Homework 9: Quiz Nov. 18

1. Let X_1, X_2, \ldots, X_n be i.i.d. random variables with common momentgenerating function M(t). Let $Z_n = \frac{\sqrt{n}(\overline{X_n} - \mu)}{\sigma}$. Prove $Z_n \xrightarrow{d} Z$, where Z is standard normal.

Please do this problem neatly, and hand it in for 4 points out of 10. To repeat, this is a take-home question. I expect you to look the proof up in a textbook, but I want to be convinced that you have gone through the details yourself. Proofs in books always omit details. I want you to fill them in. If you are comfortable with complex variables, do the problem with characteristic functions instead of moment-generating functions.

- 2. Let X_1, X_2, \ldots, X_n be a sequence of random variables and let a be a real constant. Using the definitions, show
 - (a) $X_n \stackrel{a.s.}{\to} X \Rightarrow aX_n \stackrel{a.s.}{\to} aX$
 - (b) $X_n \xrightarrow{P} X \Rightarrow aX_n \xrightarrow{P} aX$
 - (c) $X_n \xrightarrow{d} X \Rightarrow aX_n \xrightarrow{d} aX$

You may use facts about limits of real sequences without proof.

- 3. Let a be a real constant. Using definitions, show $X_n \xrightarrow{d} a \Rightarrow X_n \xrightarrow{P} a$
- 4. Let X_1, X_2, \ldots, X_n be i.i.d. random variables with common distribution function F(x). Define the *empirical distribution function* as $\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \leq x).$
 - (a) Agree or disagree: $\hat{F}_n(x)$ is the proportion of observations less than or equal to x.
 - (b) Find a more convenient expression for $\int x^k d\hat{F}_n(x)$.
 - (c) Agree or disagree: For each fixed x_0 , $\hat{F}_n(x_0)$ is a random variable, so that $\hat{F}_n(x)$ is a random function.
 - (d) For fixed x, can the random variable $\hat{F}_n(x)$ be continuous if F(x) is a step function? What if F(x) is continuous?
 - (e) What are the possible values that can be assumed by $F_n(x)$?
 - (f) For fixed x, what is the *pmf* of the random variable $\hat{F}_n(x)$?

- (g) For fixed x, what is the cdf of $\hat{F}_n(x)$?
- (h) For fixed x, what is the expected value of $\hat{F}_n(x)$? Is $\hat{F}_n(x)$ unbiased for F(x)?
- (i) For fixed x, what is the variance of $\hat{F}_n(x)$?
- (j) Use the last two results to show $\hat{F}_n(x) \xrightarrow{P} F(x)$.
- (k) Use moment-generating functions to show $\hat{F}_n(x) \xrightarrow{P} F(x)$.
- (1) Use the Strong Law of Large Numbers to show $\hat{F}_n(x) \xrightarrow{a.s.} F(x)$.
- (m) Prove that if F(x) is continuous, the almost sure convergence of $\hat{F}_n(x)$ to F(x) is uniform in x. This requires more work than the other parts of this question.
- (n) Give a more convenient expression for the empirical momentgenerating function $\hat{M}_n(t) = \int e^{xt} d\hat{F}_n(x)$.
- (o) What is the relationship between existence of M(t) and existence of $\hat{M}_n(t)$?
- (p) Show $\hat{M}_n(t) \xrightarrow{a.s.} M(t)$. Under what conditions does the convergence *not* hold?