FACTORS OF SUMS OF POWERS OF BINOMIAL COEFFICIENTS
NEIL J. CALKIN

ABSTRACT. We prove divisibility properties for sums of powers of binomial coefficients and
of g-binomial coefficients.

Dedicated to the memory of Paul Erdds

1. INTRODUCTION

fra=3 (Z)

k=0

It is well known that if

then f,o=n+1, fo1 =2", fne= (2:), and it is possible to show (Wilf, personal commu-

nication, using techniques in [8]) that for 3 < a < 9, there is no closed form for f,, as a
sum of a fixed number of hypergeometric terms. Similarly, using asymptotic techniques, de
Bruijn has shown [2] that if @ > 4, then hs, , has no closed form, where

o = i(—l)’“(Z)a

(clearly, hony1, = 0.) In this paper we will prove that while no closed form may exist,
there are interesting divisibility properties of f,, 2, and hg, . We will illustrate some of the
techniques which may be applied to prove these sorts of results.

Our main results are:

Theorem 1. for all positive n and a,
2n 2n 2n\*
—1)* :
() zer ()
Theorem 2. For all positive integers a,m, j
" nl® 1)k ik
tng) | > || (=D
k=0 q

where the m are the q-binomial coefficients, and t(n,q) is an integer polynomial in q with
q

the property that t(n,1) is the odd part of (Z)
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2. BACKGROUND

In attempting to extend the results of previous work [1], we were led to consider factor-
izations of sums of powers of binomial coefficients. It quickly became clear that for even
exponents, small primes occurred as divisors in a regular fashion (Proposition 3), and that
this result could be extended (Proposition 7) to odd exponents and alternating sums. Fur-
ther investigation revealed (Proposition 8) that for all alternating sums, the primes dividing

hon.e coincided with those dividing (2"

n) This led us to conjecture, and subsequently to

prove, Theorem 1: as part of our proof we obtain (Theorem 2) a corresponding result for
g-binomial coefficients.

3. NON-ALTERNATING SUMS

Proposition 3. For every integer m > 1, if p is a prime in the interval

n 2an+1)—1 n+1 n+l-—m
—<p< =

2ma — 1 m m(2ma — 1)
then p|fnoa- In particular, f, o4 is divisible by all primes p for which
n<p<—2a(n+1)—1 =n+1+ A

2a — 1 2a — 1
The following lemma will enable us to convert information about divisors of f,, , which
are greater than n into information about divisors less than n.

Lemma 4. Let n = ngns_1..noning be the expansion of n in base p (and similarly for
k= ksksfl...kgklko). Then

fra =[] faia (mod p).
i=0
Proof: By Lucas’ Theorem (see for example Granville [6]),

()= 1) o

where as usual, (Z) = 0 (mod p) if k; > n,;. Hence all the terms in the sum over k for which
k; > n; for some ¢ disappear, giving

-y Y H(Z) (mod p)

ks=0ks_1=0 ko=01:=0

as claimed. O

Corollary 5. If | < p and p|fi4 then p|fiipa for all positive integers j.
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We are now in a position to prove Proposition 3: we proceed in two stages: first, the case
when n < p.

Lemma 6. Let p be a prime in the interval n < p < % Then p|fn.2a-

Proof: Let p =n + r where r > 0. Then we have

L o1 4 I ol L I

k=0 k=0

p

D4k -1\
T e moa )

iy
o

P e ke — 1\
< i ) (mod p)

(e D)(E+2). . (k+r— D)™ N
_kz< (r—1)! ) (mod p).

—0
Writing x ) = 1 and () for the polynomial z(x + 1)...(x +r — 1) this last sum becomes

pz_f <(k(:_1)¥?1)>2a |

k=0

=0

We now observe that the polynomials (o), z(1), ... z(g form an integer basis for the space of
all integer polynomials of degree at most d. Hence there exist integers co, ¢, ... ¢r—1)2a—1)
so that

. (r—1)(2a¢-1)
(k+De-n)™ = > clk+r)y.
7=0
Thus
—r  (r—1)(2a-1)
fn 2¢ = ‘2(1 Z Z j (k + 1)(""_1) (k + T)(j)
1 (r— 1)(2a 1) p-r

-1 Z 2 ¢ (k4 Dirss

r—1)(2a—1
oo bt D
(r—1pe = r+j

Now, if 4+ (r — 1)(2a — 1) < p, then each of the terms in the sum is divisible by p, and
(r — 1)! is not divisible by p: hence f, o, is divisible by p. But

r+(r—1)(2a—1)=2ra—2a+1=2pa—2na—2a+1
and
2pa —2na —2a+1<p
if and only if
2a(n+1)—1
20 — 1

completing the proof of the lemma. O
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Now, suppose that n = (m — 1)p + [ with [ > 0 and
2a(l+1)—1
2ma —1

Then by lemma 6, p divides f; 2, and hence by corollary 5, p divides f,, 9,. But [ < p if and
only if n < mp, and

I <

_ 20(l+1)—1
b 20— 1
if and only if

2a(n —(m—1)p) — 1

p< 2a — 1
that is if
2a(n+1) -1
2ma —1
Thus, if
n 2a(n+1)—1
—<p< 2T
m 2ma — 1
then p divides f, 24, completing the proof of Proposition 3. O

4. ALTERNATING SUMS

We note that no similar result holds for the case of odd powers of binomial coefficients
(with the trivial exception of a=1). Indeed, except for the power of 2 dividing f, 2,41 (Which
we discuss in Lemma 12), the factorizations of sums of odd powers seem to exhibit no
structure: for example,

fos3 = 26.661.3671.5153.313527009031.
However, for alternating sums of odd powers, we have

Proposition 7. p divides hoy, 24+1 for primes in the intervals

no_ <(2a+1)(n+1)—1_n+1+ n+1—m
m2a+1)—1 — m  m2a+1)—1

Proof: indeed by examining the proof of Proposition 3, we see that if we define

)

so that gn.20 = fn2q and gn 2441 = Pn2a+1, then g, , is divisible by all primes in each of the
intervals
n (n+1)a—1
ma — 1
so Propositions 3 and 7 are really the same result. |
For all alternating sums we have

Proposition 8. pr|(2:) then plhon.q -



Proof: Clearly 2 divides hg, , if and only if 2 divides the middle term, (2:)(1’ as all of the
other terms cancel (mod 2). Since 2 divides (%ff), 2 divides hoy, 4.

Now let p be an odd prime dividing (%’;): we will show that p divides hg, ,. By Kummer’s

theorem, at least one of the “digits” of 2n written in base p is odd (since if all are even, then
there are no carries in computing n +n = 2n in base p). Let the digits of 2n in base p be
(2n)s, (2n)s-1,...(2n)1,(2n)o. Then as in Lemma 4

2n a s (2n); a
Z(_l)k<k> =11 (Z(_Dkl( k. ) )
k=0 i=0 \ k;=0 i

(since p is odd, (—1)F = (—1)kethit-ks)  Now, since p\(?), at least one of the digits of 2n
in base p is odd: but then the corresponding term in the product is zero, and so p|hay,.q,
completing the proof of Proposition 8. O

After computing some examples, it is natural to conjecture (and then, of course, to prove!)
Theorem 1.

5. THE MAIN THEOREMS

We will prove Theorem 1 by considering g—binomial coefficents.
Definitions: Let n be a positive integer: throughout we will denote the number of 1’s
in the binary expansion of n by I(n) (so that 2“’””(?)): we further define the following
polynomials in an indeterminate q:

1—
On(q) = qq =1l+q+q + - +q""
(the g-equivalent of n)
onlg) = JT(1 — ¢*)rt@)

dn

(the n'* cyclotomic polynomial in q),

(the g-equivalent of n!), and

(the g-equivalent of (Z))
Further, define

and




Note that the apparently infinite product in the denominator is in fact finite, since s(z,q) = 1
if x < 1. We now make some useful observations about ¢(n, q). First,

s(n.q) = r(n,q)

RECND)
SO " " N
t(n,q)— S(”vQ) S(g,Q) S(Z?Q) 8(§7Q)
s(5,9)* s(1,0)?* s(5,9? s({5,9)?
r(n,q) r(5,9) (3,9
(5,97 (3,972 r(§,q)?
(%) (%) (g
r(1. )72 r(§. @) r(5.a°)?
7(5:q) (7 q) (5, q)
_ring) (1.9 r(5.9°  r(E9)?
(%92 r(3.¢)  r(3d) r(E

)
r(h.¢)? r(§.@)? (G d?)?
where again, the apparently infinite product is in fact finite.

Now, since
r(z,q)
r(3:9)? U || even
r(x,qz) % |_$J odd
r(5.4%)?

as ¢ — 1, we see that

@)

lim ¢(2n, q) =
q—)l

Further, ¢(2n + 1, q) has a factor (¢ — 1), so
lim t(2n+1,q) =0.
q*)

In other words, since 21||(2:), we may regard t(2n, q) as the g-equivalent of the largest odd
factor of (2:)

Lemma 9.
tn,q) = l;[/cbm(Q)
where the product is over those odd m for which || is odd.
Proof: Clearly, if m is even then ¢,,(q) doesn’t divide t(n, ¢). Suppose m is odd: then ¢,,(q)
divides s(n, q) exactly [[7]/2] times, and hence ¢,,(q) divides t(n, q)

n n n n
— 2l == /2| = ||—|/2| = —||=—|/2|—...
HmJ / -‘ H2mJ/ -‘ HllmJ/ -‘ HQJmJ/ -‘
times. Now, by considering the binary expansion of | ], it is immediate that this is 0 if
| 2] is even, and 1 if [ ] is odd. O
6



Lemma 10. Let m,n, k be non-negative integers: and write
n=n"m+n'
k=EK'm+Fk

(n—k)=mn—-k)"m+ (n—k)

where n' k' are the least non-negative residues of n,k (mod m). Then

0,7.5) s

where [Z:} is taken to be 0 if n' < k'.
q

Proof: We consider polynomials modulo 6,(q) and ¢,(q). First, observe that
m=m’' (mod n)
if and only if
1—¢"=1—¢" (mod1—q¢"),
that is,
Om(q) = On(q)  (mod bn(q)),
if and only if

O0m(q) = 0mv(q) (mod ¢n(q)).
Now,

m _ (g
k q r(k,q)r(n—k,q)
and reducing those terms which are coprime to ¢,,(¢q) we obtain

!/ " m
T(m _ 1’ q)n//ik//i(nik)// 7"(77/ ,q) T(n ,q )

T(k,7 q)r((n - k)lv Q) T(k”7 qm)r((n - k>”7 qm) .
Now, n' = k' + (n — k)’ then n” — k" — (n — k)" = 0, and

e

K kl/v qm)r<(n - k)llv qm)
n/ n//
= d
] (i) tmod sute
since 6j,,(¢) = j (mod (1 — ¢™)), and hence (mod ¢,,(q)).
Ifn'+m=*kK+ (n—k), thenn” — k" — (n— k)" =1, and

3] =0 tmod e

(mod ¢ (q))

and since k' > n’, we have

q (Z:) (mod 61 (4))

as required.



We note that evaluating m at ¢ = 1 immediately implies Kummer’s theorem, since m
q q

is a product of cyclotomic polynomials, and since ¢,,(1) = p if m = p’ and 1 otherwise, we
have a factor of p corresponding to each position for which there is a carry in n = k+ (n—k)
base p.

We are grateful to Professor Ira Gessel for informing us that Lemma 10 appears without
proof as a property of ¢-binomial coefficients in [7], as Proposition 2.2 in [4] and as Remark
2.4 in [3].

Proof of Theorem 2: It is enough to show that if m and n” = | ] are odd, then
S n]* 1)k gk
oml@) 1> || (=D
k=0 q
But, from Lemma 10,

5 ), o= 5 8 ] () o mod oni

k=0 q K'=0 k""=0 q
n' e n' m\ @
. n K ik n mj
- (Z MRS ) (Z (1) o
k'=0 q k""=0
and since m and n” are odd, the second sum is zero, and we are done. O

We observe now that both sides of Theorem 2 are integer polynomials; thus when we
evaluate them at ¢ = 1, the left hand side (if non-zero) will divide the right hand side. But

we have already observed that ¢(2n,1) = (27?) /2!, and hence we have proved

2n n non\”
() 12 g () e

To prove Theorem 1 it remains to show that

2 | 3" (2£>a<—1)k.

k=0

Corollary 11.

We prove a stronger result by induction.
Lemma 12. For all positive integers a and n,

2l | i(Z)a

k=

[e=]

and

S
Q

20 |3 (1) o

k=0
Proof: The theorem is clearly true when n = 1: assume now that it it holds for all values
less than n. For each 1 < ¢ < I(n), let m = 2¢ and let n/,n" k', k", (n — k), (n — k)" be
defined as in Lemma 10: writing

o= (=[]) (=)



we have .
" (n
Z [k] =wi(q) (mod ¢z (q))
k=0 q
By our induction hypothesis, since I(n) = I(n’) + I(n"), 2/ |w;(1) for each i.
We now wish to combine these equivalences modulo

O (0) = $2(0)0a4(0)P8(q) - - - darem (q)
and evaluate them at ¢ = 1. To do this, define
™ = F

and
1

T = W(l —q)
for : =2,3,...,1(n). Then, setting
ui(q) = ¢2(q)4(q) - - - Poi-1(q)TiP2i+1(q) - - . Porny (q)
we have
u(q) = 551+ +¢") .. 1+ ) =1 (mod (1+4q))

and for ¢ > 2,

2[1

ui(g) = Qzlm 1-A)A+A) L+ .. (1+¢ HA+e*)...a+&")

1 i-1 i it1 I(n)—1
(L= A+ A+ ()

=1 (mod (1+¢ "))

Further, if 7 # j,
u;i(q) =0 (mod ¢9;(q)).

Hence,
n ] l(n)
> |1 = Suu@  (mod b @)
k=0 q i=1

that is,

Z [Z] = 921(n) + sz
q

where we wish to conclude that P(q) is an integer polynomlal. Observe that it is sufficient
to prove that each w;(q)u;(q) is an integer polynomial, since 5 (q) is monic.

To do this, consider w;(q): first, observe that w;(q) is divisible by 2/*") by our inductive
hypothesis, since n” < n: further, if n is odd, so is 7/, and hence the ¢g-binomial sum in w;(q)
is symmetric and its coefficients are even: if n is even, then I(n’) < i — 1, and in each case,
27w, (q) (that is, each coefficient of w;(q) is divisible by 2/=F1). Thus, for each i, w;(q)u;(q)
is an integer polynomial.

We have thus proven that

SRR
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where P(q) has integer coefficients. Now, setting ¢ = 1 in both sides, we observe that w;(1)
is an integer for each i, 2/ |w;(1) for each i (indeed, u;(1) = 0 for i > 2, and u,(1) = 1),
and that Oy (1) = 2/, Hence each term on the right is divisible by 2/ proving that

o) | i(g)a

To prove that

we proceed similarly, setting

vi(q) = ler(_”k (Z (Z:>a>

q
with the only major difference being in the proof that

I(n)

> _vila)ui(q)

i=1
is an integer polynomial: in this case, if n is even, things work as above, and if n is odd,
then we have n’ is odd, and v;(q) is identically equal to 0. Note that we need to have already
proven the Lemma for non-alternating sums to prove the alternating case. This completes
the proof of Lemma 12 and thus of Theorem 1. O

We gratefully acknowledge many informative discussions with Professors Jonathan M.

Borwein, Ira Gessel, Andrew J. Granville and Herbert S. Wilf.
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