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Abstract. We determine lower bounds for the number of random vectors in GF (q), chosen
uniformly from vectors having k non-zero co-ordinates, needed to obtain a dependent set
over GF (q).

1. Introduction

In this paper we determine lower bounds for the number of random vectors in GF (q) of
weight k, i.e. having k non-zero entries, needed to obtain a dependent set of vectors with
probability 1.

We denote by Sn,k the set of vectors having k non-zero entries. If we choose a random
sequence u1, u2, . . . , um uniformly from Sn,k, how large must m be for these vectors to be
linearly dependent (over GF (q))?

In [2] it was shown that when q = 2 at least βkn vectors are necessary, where for large

values of k, βk ∼ 1 − e−k

log 2
. In this paper we show that similar techniques can be used for a

general finite field GF (q). In related work, Balakin, Kolchin and Khokhlov have obtained
essentially equivalent results for the binary case [1] and for the case where q is prime [3, 4].

For brevity, we shall follow the notation of [2]. Let u1, u2, . . . , um, . . . be chosen uniformly
and independently at random from the set of vectors of weight k in GF (q).

Let the random variable s = sm be the co-rank of the vectors u1, u2, . . . , um, that is, m
minus the rank. Then qs is equal to the number of distinct solutions of

c1u1 + c2u2 + · · ·+ cmum = 0

with c = (c1, c2, . . . cm) ∈ GF (q)m. We make use of a suitable Markov chain to determine
the threshold function m(n) for E(qs) to tend to infinity: then if E(qs) is close to 1, the
vectors are almost surely independent.

Define

x0 = 0, and xl = xl−1 + ul

so that xl and xl−1 differ by a random vector of weight k. Let Xl be the weight of xl. Then
X0, X1, . . . , Xm, is a Markov chain with states {0, 1, . . . , n}. The transition matrix A for this
chain, with A = {aij}, where aij is the probability of moving from state j to state i is given
by

aij =
k∑

t=0

1(
n
k

)(j

t

)(
j − t

j − 2t− i + k

)(
n− j

i− j − t

)
(q − 2)j−2t−i+k(q − 1)i−j−t−k.
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Theorem 1. The eigenvalues λi and corresponding eigenvectors ei for A, i = 0, 1, . . . , n,
are given by

λi =
k∑

t=0

(−1)k+t

(
i
t

)(
n−i
k−t

)
(q − 1)t(

n
k

)
(q − 1)k

(1)

and the jth component of ei is given by

ei[j] =
j∑

t=0

(−1)t+j

(
i

t

)(
n− t

j − t

)
qt.

Proof: Let U be the matrix of eigenvectors, that is the matrix whose ijth entry is

Ui,j = ej[i] =
i∑

t=0

(−1)t+i

(
j

t

)(
n− t

i− t

)
qt

and let V be the matrix in reverse order, that is Vi,j = Un−i,n−j. We shall show that
UV = qnI, which implies that U and V are both invertible, and hence that the eigenvectors
claimed above are linearly independent.

Indeed, consider the general term

(UV )i,j =
∑

l

Ui,lVl,j =
∑

l

el[i]en−j[n− l]

=
∑
l,s,t

(−1)s+i

(
l

s

)(
n− s

i− s

)
qs(−1)t+n+l

(
n− j

t

)(
n− t

l

)
qt.

Multiplying this by xi and summing over i, we obtain

∑
l,s,t

(
l

s

)
qsxs(1− x)n−s(−1)t+n+l

(
n− j

t

)(
n− t

l

)
qt

=
∑
l,t

(−1)t+n+l(1− x + qx)l(1− x)n−l

(
n− j

t

)(
n− t

l

)
qt

=
∑

t

qn−txn−t(1− x)t

(
n− j

t

)
qt

= qnxj

i.e. (UV )i,j = qn if i = j, and 0 otherwise, proving that UV = qnI.
The proof that the eigenvectors are indeed eigenvectors follows by similar methods. Since

this is just a case of checking simple binomial identites, and the method of proof is rather
similar to that of [2] we omit the details. 2

We can now determine the expectation E(qs).

Theorem 2.

E(qs) =
n∑

j=0

1

qn

(
n

j

)
(1 + (q − 1)λi)

m(q − 1)n−i
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Proof: Observe that the probability that a set of vectors u1, u2, . . . , ut sum to 0 is exactly
the 00th coefficient of At. Now, for any fixed non-zero c1, c2, . . . ct ∈ GF (q), the probability
that c1u1 + c2u2 + . . . ctut = 0 is equal to the probability that u1 + u2 + · · · + ut = 0 since
the vectors ciui are also uniformly distributed with weight k (this, of course, depends upon
the fact that GF (q) is a field, and is the point at which this work fails to apply to powers of
rings).

Hence the expected number of solutions c1, c2, . . . , cm, (allowing some or all of the ci to be
0) to the equation c1u1 + c2u2 + . . . ctum = 0 is the 00th coefficient of

m∑
t

(q − 1)tAt

(
m

t

)
= (I + (q − 1)A)m =

1

qn
U(I + (q − 1)Λ)mV,

where Λ is the (n + 1)× (n + 1) diagonal matrix of eigenvalues, and U is the matrix whose
columns are the eigenvectors, and UV = qnI as above.

Now, since the 00th coefficient of 1
qn U(I + (q − 1)Λ)mV is

1

qn

∑
i

ei[0](1 + (q − 1)λi)
men[n− i]

E(qs) =
n∑

i=0

1

qn

(
n

i

)
(1 + (q − 1)λi)

m(q − 1)n−i.

2

We now consider the asymptotic behaviour of the sum.

Theorem 3. For any q, k ≥ 3 there is a constant βk so that
a) If β < βk and m = m(n) < βn then E(qs) → 1 as n →∞.
b) If β > βk and m = m(n) > βn then E(qs) →∞ as n →∞.

Furthermore, 1− βk ∼ (q−1)e−k

log q
as k →∞.

Proof: First, observe that the tails of the sum contribute o(1) to the sum. Moreover, it is
easy to see that unless i/n is very close to (q − 1)/q then λi ∼ (1− qi/(q − 1)n)k: it follows
from this and some straightforward but tedious estimates that for sufficiently small δ, the
portion of the sum when i/n is in the range ((q− 1)/q− δ, ((q− 1)/q + δ) is asymptotic to 1,
provided that m is not too big, say m = O(n). Since this is certainly the case, we can now
concentrate on the remainder of the sum. Let

∑′ denote the remainder of the sum. Then
writing α = i/n and β = m/n, we see that if every remaining term is exponentially small in
n, then the sum is exponentially small, since there are only n terms: if there is a term which
is exponentially large, then the sum is exponentially large.

Now define

f(α, β) = − log q + (1− α) log(q − 1)− α log(α)− (1− α) log(1− α)

+β log(1 + (q − 1)(
qα− 1

q − 1
)k).

Then for large n, the term in the sum corresponding to i is about exp(nf( i
n
, m

n
): hence if

there exists an ε > 0 so that for every

α ∈ (δ, (q − 1)/q − δ) ∪ ((q − 1)/q + δ, 1− δ),

f(α, m/n) is less than −ε, then
∑′ < ne−εn term is exponentially small, and if there is a

value of α for which f(α, m/n) > ε, then there is an exponentially large term, and
∑′ > eεn.
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Let βk,q = βk be the least value in (0, 1) for which there exists an αk ∈ (0, 1) with
f(αk, βk) = 0, then m = nβk is the threshold function for E(qs) →∞, that is,

if β < βk and m < βn then E(qs) → 1 and

if β > βk and m > βn then E(qs) →∞.

We consider the asypmtotics of αk and βk as q and k tend to ∞. First, we shall
reparametrize f in θ = qα−1

q−1
, so that

f(α, β) = f(1− (1−θ)(q−1)
q

, β)

= −(q − 1)(1− θ) log(1− θ)

q
− (1 + (q − 1)θ) log(1 + (q − 1)θ)

q
+ β log(1 + qθk)

and
∂f

∂θ
= −q − 1

q
log

(
(q − 1)θ + 1

1− θ

)
+

βk(q − 1)θk−1

(1 + (q − 1)θk)
.

Observe that when θ = 0, both f and f ′ are 0. This corresponds to the portion of the
sum around i = n/q. Moreover, for k and q sufficiently large, there are no other roots of
f = f ′ = 0 with θ in the interval (−1/(q− 1), 1/(q− 1)). Continuing to bootstrap, we see by
examining the equation for f ′, and using βk ≤ 1, that k(q − 1)θk−1

k 6→ 0. This implies that
there is a constant c so that for k, q sufficiently large, θk > cq−1/k. Thus log((q − 1)θ + 1) is
about log((q− 1)θ) > (1− 1/k) log(q− 1) + log(c). By considering the expression for f , and
again using the fact that βk ≤ 1, we see that as q, k → ∞, qθk

k → ∞. Thus, if k >> log q,
θk must be close to 1. It is then simple to expand the equations around θ = 1 and β = 1 to
obtain that for any fixed q, as k →∞,

1− βk ∼
(q − 1)e−k

log q

and

1− αk ∼ (q − 1)e−k.

2

Corollary 1. For any fixed k, q, if β < βk and m < βn, then as n →∞, the probability that
the vectors u1, u2, . . . , um are linearly dependent tends to 0.

As a final observation, we point out that since the eigenvectors ei do not depend upon k,
the transition matrices corresponding to vectors of weight k and weight k′ commute: this
is not surprising, since this corresponds to the fact that adding a random vectors of weight
k and k′ doesn’t depend on the order in which they are added. As a corollary, however,
it means that any distribution of vectors depending only on weight (that is, vectors of the
same weight are equiprobable) can be handled by the methods above. In particular, the
model used by Kolchin and Khokhlov, which is essentially to let each vector ui be the sum
of k independent vectors of weight 1, corresponds to taking the transition matrix for 1, and
raising it to the kth power: in this case, the eigenvalues obtained are exactly equal to(

1− qi

(q − 1)n

)k

,

and their results for finite fields of prime order follow immediately.
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