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Abstract

Cameron and Erdos have considered the question: how many sum-free sets are
contained in the first n integers; they have shown that the number of sum-free sets
contained within the integers {5, 5 +1,...,n} is ¢.2%. We prove that the number of
sets contained within {1,2,...,n} is 0o(2(}/2+9) for every > 0.

1 Introduction

A set S is said to be sum-free if the equation x +y = z has no solutions within S. Cameron
[3],[4],[5] has asked many questions regarding sum-free sets; in particular he has conjectured
that the Hausdorff dimension of S, the set of all sum-free sets of positive integers, is equal to
1/2; he further observed that this would follow immediately if the number of sum-free sets
contained in the set {1,2,...,n} is 0(2"(}/2+9) for every ¢ > 0. Cameron and Erdés (personal
communication) have shown that the number of sum-free sets contained in {3, % +1,...,n}
is ¢.22, and Calkin [1],[2] has shown that the Hausdorff dimension of S is at most .599. In
this paper, we show that the number of sum-free sets in {1,2,...,n} is indeed o(2"(}/2+2))
for every € > 0, and immediately deduce that the Hausdorff dimension of S is 1/2.

Eros and Granville (personal communication) have independently proven the same result;
their method also uses a theorem due to Szemerédi, in graph theory.

2 The Main Theorem

Theorem 1 For every € > 0, the number of sum-free sets contained in the set {1,2,...,n}
is 0(2n(1/2+5))‘

We shall defer the proof for a moment; first we shall state several results required for the
proof. The first is Szemeredi’s celebrated theorem on arithmetic progressions.



Theorem 2 (Szemeredi) There exists a function gi(n) such that gy(n) = o(n) and every
subset of size gip(n) from the integers {1,2,...,n} contains an arithmetic progression of
length at least k.

Proof. See Szemeredi [6].

Lemma 1 For every € > 0, the number of subsets of size at most f(n) of {1,2,...,n} is
0(2°™) whenever f(n) is o(n).

Proof. The number of such subsets is at most
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and since f(n) = o(n) and zlogx — 0 as x — 0, this is 0(2°") for every £ > 0.

Lemma 2 The number of binary sequences of length m without any pair of 1’s at distance
eﬂf(lctly 1;3;57 7;- .. ;2k - 1, 18 at most 2%(m+2k)

Proof. The number of sequences of length 2k without pairs of 1’s at an odd distance is
exactly 2F*! — 1. Thus the number of sequences of length m without pairs of 1’s at an odd
distance less than 2k is at most

(2k+1 . 1)[%1 < (2k+1)%+1 _ 2%(m+2k)
as required.

Lemma 3 Given an arithmetic progression m — kd,m — (k — 1)d,...,m,...,m + kd, the
number of subsets of {1,2,...,m — 1} having no pairs x,y such that x + vy is an element of

the progression, is at most
9“5t (m+d(2k+1))

Proof. Write the elements of {1,2,...,m — 1} in the following d sequences;
Ai=1m—-114dm—-1—-d,1+2d,m—1-—2d,...,

Ay =2m—22+dm—2—d,2+2d,m—2—2d,...

Ay =A{d,m—d,2d,m — 2d,3d,m — 3d, ...}
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where each sequence has either || or [%] elements, and every element of {1,2,...,m}
occurs in exactly one such sequence. Then, for any set S which has no pair of elements
summing to a member of the arithmetic progression, the characteristic sequence of S is such
that when it is written as d binary sequences in the order given by Ay, ..., Ay, each of these
binary sequences has the property that there are no 1’s at distance exactly 1,3,5,7,... .2k —1.
The number of ways of choosing such a set S is thus at most the number of ways of choosing

d sequences of length 7 + 1, without 1’s at an odd distance less than 2k. This is at most

oS (G+142k)d _ o5 (m+d(2k+1))
as desired.
We are now in a position to prove the theorem; let ¢ > 0, and fix £ > % partition
the set {1,2,...,n} into [n'/?] disjoint intervals of size as nearly equal as possible, that is

either |n'/2] or [n'/2]. Then every S with at least [n'/?]gor,1([n'/?]) elements contains
at least gogy1([n'/?]) elements in one of these intervals. Let S, be the set of sum-free
sets which contain at least gopy1([n'/?) in the pth interval, and fewer than gopyq([n'/?]) in
every subsequent interval; that is the pth interval is the last one with which S has a large
intersection. Then, for every S € §,, S contains an arithmetic progression

m—kd,m—(k—1)d,.... mm+d,...,m+ kd

which lies in the pth interval.

How many possible arithmetic progressions of this form are there in the pth interval?
Clearly there are at most [n'/?] choices for m, and at most [n'/2] choices for d.

How many possible sum-free sets in {1,2,...,n} contain the arithmetic progression

m—kd,m—(k—1d,... mm+d,...,m+ kd?

From Lemma 2 and Lemma 3 we see that the number of such sets is at most
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Now m is at most n, and d is at most [”21:1 < gzlﬁ, so the product of the first two factors
is at most
2%(,14_2”1/2)2”1/2

and the third factor is at most

((”1/21921:1 (fn'/2] )) 7

which, by Lemma 1 is subexponential, and in particular is O(Qﬁ).
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Summing now over d, m,p we find that the number of sum-free sets with at least
n'/2ga.1(n'/?) elements is less than

20 EEL (n42nl/2)onl/2 n >
n°2 2k 2 )
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and, for n sufficiently large, this is less than

k42
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since k > %

3 The Hausdorff Dimension Of S

The Hausdorff dimension of a set S contained in the positive integers is defined in the
following manner: for two sets S, T € IN, define the distance d(S,T) by d(S,T) = 27!
where the sets differ for the first time in the nth position, i. e.

1€S<=1e€T 1=12,....n—1
e SUT,igSNT 1 =n.

For any set 7 C 9V define the diameter of 7 to be

diam(T) = SS’.}}ET d(s,T).

For real numbers a > 0, 6 > 0, define

pg(Y) = inf Y (diam(C))
cec
where the infimum is taken over all countable covers C of 7 satisfying diam(C) < § for all
C € C (a cover of T is a set such that for every S € 7 there exists a set C' € C such that
S € C). Define

i (T) = lim 4§ (7).

The Hausdorff dimension of 7 is the infimum of those values a for which u®'(7°) = 0.

As an immediate corollary to Theorem 1 we deduce that the Hausdorff dimension of the
set S of sum-free sets of positive elements is exactly 1/2. Indeed; the dimension is at least
1/2, since the set contains all sets of odd numbers, and this set has Hausdorff dimension
1/2. Further, the dimension is bounded above by

lim inf 710(%2 Fs(n)

n—oo n

and since we have
. logy Fs(n) 1
lim ——=—*2—~ =

n—00 n 2
we see that the dimension of S is exactly 1/2. This proves a conjecture of Cameron [4].
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4 Further Problems

Cameron has also conjectured that the number Fs(n) of sum-free sets is ¢2™?; it may be
possible to prove this by similar techniques, but some sort of additional constraints may be
required. Such a result would also imply that the 1/2-dimensional Hausdorff measure of S
is finite; Cameron and the author both believe that this measure is, in fact 1, that is to say,
that with respect to this measure, almost every sum-free set consists solely of odd numbers.

It seems that this may be an easier problem than that of showing that Fs(n) is c2m2,
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