the sum is small if $\frac{m}{n} < \beta < \beta_k$ and large if $\frac{m}{n} > \beta > \beta_k$.
- a) there is an $\epsilon > 0$ so that

$$\sum_{i=0}^{\epsilon n} 2^{-n} \binom{n}{i} (1+\lambda_i)^m \to 0 \text{ as } n \to \infty$$

Indeed,

$$\sum_{i=0}^{\epsilon n} 2^{-n} \binom{n}{i} \left(1 + \lambda_i\right)^m < \sum_{i=0}^{\epsilon n} 2^{m-n} \binom{n}{i}$$

 $\mathbf{6}$

$$< n\epsilon 2^{m-n} \binom{n}{\epsilon n}$$

and provided ϵ is sufficiently small, this tends to 0 (indeed, if $-\delta \log 2 - \epsilon \log \epsilon + \epsilon < 0$ then the sum tends to 0).

Similarly,

$$\sum_{i=(1-\epsilon)n}^{n} 2^{-n} \binom{n}{i} (1+\lambda_i)^m \to 0 \text{ as } n \to \infty.$$

Hence, if $E(2^s) \to \infty$ for some $m < (1 - \delta)n$, we must have the major contribution from

$$\sum_{i=\epsilon n}^{(1-\epsilon)n} 2^{-n} \binom{n}{i} \left(1+\lambda_i\right)^m.$$

b) We now show that the middle range of the sum contributes 1 to $E(2^s)$. Indeed, in the range $\frac{n}{2} - n^{4/7} < i < \frac{n}{2} + n^{4/7}$

$$(1+\lambda_i)^m = \left(1+o\left(\frac{1}{n}\right)\right)^m = 1+o(1)$$

we have

$$\sum_{i=\frac{n}{2}-n^{4/7}}^{\frac{n}{2}+n^{4/7}} 2^{-n} \binom{n}{i} \left(1+\lambda_i\right)^m \sim \sum_{1=\frac{n}{2}-n^{4/7}}^{\frac{n}{2}+n^{4/7}} 2^{-n} \binom{n}{i} \to 1 \text{ as } n \to \infty.$$

c) We now show that we can widen the interval about the middle:

$$\sum_{i=\frac{n}{2}(1-\epsilon)}^{\frac{n}{2}(1+\epsilon)} 2^{-n} \binom{n}{i} \left(1+\lambda_i\right)^m \to 1.$$

Since $\lambda_{n-i} = (-1)^k \lambda_i$, it suffices to show that

$$\sum_{i=\frac{n}{2}(1-\epsilon)}^{\frac{n}{2}-n^{4/7}} 2^{-n} \binom{n}{i} (1+\lambda_i)^m \to 0.$$

In this range,

$$\lambda_i < \epsilon^k - \frac{\binom{k}{2}}{n} \epsilon^{k-2} + O\left(\frac{k^3}{n^2}\right).$$

Hence

$$(1+\lambda_i)^m < e^{n\epsilon^k} e^{-\binom{k}{2}\epsilon^{k-2}}$$

and since $k \geq 3$, the $n\epsilon^k$ term in the exponent is dominated by the $-n\epsilon^2$ term from the binomial coefficient, provided that ϵ is sufficiently small.

d) We now consider the remainder of the sum (or rather, the part in $(0, \frac{n}{2})$: if k is even, the remaining part follows by symmetry, and if k is odd, then $(1 + \lambda_i)^m < 1$ for i > n/2, and the remaining part tends to 0).

Define

$$f(\alpha,\beta) = -\log 2 - \alpha \log \alpha - (1-\alpha)\log(1-\alpha) + \beta \log(1+(1-2\alpha)^k)$$

Then if $f(\frac{i}{n}, \frac{m}{n}) < \gamma < 0$ the corresponding term of the sum is exponentially small, and if $f(\frac{i}{n}, \frac{m}{n}) > \gamma > 0$ the corresponding term of the sum is exponentially large. Thus, if $f(\alpha, \frac{m}{n}) < \gamma < 0$ for all α in $(\epsilon, 1 - \epsilon)$, we have

$$\sum_{i=\epsilon n}^{\frac{n}{2}(1-\epsilon)} 2^{-n} \binom{n}{i} \left(1+\lambda_i\right)^m < n e^{\gamma n + o(n)} \to 0,$$

and if $f(\alpha, \frac{m}{n}) > \gamma > 0$ for some α in $(\epsilon, 1 - \epsilon)$, then

$$\sum_{i=\epsilon n}^{\frac{n}{2}(1-\epsilon)} 2^{-n} \binom{n}{i} (1+\lambda_i)^m > \binom{n}{\alpha n} (1+\lambda_{\alpha n})^m 2^{-n} > e^{\gamma n + o(n)} \to \infty.$$

Now let β_k be so that if $\beta < \beta_k$ then $f(\alpha, \beta) < 0$ for all α in $(\epsilon, 1-\epsilon)$, and if $\beta > \beta_k$ then there is an alpha in $(\epsilon, 1-\epsilon)$ so that $f(\alpha, \beta) > 0$. Thus we wish to find α_k, β_k so that

$$f(\alpha_k, \beta_k) = 0$$
 and $\frac{\partial}{\partial \alpha} f(\alpha, \beta) = 0.$

As k goes to ∞ , the value of β_k is asymptotic to

$$1 - \frac{e^{-k}}{\log 2} - \frac{1}{2\log 2}(k^2 - 2k + \frac{2k}{\log 2} - 1)e^{-2k} + O(k^4)e^{-3k}$$

To see this, we observe first that

$$\alpha_k = e^{-\ell}$$

and

$$\beta_k = 1 - \frac{e^{-k}}{\log 2}$$

are close to a root (by considering a small constant times the error term, and expanding out $f(\alpha, \beta)$, we see that both $f(\alpha, \beta)$ and $\frac{\partial}{\partial \alpha} f(\alpha, \beta)$ change sign as the constant changes). Furthermore, there are no other roots α in (0,1/2) and β in (0,1): indeed, we note (i) that for any root of the two equations, indeed, for any root of $f(\alpha, \beta)$ with $\alpha \in (0, \frac{1}{2})$, either $\alpha \to 0$ as $k \to \infty$ or $\alpha \to \frac{1}{2}$ as $k \to \infty$.

(ii) if α is close to $\frac{1}{2}$, then there it is not part of a root (by expanding out $f(\alpha, \beta)$ in terms of α and observing that the term involving β is of order α^k , and since $k \geq 3$ and $\beta \leq 1$, we cannot have a root.

(iii) by considering the expansion in α , we observe that $k\alpha \to 0$ as $k \to \infty$. (iv) now, by expanding out both $f(\alpha, \beta)$ and $\frac{\partial}{\partial \alpha} f(\alpha, \beta)$, we see that the root is as claimed. Using a symbolic algebra package (in our case Maple), it is easy now to see that β_k has an asymptotic expansion

$$\beta_k \sim 1 - \frac{e^{-k}}{\log 2} - \frac{1}{2\log 2}(k^2 - 2k + \frac{2k}{\log 2} - 1)e^{-2k} + O(k^4)e^{-3k}$$

as **k** goes to infinity.

This completes the proof of the lemma.

Now, since $E(2^s) = \sum_i 2^{-n} {n \choose i} (1 + \lambda_i)^m$ this completes the proof of theorem 1.2, and Theorem 1.1 follows by the simple observation that since s is integer valued, the probability that $2^s > 1$ is less than $E(2^s) - 1$.

Constant weight vectors

References

- G. V. Balakin, V. F. Kolchin and V. I. Khokhlov. Hypercycles in a random hypergraph Diskretnaya Matematika 3, No. 3, 1-2–108 (1991) (in Russian).
- [2] P. Erdös and A. Renyi. On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci. 5,17–61 (1960).
- [3] V. F. Kolchin and V. I. Khokhlov. On the number of cycles in a non-equiprobably random graph. Diskretnaya Matematika 2, No.3,137–145 (1990) (in Russian).