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Abstract

Cameron and Erdös have considered the question: how many sum-free sets are
contained in the first n integers; they have shown that the number of sum-free sets
contained within the integers {n

3 , n
3 + 1, . . . , n} is c.2

n
2 . We prove that the number of

sets contained within {1, 2, . . . , n} is o(2n(1/2+ε)) for every ε > 0.

1 Introduction

A set S is said to be sum-free if the equation x+y = z has no solutions within S. Cameron
[3],[4],[5] has asked many questions regarding sum-free sets; in particular he has conjectured
that the Hausdorff dimension of S, the set of all sum-free sets of positive integers, is equal to
1/2; he further observed that this would follow immediately if the number of sum-free sets
contained in the set {1, 2, . . . , n} is o(2n(1/2+ε)) for every ε > 0. Cameron and Erdös (personal
communication) have shown that the number of sum-free sets contained in {n

3
, n

3
+ 1, . . . , n}

is c.2
n
2 , and Calkin [1],[2] has shown that the Hausdorff dimension of S is at most .599. In

this paper, we show that the number of sum-free sets in {1, 2, . . . , n} is indeed o(2n(1/2+ε))
for every ε > 0, and immediately deduce that the Hausdorff dimension of S is 1/2.

Erös and Granville (personal communication) have independently proven the same result;
their method also uses a theorem due to Szemerédi, in graph theory.

2 The Main Theorem

Theorem 1 For every ε > 0, the number of sum-free sets contained in the set {1, 2, . . . , n}
is o(2n(1/2+ε)).

We shall defer the proof for a moment; first we shall state several results required for the
proof. The first is Szemeredi’s celebrated theorem on arithmetic progressions.
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Theorem 2 (Szemeredi) There exists a function gk(n) such that gk(n) = o(n) and every
subset of size gk(n) from the integers {1, 2, . . . , n} contains an arithmetic progression of
length at least k.

Proof. See Szemeredi [6].

Lemma 1 For every ε > 0, the number of subsets of size at most f(n) of {1, 2, . . . , n} is
o(2εn) whenever f(n) is o(n).

Proof. The number of such subsets is at most

f(n)

(
n

f(n)

)
< f(n)

nf(n)

f(n)!
< f(n)(

ne

f(n)
)f(n)

< ef(n) log n−f(n) log f(n)+f(n)+log f(n)

= en(
f(n)

n
log n− f(n)

n
log f(n)+

f(n)
n

+
log f(n)

n
)

= en(− f(n)
n

log
f(n)

n
+

f(n)
n

+
log f(n)

n
)

and since f(n) = o(n) and x log x → 0 as x → 0, this is o(2εn) for every ε > 0.

Lemma 2 The number of binary sequences of length m without any pair of 1’s at distance
exactly 1,3,5,7,. . . ,2k − 1, is at most 2

k+1
2k

(m+2k).

Proof. The number of sequences of length 2k without pairs of 1’s at an odd distance is
exactly 2k+1 − 1. Thus the number of sequences of length m without pairs of 1’s at an odd
distance less than 2k is at most

(2k+1 − 1)d
m
2k
e < (2k+1)

m
2k

+1 = 2
k+1
2k

(m+2k)

as required.

Lemma 3 Given an arithmetic progression m − kd,m − (k − 1)d, . . . , m, . . . , m + kd, the
number of subsets of {1, 2, . . . ,m− 1} having no pairs x, y such that x + y is an element of
the progression, is at most

2
k+1
2k

(m+d(2k+1))

Proof. Write the elements of {1, 2, . . . ,m− 1} in the following d sequences;

A1 = 1, m− 1, 1 + d,m− 1− d, 1 + 2d,m− 1− 2d, . . . ,

A2 = 2, m− 2, 2 + d,m− 2− d, 2 + 2d,m− 2− 2d, . . .

...

Ad = {d,m− d, 2d,m− 2d, 3d,m− 3d, . . .}
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where each sequence has either bm
d
c or dm

d
e elements, and every element of {1, 2, . . . ,m}

occurs in exactly one such sequence. Then, for any set S which has no pair of elements
summing to a member of the arithmetic progression, the characteristic sequence of S is such
that when it is written as d binary sequences in the order given by A1, . . . , Ad, each of these
binary sequences has the property that there are no 1’s at distance exactly 1,3,5,7,. . . ,2k−1.
The number of ways of choosing such a set S is thus at most the number of ways of choosing
d sequences of length m

d
+ 1, without 1’s at an odd distance less than 2k. This is at most

2
k+1
2k

(m
d

+1+2k)d = 2
k+1
2k

(m+d(2k+1))

as desired.
We are now in a position to prove the theorem; let ε > 0, and fix k > 1

ε
; partition

the set {1, 2, . . . , n} into dn1/2e disjoint intervals of size as nearly equal as possible, that is
either bn1/2c or dn1/2e. Then every S with at least dn1/2eg2k+1(dn1/2e) elements contains
at least g2k+1(dn1/2e) elements in one of these intervals. Let Sp be the set of sum-free
sets which contain at least g2k+1(dn1/2) in the pth interval, and fewer than g2k+1(dn1/2e) in
every subsequent interval; that is the pth interval is the last one with which S has a large
intersection. Then, for every S ∈ Sp, S contains an arithmetic progression

m− kd,m− (k − 1)d, . . . , m,m + d, . . . , m + kd

which lies in the pth interval.
How many possible arithmetic progressions of this form are there in the pth interval?

Clearly there are at most dn1/2e choices for m, and at most dn1/2e choices for d.
How many possible sum-free sets in {1, 2, . . . , n} contain the arithmetic progression

m− kd,m− (k − 1)d, . . . , m,m + d, . . . , m + kd?

From Lemma 2 and Lemma 3 we see that the number of such sets is at most

2
k+1
2k

(m+d(2k+1))2dn
1/2e

(
n− pbn1/2c

(dn1/2e − p)g2k+1(dn1/2e)

)

≤ 2
k+1
2k

(m+d(2k+1))2dn
1/2e

(
dn1/2e(dn1/2e − p)

(dn1/2e − p)g2k+1(dn1/2e)

)

Now m is at most n, and d is at most dn1/2e
2k

< 2n1/2

2k+1
, so the product of the first two factors

is at most
2

k+1
2k

(n+2n1/2)2n1/2

and the third factor is at most (
n

dn1/2eg2k+1(dn1/2e)

)
,

which, by Lemma 1 is subexponential, and in particular is o(2
n
4k ).
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Summing now over d,m, p we find that the number of sum-free sets with at least
n1/2g2k+1(n

1/2) elements is less than

n22
k+1
2k

(n+2n1/2)2n1/2

(
n

dn1/2eg2k+1(dn1/2e)

)
,

and, for n sufficiently large, this is less than

2
k+2
2k

n = o(2n(1/2+ε))

since k > 1
ε
.

3 The Hausdorff Dimension Of S
The Hausdorff dimension of a set S contained in the positive integers is defined in the
following manner: for two sets S, T ∈ IN , define the distance d(S, T ) by d(S, T ) = 2−n+1

where the sets differ for the first time in the nth position, i. e.

i ∈ S ⇐⇒ i ∈ T i = 1, 2, . . . , n− 1
i ∈ S ∪ T, i 6∈ S ∩ T i = n.

For any set T ⊆ 2IN define the diameter of T to be

diam(T ) = sup
S,T∈T

d(S, T ).

For real numbers α ≥ 0, δ > 0, define

µα
δ (Y ) = inf

C

∑
C∈C

(diam(C))α

where the infimum is taken over all countable covers C of T satisfying diam(C) ≤ δ for all
C ∈ C (a cover of T is a set such that for every S ∈ T there exists a set C ∈ C such that
S ∈ C). Define

µα(T ) = lim
δ→0

µα
δ (T ).

The Hausdorff dimension of T is the infimum of those values α for which µα′
(T ) = 0.

As an immediate corollary to Theorem 1 we deduce that the Hausdorff dimension of the
set S of sum-free sets of positive elements is exactly 1/2. Indeed; the dimension is at least
1/2, since the set contains all sets of odd numbers, and this set has Hausdorff dimension
1/2. Further, the dimension is bounded above by

lim inf
n→∞

log2 FS(n)

n

and since we have

lim
n→∞

log2 FS(n)

n
=

1

2
we see that the dimension of S is exactly 1/2. This proves a conjecture of Cameron [4].
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4 Further Problems

Cameron has also conjectured that the number FS(n) of sum-free sets is c2n/2; it may be
possible to prove this by similar techniques, but some sort of additional constraints may be
required. Such a result would also imply that the 1/2-dimensional Hausdorff measure of S
is finite; Cameron and the author both believe that this measure is, in fact 1, that is to say,
that with respect to this measure, almost every sum-free set consists solely of odd numbers.
It seems that this may be an easier problem than that of showing that FS(n) is c2n/2.
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