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We determine lower bounds for the number of random binary vectors, chosen uni-

formly from vectors of weight k, needed to obtain a dependent set.

1. Introduction

In this paper we determine lower bounds for the number of random binary vectors of
weight k needed to obtain a dependent set of vectors with probability 1.

We denote by Sn,k the set of binary vectors having k 1’s. If we choose a random
sequence u1, u2, . . . , um uniformly from Sn,k, how large must m be for these vectors to
be dependent (over GF(2)) with probability 1?

In the case k = 1 this is exactly the birthday problem: given a set of n elements, how
long must a sequence chosen (with replacement) be before an element occurs at least
twice with probability close to 1. It is a standard combinatorics exercise to show that so
long as m/

√
(n) →∞, a sequence of length m will almost surely contain a repetition as

n →∞.
In the case k = 2, we can view the vectors of weight two as being edges in a graph on

{1, 2, . . . , n}: here a dependent set of vectors corresponds exactly to a set of edges which
contain a cycle. There are two distinct modes of behaviour here: first, if the edges are
chosen without replacement, and if the number of edges is cn then the probability that
there is a cycle is strictly less than 1 as n → ∞ if c < 1/2 and tends to 1 if c ≥ 1/2[2].
If the edges are chosen with replacement, then if we choose cn edges, there is a positive
probability that we get a repeated edge. Hence the probability increases up to c = 1/2,
at which point we almost surely get a cycle.

In what follows, we will assume that k is a fixed integer greater than or equal to 3.
Denote by pn,k(m) the probability that u1, u2, . . . , um are linearly dependent. We will

prove the following:
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Theorem 1.1. For each k there is a constant βk so that if β < βk then

lim
n→∞

pn,k(βn) = 0.

Furthermore, βk ∼ 1− e−k

log(2) as k →∞.

We obtain this theorem as a corollary of the following: let r be the rank of the set
{u1, u2, . . . , um}, and let s = m − r (equivalently, the dimension of the kernel of the
matrix having columns u1, u2, . . . , um).

Theorem 1.2. a) If β < βk and m = m(n) < βn then E(2s) → 1 as n → ∞. b) If
β > βk and m = m(n) > βn then E(2s) →∞ as n →∞.

Similar results have been obtained for different models by Balakin, Kolchin and Khokhlov
[1, 3]: their methods are completely different.

Our approach is the following: we consider a Markov chain derived from a suitable
random walk on the hypercube 2n; using this we will determine an exact expression for
E(2s). We then estimate E(2s) to determine βk.

2. A random walk on the hypercube, and an associated Markov chain

We define a random walk on the hypercube 2n as follows: let u1, u2, . . . , um, . . . be vectors
chosen uniformly at random from Sn,k. Define

x0 = 0, and xi = xi−1 + ui

(so the steps in the walk correspond to flipping k random bits).
We associate with this random walk the following Markov chain: we define yi to be

the weight of x1. Then y0, y1, . . . , ym, is a Markov chain with states {0, 1, . . . , n}. The
transition matrix A for this chain, with A = {apq}, where apq is the probability of moving
from state q to state p is given by

apq =

( q
k−p+q

2

)( n−q
k+p−q

2

)(
n
k

)
where the binomial coefficients are interpreted to be 0 if k + p + q is odd.

Theorem 2.1. The eigenvalues λi and corresponding eigenvectors ei for A, i = 0, 1, . . . , n,
are given by

λi =
k∑

t=0

(−1)t

(
i
t

)(
n−i
k−t

)(
n
k

) (2.1)

and the jth component of ei is given by

ei[j] =
j∑

t=0

(−1)t

(
i

t

)(
n− i

j − t

)
.
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Proof: We first show that ei is an eigenvector for A with eigenvalue λi: indeed the jth
coefficient of Aei is

n∑
l=0

(
l

k−j+l
2

)( n−l
k+j−l

2

)(
n
k

) l∑
t=0

(−1)t

(
i

t

)(
n− i

l − t

)
and the jth coefficient of λiei is

k∑
s=0

(−1)s

(
i
s

)(
n−i
k−s

)(
n
k

) j∑
t=0

(−1)t

(
i

t

)(
n− i

j − t

)
Observe now that

j∑
t=0

(−1)t

(
i

t

)(
n− i

j − t

)
=

i∑
t=0

(−1)i+t2t

(
i

t

)(
n− t

j

)
,

since each is the coefficient of xj in

(1− x)i(1 + x)n−i =
(

1− 2
1 + x

)i

(1 + x)n.

Hence it is sufficient to show that
n∑

l=0

(
l

k−j+l
2

)(
n− l
k+j−l

2

) j∑
t=0

(−1)t+i2t

(
i

t

)(
n− t

j

)

=
k∑

s=0

(−1)s

(
i

s

)(
n− i

k − s

) j∑
t=0

(−1)t

(
i

t

)(
n− i

j − t

)
.

We show this by multiplying both sides by xjyk and summing over j and k. Writing
j = l − 2r + k, the left hand side becomes∑

l,k,r,t

(
l

r

)(
n− l

k − r

)(
i

t

)(
n− t

l

)
(−1)i+t2txl+k−2ryk

=
∑
l,r,t

(
l

r

)(
i

t

)(
n− t

l

)
(−1)i+t2txl−r(1 + xy)n−lyr

=
∑
l,t

(
i

t

)(
n− t

l

)
(−1)i+t2t(1 + xy)n−l(x + y)l

=
∑

t

(−1)i+t

(
i

t

)
2t(1 + xy)t(1 + x)n−t(1 + y)n−t

= (1 + x)n(1 + y)n

(
2(1 + xy)

(1 + x)(1 + y)
− 1
)i

= (1− x)i(1 + x)n−i(1− y)i(1 + y)n−i.
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Similarly the right hand side becomes∑
j,k,s,t

(
i

s

)(
n− i

k − s

)(
i

t

)(
n− i

j − t

)
(−1)s+txjyk

=
∑
s,t

(
i

s

)(
i

t

)
(−1)s+txtys(1 + x)n−i(1 + y)n−i

= (1− x)i(1 + x)n−i(1− y)i(1 + y)n−i

as required. Hence ei is an eigenvector with eigenvalue λi for each i.
Moreover, we see that the ei’s are linearly independent (as vectors over Q): indeed: we

have:

Lemma 2.2. Let U be the matrix whose columns are e0, e1, . . . , en. Then U2 = 2nI,
and if Λ is the diagonal matrix of eigenvalues, then A = 1/2nUΛU .

Proof: The ijth entry of U2 is
n∑

l=0

el[i]ej [l] =
∑
l,s,t

(−1)s

(
l

s

)(
n− l

i− s

)
(−1)t

(
j

t

)(
n− j

l − t

)
.

Multiplying by xi and summing over i we obtain∑
i,l,s,t

(−1)s+t

(
l

s

)(
n− l

i− s

)(
j

t

)(
n− j

l − t

)
xi

=
∑
l,s,t

(−1)s+t

(
l

s

)(
j

t

)(
n− j

l − t

)
(1 + x)n−lxs

=
∑
l,t

(−1)t

(
j

t

)(
n− j

l − t

)
(1 + x)n−l(1− x)l

=
∑

t

(−1)t

(
j

t

)
(1 + x)j2n−j

(
1− x

1 + x

)t

= 2nxj

from which we see that U2 = 2nI. Hence the eigenvectors are linearly independent as
claimed.
Observation: the eigenvectors do not depend upon k: hence the matrices A and A′

corresponding to distinct values of k commute. This corresponds roughly to the idea
that when walking around the hypercube it doesn’t matter if you take a step of size l

then a step of size k, or a step of size k then a step of size l.
We can now compute the probability that u1, u2, . . . , ut sum to 0: indeed, this is exactly

the 00th coefficient in At, which is equal to
n∑

i=0

1
2n

λt
i

(
n

i

)
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(since A = 1/2nUΛU).
Hence if u1, u2, . . . , um are vectors with k 1’s chosen independently at random, then

the expected number of subsequences ua1
, ua2

, . . . , uat
which sum to 0 is exactly

E(2s) =
m∑

t=0

(
m

t

) n∑
i=0

1
2n

λt
i

(
n

i

)
=

n∑
i=0

1
2n

(
n

i

)
(1 + λi)

m
.

3. Asymptotics of λi

In order to estimate the size of E(2s), we require asymptotics for the value of λi.

Lemma 3.1. a) |λi| < 1 for all 0 ≤ i ≤ n.
b) If i > n

2 then λi = (−1)kλn−i.
c) Let 0 < c < 1

2 . If i = cn then

λi =
(

1− 2i

n

)k

−
4
(
k
2

)
n

(
1− 2i

n

)k−2
i

n

(
1− i

n

)
+ O

(
k3

c2n2

)
Proof: Parts a) and b) are immediate from the definition of λi. To prove part c), since
k is fixed, we have (

n

k

)
=

nk

k!

(
1−

(
k
2

)
n

+ O

(
k3

n2

))
(

i

t

)
=

it

t!

(
1−

(
t
2

)
i

+ O

(
t3

i2

))
(

n− i

k − t

)
=

(n− i)k−t

(k − t)!

(
1−

(
k−t
2

)
n− i

+ O

(
(k − t)3

(n− i)2

))
.

Hence (
i
t

)(
n−i
k−t

)(
n
k

) =
(

i

n

)t(
1− i

n

)k−t(
k

t

)(
1 +

(
k
2

)
n
−
(

t
2

)
i
−
(
k−t
2

)
n− i

+ O

(
k3

c2n2

))
and

λi =
k∑

t=0

(−1)t

(
i

n

)t(
1− i

n

)k−t(
k

t

)(
1 +

(
k
2

)
n
−
(

t
2

)
i
−
(
k−t
2

)
n− i

+ O

(
k3

c2n2

))

=
(

1− 2i

n

)k

+

(
k
2

)
n

(
1− 2i

n

)k

−
(
k
2

)
i

(
i

n

)2(
1− 2i

n

)k−2

−
(
k
2

)
n− i

(
n− i

n

)2(
1− 2i

n

)k−2

+ O

(
k3

c2n2

)

=
(

1− 2i

n

)k

+

(
k
2

)
n

(
1− 2i

n

)k−2
((

1− 2i

n

)2

− i

n
− n− i

n

)
+ O

(
k3

c2n2

)
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=
(

1− 2i

n

)k

−
4
(
k
2

)
n

(
1− 2i

n

)k−2(
−4i

n
+ 4

i2

n

)
+ O

(
k3

c2n2

)

=
(

1− 2i

n

)k

−
4
(
k
2

)
n

(
1− 2i

n

)k−2(
i

n

)(
1− i

n

)
+ O

(
k3

c2n2

)
as claimed.

Observe that since we are assuming that k ≥ 3 throughout, when i is close to n
2 , say

n
2 − i = nθ

2 , we have

λi =
(

1
n1−θ

)k

−
4
(
k
2

)
n

(
1

n1−θ

)k−2

+ O

(
k3

n2

)
Then, provided that θ < 1 − 1

k , we see that if n
2 − i = nθ

2 , then λin → 0 as n → ∞.
In the estimation of E(2s) we will use this to show that the middle part of the sum is
asymptotic to 1.

4. Asymptotics of E(2s)

Define

f(α, β) = − log 2− α log(α)− (1− α) log(1− α) + β log(1 + (1− 2α)k)

and let (αk, βk) be the root of

f(α, β) = 0
∂f(α, β)

∂α
= 0

We shall show:

Lemma 4.1. If β < βk and m < βn then
∑

i 2−n
(
n
i

)
(1 + λi)m → 1 as n →∞, and if

β > βk and m > βn then
∑

i 2−n
(
n
i

)
(1 + λi)m →∞ as n →∞.

Proof: we proceed as follows: since our goal is to show that the behaviour of E(2s)
changes when m goes from below βkn to above βkn, and since our value βk is less than
1, we may assume that m

n < 1− δ for some δ > 0. We shall show:
a) the extreme tails of the sum for E(2s) are small
b) the middle range of the sum contributes 1 to the sum
c) and d) the rest of the sum is small if m

n < β < βk and large if m
n > β > βk.

a) there is an ε > 0 so that
εn∑

i=0

2−n

(
n

i

)
(1 + λi)

m → 0 as n →∞

Indeed,
εn∑

i=0

2−n

(
n

i

)
(1 + λi)

m
<

εn∑
i=0

2m−n

(
n

i

)
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< nε2m−n

(
n

εn

)
and provided ε is sufficiently small, this tends to 0 (indeed, if −δ log 2 − ε log ε + ε < 0
then the sum tends to 0).

Similarly,
n∑

i=(1−ε)n

2−n

(
n

i

)
(1 + λi)

m → 0 as n →∞.

Hence, if E(2s) →∞ for some m < (1− δ)n, we must have the major contribution from

(1−ε)n∑
i=εn

2−n

(
n

i

)
(1 + λi)

m
.

b) We now show that the middle range of the sum contributes 1 to E(2s). Indeed, in the
range n

2 − n4/7 < i < n
2 + n4/7

(1 + λi)
m =

(
1 + o

(
1
n

))m

= 1 + o(1)

we have
n
2 +n4/7∑

i= n
2−n4/7

2−n

(
n

i

)
(1 + λi)

m ∼
n
2 +n4/7∑

1= n
2−n4/7

2−n

(
n

i

)
→ 1 as n →∞.

c) We now show that we can widen the interval about the middle:
n
2 (1+ε)∑

i= n
2 (1−ε)

2−n

(
n

i

)
(1 + λi)

m → 1.

Since λn−i = (−1)kλi, it suffices to show that
n
2−n4/7∑

i= n
2 (1−ε)

2−n

(
n

i

)
(1 + λi)

m → 0.

In this range,

λi < εk −
(
k
2

)
n

εk−2 + O

(
k3

n2

)
.

Hence

(1 + λi)m < enεk

e−(k
2)εk−2

and since k ≥ 3, the nεk term in the exponent is dominated by the −nε2 term from the
binomial coefficient, provided that ε is sufficiently small.
d) We now consider the remainder of the sum (or rather, the part in (0, n

2 ): if k is even,
the remaining part follows by symmetry, and if k is odd, then (1 + λi)m < 1 for i > n/2,
and the remaining part tends to 0).

Define

f(α, β) = − log 2− α log α− (1− α) log(1− α) + β log(1 + (1− 2α)k).
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Then if f( i
n , m

n ) < γ < 0 the corresponding term of the sum is exponentially small, and
if f( i

n , m
n ) > γ > 0 the corresponding term of the sum is exponentially large. Thus, if

f(α, m
n ) < γ < 0 for all α in (ε, 1− ε), we have

n
2 (1−ε)∑
i=εn

2−n

(
n

i

)
(1 + λi)

m
< neγn+o(n) → 0,

and if f(α, m
n ) > γ > 0 for some α in (ε, 1− ε), then

n
2 (1−ε)∑
i=εn

2−n

(
n

i

)
(1 + λi)

m
>

(
n

αn

)
(1 + λαn)m2−n > eγn+o(n) →∞.

Now let βk be so that if β < βk then f(α, β) < 0 for all α in (ε, 1− ε), and if β > βk then
there is an alpha in (ε, 1− ε) so that f(α, β) > 0. Thus we wish to find αk, βk so that

f(αk, βk) = 0 and
∂

∂α
f(α, β) = 0.

As k goes to ∞, the value of βk is asymptotic to

1− e−k

log 2
− 1

2 log 2
(k2 − 2k +

2k

log 2
− 1)e−2k + O(k4)e−3k.

To see this, we observe first that

αk = e−k

and

βk = 1− e−k

log 2
are close to a root (by considering a small constant times the error term, and expanding
out f(α, β), we see that both f(α, β) and ∂

∂αf(α, β) change sign as the constant changes).
Furthermore, there are no other roots α in (0,1/2) and β in (0,1): indeed, we note
(i) that for any root of the two equations, indeed, for any root of f(α, β) with α ∈ (0, 1

2 ),
either α → 0 as k →∞ or α → 1

2 as k →∞.
(ii) if α is close to 1

2 , then there it is not part of a root (by expanding out f(α, β) in
terms of α and observing that the term involving β is of order αk, and since k ≥ 3 and
β ≤ 1, we cannot have a root.
(iii) by considering the expansion in α, we observe that kα → 0 as k → ∞. (iv) now,
by expanding out both f(α, β) and ∂

∂αf(α, β), we see that the root is as claimed. Using
a symbolic algebra package (in our case Maple), it is easy now to see that βk has an
asymptotic expansion

βk ∼ 1− e−k

log 2
− 1

2 log 2
(k2 − 2k +

2k

log 2
− 1)e−2k + O(k4)e−3k

as k goes to infinity.
This completes the proof of the lemma.
Now, since E(2s) =

∑
i 2−n

(
n
i

)
(1 + λi)m this completes the proof of theorem 1.2,

and Theorem 1.1 follows by the simple observation that since s is integer valued, the
probability that 2s > 1 is less than E(2s)− 1.
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