On the number of sum-free sets.

Neil J. Calkin
Department of Mathematics, Carnegie Mellon University, Pittsburgh, PA

Abstract

Cameron and Erdös have considered the question: how many sum-free sets are contained in the first n integers; they have shown that the number of sum-free sets contained within the integers $\left\{\frac{n}{3}, \frac{n}{3}+1, \ldots, n\right\}$ is $c .2^{\frac{n}{2}}$. We prove that the number of sets contained within $\{1,2, \ldots, n\}$ is $o\left(2^{n(1 / 2+\varepsilon)}\right)$ for every $\varepsilon>0$.

1 Introduction

A set S is said to be sum-free if the equation $x+y=z$ has no solutions within S. Cameron [3],[4], [5] has asked many questions regarding sum-free sets; in particular he has conjectured that the Hausdorff dimension of \mathcal{S}, the set of all sum-free sets of positive integers, is equal to $1 / 2$; he further observed that this would follow immediately if the number of sum-free sets contained in the set $\{1,2, \ldots, n\}$ is $o\left(2^{n(1 / 2+\varepsilon)}\right)$ for every $\varepsilon>0$. Cameron and Erdös (personal communication) have shown that the number of sum-free sets contained in $\left\{\frac{n}{3}, \frac{n}{3}+1, \ldots, n\right\}$ is $c .2^{\frac{n}{2}}$, and Calkin [1],[2] has shown that the Hausdorff dimension of \mathcal{S} is at most .599. In this paper, we show that the number of sum-free sets in $\{1,2, \ldots, n\}$ is indeed $o\left(2^{n(1 / 2+\varepsilon)}\right)$ for every $\varepsilon>0$, and immediately deduce that the Hausdorff dimension of \mathcal{S} is $1 / 2$.

Erös and Granville (personal communication) have independently proven the same result; their method also uses a theorem due to Szemerédi, in graph theory.

2 The Main Theorem

Theorem 1 For every $\varepsilon>0$, the number of sum-free sets contained in the set $\{1,2, \ldots, n\}$ is $o\left(2^{n(1 / 2+\varepsilon)}\right)$.

We shall defer the proof for a moment; first we shall state several results required for the proof. The first is Szemeredi's celebrated theorem on arithmetic progressions.

Theorem 2 (Szemeredi) There exists a function $g_{k}(n)$ such that $g_{k}(n)=o(n)$ and every subset of size $g_{k}(n)$ from the integers $\{1,2, \ldots, n\}$ contains an arithmetic progression of length at least k.

Proof. See Szemeredi [6].
Lemma 1 For every $\varepsilon>0$, the number of subsets of size at most $f(n)$ of $\{1,2, \ldots, n\}$ is $o\left(2^{\varepsilon n}\right)$ whenever $f(n)$ is o(n).

Proof. The number of such subsets is at most

$$
\begin{gathered}
f(n)\binom{n}{f(n)}<f(n) \frac{n^{f(n)}}{f(n)!}<f(n)\left(\frac{n e}{f(n)}\right) f(n) \\
<e^{f(n) \log n-f(n) \log f(n)+f(n)+\log f(n)} \\
=e^{n\left(\frac{f(n)}{n} \log n-\frac{f(n)}{n} \log f(n)+\frac{f(n)}{n}+\frac{\log f(n)}{n}\right)} \\
=e^{n\left(-\frac{f(n)}{n} \log \frac{f(n)}{n}+\frac{f(n)}{n}+\frac{\log f(n)}{n}\right)}
\end{gathered}
$$

and since $f(n)=o(n)$ and $x \log x \rightarrow 0$ as $x \rightarrow 0$, this is $o\left(2^{\varepsilon n}\right)$ for every $\varepsilon>0$.
Lemma 2 The number of binary sequences of length m without any pair of 1's at distance exactly $1,3,5,7, \ldots, 2 k-1$, is at most $2^{\frac{k+1}{2 k}(m+2 k)}$.

Proof. The number of sequences of length $2 k$ without pairs of 1's at an odd distance is exactly $2^{k+1}-1$. Thus the number of sequences of length m without pairs of 1 's at an odd distance less than $2 k$ is at most

$$
\left(2^{k+1}-1\right)^{\left\lceil\frac{m}{2 k}\right\rceil}<\left(2^{k+1}\right)^{\frac{m}{2 k}+1}=2^{\frac{k+1}{2 k}(m+2 k)}
$$

as required.
Lemma 3 Given an arithmetic progression $m-k d, m-(k-1) d, \ldots, m, \ldots, m+k d$, the number of subsets of $\{1,2, \ldots, m-1\}$ having no pairs x, y such that $x+y$ is an element of the progression, is at most

$$
2^{\frac{k+1}{2 k}(m+d(2 k+1))}
$$

Proof. Write the elements of $\{1,2, \ldots, m-1\}$ in the following d sequences;

$$
\begin{gathered}
A_{1}=1, m-1,1+d, m-1-d, 1+2 d, m-1-2 d, \ldots, \\
A_{2}=2, m-2,2+d, m-2-d, 2+2 d, m-2-2 d, \ldots \\
\vdots \\
A_{d}=\{d, m-d, 2 d, m-2 d, 3 d, m-3 d, \ldots\}
\end{gathered}
$$

where each sequence has either $\left\lfloor\frac{m}{d}\right\rfloor$ or $\left\lceil\frac{m}{d}\right\rceil$ elements, and every element of $\{1,2, \ldots, m\}$ occurs in exactly one such sequence. Then, for any set S which has no pair of elements summing to a member of the arithmetic progression, the characteristic sequence of S is such that when it is written as d binary sequences in the order given by A_{1}, \ldots, A_{d}, each of these binary sequences has the property that there are no 1's at distance exactly $1,3,5,7, \ldots, 2 k-1$. The number of ways of choosing such a set S is thus at most the number of ways of choosing d sequences of length $\frac{m}{d}+1$, without 1's at an odd distance less than $2 k$. This is at most

$$
2^{\frac{k+1}{2 k}\left(\frac{m}{d}+1+2 k\right) d}=2^{\frac{k+1}{2 k}(m+d(2 k+1))}
$$

as desired.
We are now in a position to prove the theorem; let $\varepsilon>0$, and fix $k>\frac{1}{\varepsilon}$; partition the set $\{1,2, \ldots, n\}$ into $\left\lceil n^{1 / 2}\right\rceil$ disjoint intervals of size as nearly equal as possible, that is either $\left\lfloor n^{1 / 2}\right\rfloor$ or $\left\lceil n^{1 / 2}\right\rceil$. Then every S with at least $\left\lceil n^{1 / 2}\right\rceil g_{2 k+1}\left(\left\lceil n^{1 / 2}\right\rceil\right)$ elements contains at least $g_{2 k+1}\left(\left\lceil n^{1 / 2}\right\rceil\right)$ elements in one of these intervals. Let \mathcal{S}_{p} be the set of sum-free sets which contain at least $g_{2 k+1}\left(\left\lceil n^{1 / 2}\right)\right.$ in the p th interval, and fewer than $g_{2 k+1}\left(\left\lceil n^{1 / 2}\right\rceil\right)$ in every subsequent interval; that is the p th interval is the last one with which S has a large intersection. Then, for every $S \in \mathcal{S}_{p}, \mathrm{~S}$ contains an arithmetic progression

$$
m-k d, m-(k-1) d, \ldots, m, m+d, \ldots, m+k d
$$

which lies in the p th interval.
How many possible arithmetic progressions of this form are there in the p th interval? Clearly there are at most $\left\lceil n^{1 / 2}\right\rceil$ choices for m, and at most $\left\lceil n^{1 / 2}\right\rceil$ choices for d.

How many possible sum-free sets in $\{1,2, \ldots, n\}$ contain the arithmetic progression

$$
m-k d, m-(k-1) d, \ldots, m, m+d, \ldots, m+k d ?
$$

From Lemma 2 and Lemma 3 we see that the number of such sets is at most

$$
\begin{aligned}
& 2^{\frac{k+1}{2 k}(m+d(2 k+1))} 2^{\left\lceil n^{1 / 2}\right\rceil}\binom{n-p\left\lfloor n^{1 / 2}\right\rfloor}{\left(\left\lceil n^{1 / 2}\right\rceil-p\right) g_{2 k+1}\left(\left\lceil n^{1 / 2}\right\rceil\right)} \\
\leq & 2^{\frac{k+1}{2 k}(m+d(2 k+1))} 2^{\left\lceil n^{1 / 2}\right\rceil}\binom{\left\lceil n^{1 / 2}\right\rceil\left(\left\lceil n^{1 / 2}\right\rceil-p\right)}{\left(\left\lceil n^{1 / 2}\right\rceil-p\right) g_{2 k+1}\left(\left\lceil n^{1 / 2}\right\rceil\right)}
\end{aligned}
$$

Now m is at most n, and d is at most $\frac{\left\lceil n^{1 / 2}\right\rceil}{2 k}<\frac{2 n^{1 / 2}}{2 k+1}$, so the product of the first two factors is at most

$$
2^{\frac{k+1}{2 k}\left(n+2 n^{1 / 2}\right)} 2^{n^{1 / 2}}
$$

and the third factor is at most

$$
\binom{n}{\left\lceil n^{1 / 2}\right\rceil g_{2 k+1}\left(\left\lceil n^{1 / 2}\right\rceil\right)},
$$

which, by Lemma 1 is subexponential, and in particular is $o\left(2^{\frac{n}{4 k}}\right)$.

Summing now over d, m, p we find that the number of sum-free sets with at least $n^{1 / 2} g_{2 k+1}\left(n^{1 / 2}\right)$ elements is less than

$$
n^{2} 2^{\frac{k+1}{2 k}\left(n+2 n^{1 / 2}\right)} 2^{n^{1 / 2}}\binom{n}{\left\lceil n^{1 / 2}\right\rceil g_{2 k+1}\left(\left\lceil n^{1 / 2}\right\rceil\right)},
$$

and, for n sufficiently large, this is less than

$$
2^{\frac{k+2}{2 k} n}=o\left(2^{n(1 / 2+\varepsilon)}\right)
$$

since $k>\frac{1}{\varepsilon}$.

3 The Hausdorff Dimension Of \mathcal{S}

The Hausdorff dimension of a set \mathcal{S} contained in the positive integers is defined in the following manner: for two sets $S, T \in \mathbb{N}$, define the distance $d(S, T)$ by $d(S, T)=2^{-n+1}$ where the sets differ for the first time in the nth position, i. e.

$$
\begin{array}{cc}
i \in S \Longleftrightarrow i \in T & i=1,2, \ldots, n-1 \\
i \in S \cup T, i \notin S \cap T & i=n .
\end{array}
$$

For any set $\mathcal{T} \subseteq 2^{I N}$ define the diameter of \mathcal{T} to be

$$
\operatorname{diam}(\mathcal{T})=\sup _{S, T \in \mathcal{T}} d(S, T)
$$

For real numbers $\alpha \geq 0, \delta>0$, define

$$
\mu_{\delta}^{\alpha}(Y)=\inf _{\mathcal{C}} \sum_{C \in \mathcal{C}}(\operatorname{diam}(C))^{\alpha}
$$

where the infimum is taken over all countable covers \mathcal{C} of \mathcal{T} satisfying $\operatorname{diam}(C) \leq \delta$ for all $C \in \mathcal{C}$ (a cover of \mathcal{T} is a set such that for every $S \in \mathcal{T}$ there exists a set $C \in \mathcal{C}$ such that $S \in C)$. Define

$$
\mu^{\alpha}(\mathcal{T})=\lim _{\delta \rightarrow 0} \mu_{\delta}^{\alpha}(\mathcal{T})
$$

The Hausdorff dimension of \mathcal{T} is the infimum of those values α for which $\mu^{\alpha^{\prime}}(\mathcal{T})=0$.
As an immediate corollary to Theorem 1 we deduce that the Hausdorff dimension of the set \mathcal{S} of sum-free sets of positive elements is exactly $1 / 2$. Indeed; the dimension is at least $1 / 2$, since the set contains all sets of odd numbers, and this set has Hausdorff dimension $1 / 2$. Further, the dimension is bounded above by

$$
\liminf _{n \rightarrow \infty} \frac{\log _{2} F_{\mathcal{S}}(n)}{n}
$$

and since we have

$$
\lim _{n \rightarrow \infty} \frac{\log _{2} F_{\mathcal{S}}(n)}{n}=\frac{1}{2}
$$

we see that the dimension of \mathcal{S} is exactly $1 / 2$. This proves a conjecture of Cameron [4].

4 Further Problems

Cameron has also conjectured that the number $F_{\mathcal{S}}(n)$ of sum-free sets is $c 2^{n / 2}$; it may be possible to prove this by similar techniques, but some sort of additional constraints may be required. Such a result would also imply that the $1 / 2$-dimensional Hausdorff measure of \mathcal{S} is finite; Cameron and the author both believe that this measure is, in fact 1 , that is to say, that with respect to this measure, almost every sum-free set consists solely of odd numbers. It seems that this may be an easier problem than that of showing that $F_{\mathcal{S}}(n)$ is $c 2^{n / 2}$.

References

[1] N.J. Calkin. On the Hausdorff dimension of the set of sum-free sets of positive integers. Unpublished.
[2] N.J. Calkin. Sum-free Sets and Measure Spaces. PhD thesis, University of Waterloo, 1988.
[3] P.J. Cameron. Cyclic automorphisms of a countable graph and random sumfree sets. Graphs Comb., 1:129-135, 1985.
[4] P.J. Cameron. Portrait of a typical sum-free set. In C. Whitehead, editor, Surveys in Combinatorics 1987, volume 123 of London Mathematical Society Lecture Notes, pages 13-42. Cambridge University Press, 1987.
[5] P.J. Cameron. On the structure of a random sum-free set. Probability Theory and Related Fields, to appear, 1988.
[6] E. Szemeredi. On sets of integers containing no k elements in arithmetic progression. Acta. Arith., 27:199-245, 1975.

