
FACTORS OF SUMS OF POWERS OF BINOMIAL COEFFICIENTS

NEIL J. CALKIN

Abstract. We prove divisibility properties for sums of powers of binomial coefficients and
of q-binomial coefficients.

Dedicated to the memory of Paul Erdős

1. Introduction

It is well known that if

fn,a =
n∑

k=0

(
n

k

)a

then fn,0 = n + 1, fn,1 = 2n, fn,2 =
(

2n
n

)
, and it is possible to show (Wilf, personal commu-

nication, using techniques in [8]) that for 3 ≤ a ≤ 9, there is no closed form for fn,a as a
sum of a fixed number of hypergeometric terms. Similarly, using asymptotic techniques, de
Bruijn has shown [2] that if a ≥ 4, then h2n,a has no closed form, where

hn,a =
n∑

k=0

(−1)k

(
n

k

)a

(clearly, h2n+1,a = 0.) In this paper we will prove that while no closed form may exist,
there are interesting divisibility properties of fn,2a and h2n,a. We will illustrate some of the
techniques which may be applied to prove these sorts of results.

Our main results are:

Theorem 1. for all positive n and a,(
2n

n

)
|

2n∑
k=0

(−1)k

(
2n

k

)a

.

Theorem 2. For all positive integers a, m, j

t(n, q) |
n∑

k=0

[
n

k

] a

q

(−1)kqjk,

where the
[
n
k

]
q

are the q-binomial coefficients, and t(n, q) is an integer polynomial in q with

the property that t(n, 1) is the odd part of
(

n
k

)
.
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2. Background

In attempting to extend the results of previous work [1], we were led to consider factor-
izations of sums of powers of binomial coefficients. It quickly became clear that for even
exponents, small primes occurred as divisors in a regular fashion (Proposition 3), and that
this result could be extended (Proposition 7) to odd exponents and alternating sums. Fur-
ther investigation revealed (Proposition 8) that for all alternating sums, the primes dividing

h2n,a coincided with those dividing
(

2n
n

)
. This led us to conjecture, and subsequently to

prove, Theorem 1: as part of our proof we obtain (Theorem 2) a corresponding result for
q-binomial coefficients.

3. Non-alternating Sums

Proposition 3. For every integer m ≥ 1, if p is a prime in the interval

n

m
< p <

2a(n + 1)− 1

2ma− 1
=

n + 1

m
+

n + 1−m

m(2ma− 1)

then p|fn,2a. In particular, fn,2a is divisible by all primes p for which

n < p <
2a(n + 1)− 1

2a− 1
= n + 1 +

n

2a− 1
.

The following lemma will enable us to convert information about divisors of fn,a which
are greater than n into information about divisors less than n.

Lemma 4. Let n = nsns−1...n2n1n0 be the expansion of n in base p (and similarly for
k = ksks−1...k2k1k0). Then

fn,a ≡
s∏

i=0

fni,a (mod p).

Proof: By Lucas’ Theorem (see for example Granville [6]),(
n

k

)
≡

s∏
i=0

(
ni

ki

)
(mod p)

where as usual,
(

ni

ki

)
≡ 0 (mod p) if ki > ni. Hence all the terms in the sum over k for which

ki > ni for some i disappear, giving

fn,a =
n∑

k=0

(
n

k

)a

≡
ns∑

ks=0

ns−1∑
ks−1=0

· · ·
n0∑

k0=0

s∏
i=0

(
ni

ki

)a

(mod p)

≡
s∏

i=0

ni∑
ki=0

(
ni

ki

)a

(mod p)

≡
s∏

i=0

fni,a (mod p)

as claimed. 2

Corollary 5. If l < p and p|fl,a then p|fl+jp,a for all positive integers j.
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We are now in a position to prove Proposition 3: we proceed in two stages: first, the case
when n < p.

Lemma 6. Let p be a prime in the interval n < p < 2a(n+1)−1
2a−1

. Then p|fn,2a.

Proof: Let p = n + r where r > 0. Then we have

fn,2a =
n∑

k=0

(
n

k

)2a

≡
p−r∑
k=0

(
p− r

k

)2a

(mod p)

≡
p−r∑
k=0

(
r + k − 1

k

)2a

(−1)2ka (mod p)

≡
p−r∑
k=0

(
r + k − 1

k

)2a

(mod p)

≡
p−r∑
k=0

(
(k + 1)(k + 2) . . . (k + r − 1)

(r − 1)!

)2a

(mod p).

Writing x(0) = 1 and x(r) for the polynomial x(x + 1) . . . (x + r − 1) this last sum becomes

p−r∑
k=0

(
(k + 1)(r−1)

(r − 1)!

)2a

.

We now observe that the polynomials x(0), x(1), . . . x(d) form an integer basis for the space of
all integer polynomials of degree at most d. Hence there exist integers c0, c1, . . . c(r−1)(2a−1)

so that

((k + 1)(r−1))
2a−1 =

(r−1)(2a−1)∑
j=0

cj(k + r)(j).

Thus

fn,2a ≡
1

(r − 1)!2a

p−r∑
k=0

(r−1)(2a−1)∑
j=0

cj (k + 1)(r−1) (k + r)(j)

≡ 1

(r − 1)!2a

(r−1)(2a−1)∑
j=0

p−r∑
k=0

cj (k + 1)(r+j−1)

≡ 1

(r − 1)!2a

(r−1)(2a−1)∑
j=0

cj

(p− r + 1)(r+j)

r + j
.

Now, if r + (r − 1)(2a − 1) < p, then each of the terms in the sum is divisible by p, and
(r − 1)! is not divisible by p: hence fn,2a is divisible by p. But

r + (r − 1)(2a− 1) = 2ra− 2a + 1 = 2pa− 2na− 2a + 1

and
2pa− 2na− 2a + 1 < p

if and only if

p <
2a(n + 1)− 1

2a− 1
completing the proof of the lemma. 2
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Now, suppose that n = (m− 1)p + l with l > 0 and

l < p <
2a(l + 1)− 1

2ma− 1
.

Then by lemma 6, p divides fl,2a and hence by corollary 5, p divides fn,2a. But l < p if and
only if n < mp, and

p <
2a(l + 1)− 1

2a− 1

if and only if

p <
2a(n− (m− 1)p)− 1

2a− 1

that is if

p <
2a(n + 1)− 1

2ma− 1
.

Thus, if
n

m
< p <

2a(n + 1)− 1

2ma− 1

then p divides fn,2a, completing the proof of Proposition 3. 2

4. Alternating Sums

We note that no similar result holds for the case of odd powers of binomial coefficients
(with the trivial exception of a=1). Indeed, except for the power of 2 dividing fn,2a+1 (which
we discuss in Lemma 12), the factorizations of sums of odd powers seem to exhibit no
structure: for example,

f28,3 = 26.661.3671.5153.313527009031.

However, for alternating sums of odd powers, we have

Proposition 7. p divides h2n,2a+1 for primes in the intervals

n

m
< p <

(2a + 1)(n + 1)− 1

m(2a + 1)− 1
=

n + 1

m
+

n + 1−m

m(2a + 1)− 1

Proof: indeed by examining the proof of Proposition 3, we see that if we define

gn,a =
n∑

k=0

(
(−1)k

(
n

k

))a

so that gn,2a = fn,2a and gn,2a+1 = hn,2a+1, then gn,a is divisible by all primes in each of the
intervals

n

m
< p <

(n + 1)a− 1

ma− 1

so Propositions 3 and 7 are really the same result. 2

For all alternating sums we have

Proposition 8. If p|
(

2n
n

)
then p|h2n,a .
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Proof: Clearly 2 divides h2n,a if and only if 2 divides the middle term,
(

2n
n

)a
, as all of the

other terms cancel (mod 2). Since 2 divides
(

2n
n

)
, 2 divides h2n,a.

Now let p be an odd prime dividing
(

2n
n

)
: we will show that p divides h2n,a. By Kummer’s

theorem, at least one of the “digits” of 2n written in base p is odd (since if all are even, then
there are no carries in computing n + n = 2n in base p). Let the digits of 2n in base p be
(2n)s, (2n)s−1, . . . (2n)1, (2n)0. Then as in Lemma 4

2n∑
k=0

(−1)k

(
2n

k

)a

≡
s∏

i=0

(2n)i∑
ki=0

(−1)ki

(
(2n)i

ki

)a


(since p is odd, (−1)k = (−1)k0+k1+...ks). Now, since p|
(

2n
n

)
, at least one of the digits of 2n

in base p is odd: but then the corresponding term in the product is zero, and so p|h2n,a,
completing the proof of Proposition 8. 2

After computing some examples, it is natural to conjecture (and then, of course, to prove!)
Theorem 1.

5. The Main Theorems

We will prove Theorem 1 by considering q−binomial coefficents.
Definitions: Let n be a positive integer: throughout we will denote the number of 1’s

in the binary expansion of n by l(n) (so that 2l(n)||
(

2n
n

)
): we further define the following

polynomials in an indeterminate q:

θn(q) =
1− qn

1− q
= 1 + q + q2 + · · ·+ qn−1

(the q-equivalent of n)

φn(q) =
∏
d|n

(1− qd)µ(n
d
)

(the nth cyclotomic polynomial in q),

n!q =
n∏

i=1

θi(q)

(the q-equivalent of n!), and [
n

k

]
q

=
n!q

k!q(n− k)!q

(the q-equivalent of
(

n
k

)
).

Further, define

r(x, q) =
∏
j≤x

(
1− qj

)
= (1− q)nn!q

s(x, q) =
∏

2j+1≤x

(
1− q2j+1

)
and

t(n, q) =
s(n, q)

s(n
2
, q)s(n

4
, q)s(n

8
, q) . . .

.
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Note that the apparently infinite product in the denominator is in fact finite, since s(x, q) = 1
if x < 1. We now make some useful observations about t(n, q). First,

s(n, q) =
r(n, q)

r(n
2
, q2)

so

t(n, q) =
s(n, q)

s(n
2
, q)2

s(n
2
, q)

s(n
4
, q)2

s(n
4
, q)

s(n
8
, q)2

s(n
8
, q)

s( n
16

, q)2
. . .

=

r(n, q)

r(n
2
, q)2

r(n
2
, q)

r(n
4
, q)2

r(n
4
, q)

r(n
8
, q)2

r(n
2
, q2)

r(n
4
, q2)2

r(n
4
, q2)

r(n
8
, q2)2

r(n
8
, q2)

r( n
16

, q2)2

. . .

=
r(n, q)

r(n
2
, q)2

r(n
2
, q)

r(n
4
, q)2

r(n
2
, q2)

r(n
4
, q2)2

r(n
4
, q)

r(n
8
, q)2

r(n
4
, q2)

r(n
8
, q2)2

r(n
8
, q)

r( n
16

, q)2

r(n
8
, q2)

r( n
16

, q2)2

. . .

where again, the apparently infinite product is in fact finite.
Now, since

r(x, q)

r(x
2
, q)2

r(x, q2)

r(x
2
, q2)2

→
{

1 bxc even
1
2

bxc odd

as q → 1, we see that

lim
q→1

t(2n, q) =

(
2n
n

)
2l

.

Further, t(2n + 1, q) has a factor (q − 1), so

lim
q→1

t(2n + 1, q) = 0.

In other words, since 2l||
(

2n
n

)
, we may regard t(2n, q) as the q-equivalent of the largest odd

factor of
(

2n
n

)
.

Lemma 9.

t(n, q) =
∏
m

′
φm(q)

where the product is over those odd m for which b n
m
c is odd.

Proof: Clearly, if m is even then φm(q) doesn’t divide t(n, q). Suppose m is odd: then φm(q)
divides s(n, q) exactly db n

m
c/2e times, and hence φm(q) divides t(n, q)⌈⌊

n

m

⌋
/2
⌉
−
⌈⌊

n

2m

⌋
/2
⌉
−
⌈⌊

n

4m

⌋
/2
⌉
− · · · −

⌈⌊
n

2jm

⌋
/2
⌉
− . . .

times. Now, by considering the binary expansion of b n
m
c, it is immediate that this is 0 if

b n
m
c is even, and 1 if b n

m
c is odd. 2
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Lemma 10. Let m, n, k be non-negative integers: and write

n = n′′m + n′

k = k′′m + k′

(n− k) = (n− k)′′m + (n− k)′

where n′, k′ are the least non-negative residues of n, k (mod m). Then[
n

k

]
q

≡
[
n′

k′

]
q

(
n′′

k′′

)
(mod φm(q))

where
[
n′

k′

]
q

is taken to be 0 if n′ < k′.

Proof: We consider polynomials modulo θn(q) and φn(q). First, observe that

m ≡ m′ (mod n)

if and only if

1− qm ≡ 1− qm′
(mod 1− qn),

that is,
θm(q) ≡ θm′(q) (mod θn(q)),

if and only if
θm(q) ≡ θm′(q) (mod φn(q)).

Now, [
n

k

]
q

=
r(n, q)

r(k, q)r(n− k, q)

and reducing those terms which are coprime to φm(q) we obtain

r(m− 1, q)n′′−k′′−(n−k)′′ r(n′, q)

r(k′, q)r((n− k)′, q)

r(n′′, qm)

r(k′′, qm)r((n− k)′′, qm)
.

Now, n′ = k′ + (n− k)′ then n′′ − k′′ − (n− k)′′ = 0, and[
n

k

]
q

≡
[
n′

k′

]
q

r(n′′, qm)

r(k′′, qm)r((n− k)′′, qm)
(mod φm(q))

≡
[
n′

k′

]
q

(
n′′

k′′

)
(mod φm(q))

since θjm(q) ≡ j (mod (1− qm)), and hence (mod φm(q)).
If n′ + m = k′ + (n− k)′, then n′′ − k′′ − (n− k)′′ = 1, and[

n

k

]
q

≡ 0 (mod φm(q)),

and since k′ > n′, we have [
n

k

]
q

≡
[
n′

k′

]
q

(
n′′

k′′

)
(mod φm(q))

as required. 2
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We note that evaluating
[
n
k

]
q

at q = 1 immediately implies Kummer’s theorem, since
[
n
k

]
q

is a product of cyclotomic polynomials, and since φm(1) = p if m = pi and 1 otherwise, we
have a factor of p corresponding to each position for which there is a carry in n = k+(n−k)
base p.

We are grateful to Professor Ira Gessel for informing us that Lemma 10 appears without
proof as a property of q-binomial coefficients in [7], as Proposition 2.2 in [4] and as Remark
2.4 in [3].
Proof of Theorem 2: It is enough to show that if m and n′′ = b n

m
c are odd, then

φm(q) |
n∑

k=0

[
n

k

] a

q

(−1)kqjk.

But, from Lemma 10,

n∑
k=0

[
n

k

] a

q

(−1)kqjk ≡
n′∑

k′=0

n′′∑
k′′=0

[
n′

k′

] a

q

(
n′′

k′′

)a

(−1)k′+k′′qjk′ (mod φm(q))

=

 n′∑
k′=0

[
n′

k′

] a

q

(−1)k′qjk′

 n′′∑
k′′=0

(
n′′

k′′

)a

(−1)mj


and since m and n′′ are odd, the second sum is zero, and we are done. 2

We observe now that both sides of Theorem 2 are integer polynomials; thus when we
evaluate them at q = 1, the left hand side (if non-zero) will divide the right hand side. But

we have already observed that t(2n, 1) =
(

2n
n

)
/2l, and hence we have proved

Corollary 11. (
2n

n

)
| 2l(n)

2n∑
k=0

(
2n

k

)a

(−1)k.

2

To prove Theorem 1 it remains to show that

2l(n) |
2n∑

k=0

(
2n

k

)a

(−1)k.

We prove a stronger result by induction.

Lemma 12. For all positive integers a and n,

2l(n) |
n∑

k=0

(
n

k

)a

.

and

2l(n) |
n∑

k=0

(
n

k

)a

(−1)k.

Proof: The theorem is clearly true when n = 1: assume now that it it holds for all values
less than n. For each 1 ≤ i ≤ l(n), let m = 2i and let n′, n′′, k′, k′′, (n − k)′, (n − k)′′ be
defined as in Lemma 10: writing

wi(q) =

∑[
n′

k′

] a

q

(∑(
n′′

k′′

)a)
8



we have
n∑

k=0

[
n

k

] a

q

≡ wi(q) (mod φ2i(q))

By our induction hypothesis, since l(n) = l(n′) + l(n′′), 2l(n)|wi(1) for each i.
We now wish to combine these equivalences modulo

θ2l(n)(q) = φ2(q)φ4(q)φ8(q) . . . φ2l(n)(q)

and evaluate them at q = 1. To do this, define

π1 =
1

2l−1

and

πi =
1

2l−i+1
(1− q)

for i = 2, 3, . . . , l(n). Then, setting

ui(q) = φ2(q)φ4(q) . . . φ2i−1(q)πiφ2i+1(q) . . . φ2l(n)(q)

we have

u1(q) =
1

2l−1
(1 + q2)(1 + q4) . . . (1 + q2l(n)−1

) ≡ 1 (mod (1 + q))

and for i ≥ 2,

ui(q) ≡
1

2l−i+1
(1− q2)(1 + q2)(1 + q4) . . . (1 + q2i−2

)(1 + q2i

) . . . (1 + q2l(n)−1

)

≡ 1

2l−i+1
(1− q2i−1

)(1 + q2i

)(1 + q2i+1

) . . . (1 + q2l(n)−1

)

≡ 1 (mod (1 + q2i−1
))

Further, if i 6= j,
ui(q) ≡ 0 (mod φ2j(q)).

Hence,
n∑

k=0

[
n

k

] a

q

≡
l(n)∑
i=1

wi(q)ui(q) ( mod θ2l(n)(q))

that is,
n∑

k=0

[
n

k

] a

q

= P (q)θ2l(n)(q) +
l(n)∑
i=1

wi(q)ui(q)

where we wish to conclude that P (q) is an integer polynomial. Observe that it is sufficient
to prove that each wi(q)ui(q) is an integer polynomial, since θ2l(q) is monic.

To do this, consider wi(q): first, observe that wi(q) is divisible by 2l(n′′) by our inductive
hypothesis, since n′′ < n: further, if n is odd, so is n′, and hence the q-binomial sum in wi(q)
is symmetric and its coefficients are even: if n is even, then l(n′) ≤ i − 1, and in each case,
2l−i|wi(q) (that is, each coefficient of wi(q) is divisible by 2l−i+1). Thus, for each i, wi(q)ui(q)
is an integer polynomial.

We have thus proven that

n∑
k=0

[
n

k

] a

q

= P (q)θ2l(n)(q) +
l(n)∑
i=1

wi(q)ui(q)

9



where P (q) has integer coefficients. Now, setting q = 1 in both sides, we observe that ui(1)
is an integer for each i, 2l(n)|wi(1) for each i (indeed, ui(1) = 0 for i ≥ 2, and u1(1) = 1),
and that θ2l(n)(1) = 2l(n). Hence each term on the right is divisible by 2l(n), proving that

2l(n) |
n∑

k=0

(
n

k

)a

.

To prove that

2l(n) |
n∑

k=0

(
n

k

)a

(−1)k

we proceed similarly, setting

vi(q) =

∑[
n′

k′

] a

q

(−1)k

(∑(
n′′

k′′

)a)
,

with the only major difference being in the proof that

l(n)∑
i=1

vi(q)ui(q)

is an integer polynomial: in this case, if n is even, things work as above, and if n is odd,
then we have n′ is odd, and vi(q) is identically equal to 0. Note that we need to have already
proven the Lemma for non-alternating sums to prove the alternating case. This completes
the proof of Lemma 12 and thus of Theorem 1. 2

We gratefully acknowledge many informative discussions with Professors Jonathan M.
Borwein, Ira Gessel, Andrew J. Granville and Herbert S. Wilf.
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