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whereas the univariate tests inflate α. Consequently, when the multivariate and uni-
variate results disagree, our tendency is to trust the multivariate result. In Section 5.5,
we discuss various procedures for ascertaining the contribution of the individual vari-
ables after the multivariate test has rejected the hypothesis.

5.3 TESTS ON � WHEN � IS UNKNOWN

In Section 5.2, we said little about properties of the tests, because the tests discussed
were of slight practical consequence due to the assumption that � is known. We will
be more concerned with test properties in Sections 5.3 and 5.4, first in the one-sample
case and then in the two-sample case. The reader may wonder why we include one-
sample tests, since we seldom, if ever, have need of a test for H0 : � = �0. However,
we will cover this case for two reasons:

1. Many general principles are more easily illustrated in the one-sample frame-
work than in the two-sample case.

2. Some very useful tests can be cast in the one-sample framework. Two examples
are (1) H0 : �d = 0 used in the paired comparison test covered in Section 5.7
and (2) H0 : C� = 0 used in profile analysis in Section 5.9, in analysis of
repeated measures in Section 6.9, and in growth curves in Section 6.10.

5.3.1 Review of Univariate t-Test for H0: µ = µ0 with σ Unknown

We first review the familiar one-sample t-test in the univariate case, with only one
variable measured on each sampling unit. We assume that a random sample y1,
y2, . . . , yn is available from N (µ, σ 2). We estimate µ by y and σ 2 by s2, where
y and s2 are given by (3.1) and (3.4). To test H0 : µ = µ0 vs. H1 : µ �= µ0, we use

t = y − µ0

s/
√

n
=

√
n(y − µ0)

s
. (5.3)

If H0 is true, t is distributed as tn−1, where n −1 is the degrees of freedom. We reject
H0 if |√n(y − µ0)/s| ≥ tα/2,n−1, where tα/2,n−1 is a critical value from the t-table.

The first expression in (5.3), t = (y − µ0)/(s/
√

n), is the characteristic form of
the t-statistic, which represents a sample standardized distance between y and µ0. In
this form, the hypothesized mean is subtracted from y and the difference is divided
by sy = s/

√
n. Since y1, y2, . . . , yn is a random sample from N (µ, σ 2), the random

variables y and s are independent. We will see an analogous characteristic form for
the T 2-statistic in the multivariate case in Section 5.3.2.

5.3.2 Hotelling’s T2-Test for H0: µ = µ0 with Σ Unknown

We now move to the multivariate case in which p variables are measured on each
sampling unit. We assume that a random sample y1, y2, . . . , yn is available from
Np(�,�), where yi contains the p measurements on the i th sampling unit (subject
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or object). We estimate � by y and � by S, where y and S are given by (3.16), (3.19),
(3.22), (3.27), and (3.29). In order to test H0 : � = �0 versus H1 : � �= �0, we use
an extension of the univariate t-statistic in (5.3). In squared form, the univariate t can
be rewritten as

t2 = n(y − µ0)
2

s2
= n(y − µ0)(s

2)−1(y − µ0). (5.4)

When y − µ0 and s2 are replaced by y − �0 and S, we obtain the test statistic

T 2 = n(y − �0)
′S−1(y − �0). (5.5)

Alternatively, T 2 can be obtained from Z2 in (5.2) by replacing � with S.
The distribution of T 2 was obtained by Hotelling (1931), assuming H0 is true

and sampling is from Np(�,�). The distribution is indexed by two parameters,
the dimension p and the degrees of freedom ν = n − 1. We reject H0 if T 2 >

T 2
α,p,n−1 and accept H0 otherwise. Critical values of the T 2-distribution are found in

Table A.7, taken from Kramer and Jensen (1969a).
Note that the terminology “accept H0” is used for expositional convenience to

describe our decision when we do not reject the hypothesis. Strictly speaking, we do
not accept H0 in the sense of actually believing it is true. If the sample size were
extremely large and we accepted H0, we could be reasonably certain that the true �
is close to the hypothesized value �0. Otherwise, accepting H0 means only that we
have failed to reject H0.

The T 2-statistic can be viewed as the sample standardized distance between the
observed sample mean vector and the hypothetical mean vector. If the sample mean
vector is notably distant from the hypothetical mean vector, we become suspicious
of the hypothetical mean vector and wish to reject H0.

The test statistic is a scalar quantity, since T 2 = n(y − �0)
′S−1(y − �0) is

a quadratic form. As with the χ2-distribution of Z2, the density of T 2 is skewed
because the lower limit is zero and there is no upper limit.

The characteristic form of the T 2-statistic (5.5) is

T 2 = (y − �0)
′
(

S
n

)−1

(y − �0). (5.6)

The characteristic form has two features:

1. S/n is the sample covariance matrix of y and serves as a standardizing matrix
in the distance function.

2. Since y1, y2, . . . , yn are distributed as Np(�,�), it follows that y is Np(�,
1
n �), (n −1)S is W (n −1,�), and y and S are independent (see Section 4.3.2).
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In (5.3), the univariate t-statistic represents the number of standard deviations y
is separated from µ0. In appearance, the T 2-statistic (5.6) is similar, but no such
simple interpretation is possible. If we add a variable, the distance in (5.6) increases.
(By analogy, the hypotenuse of a right triangle is longer than either of the legs.)
Thus we need a test statistic that indicates the significance of the distance from y
to �0, while allowing for the number of dimensions (see comment 3 at the end of
this section about the T 2-table). Since the resulting T 2-statistic cannot be readily
interpreted in terms of the number of standard deviations y is from �0, we do not
have an intuitive feel for its significance as we do with the univariate t . We must
compare the calculated value of T 2 with the table value. In addition, the T 2-table
provides some insights into the behavior of the T 2-distribution. Four of these insights
are noted at the end of this section.

If a test leads to rejection of H0 : � = �0, the question arises as to which variable
or variables contributed most to the rejection. This issue is discussed in Section 5.5
for the two-sample T 2-test of H0 : �1 = �2, and the results there can be easily
adapted to the one-sample test of H0 : � = �0. For confidence intervals on the
individual µ j ’s in �, see Rencher (1998, Section 3.4).

The following are some key properties of the T 2-test:

1. We must have n−1 > p. Otherwise, S is singular and T 2 cannot be computed.

2. In both the one-sample and two-sample cases, the degrees of freedom for the
T 2-statistic will be the same as for the analogous univariate t-test; that is, ν =
n − 1 for one sample and ν = n1 + n2 − 2 for two samples (see Section 5.4.2).

3. The alternative hypothesis is two-sided. Because the space is multidimen-
sional, we do not consider one-sided alternative hypotheses, such as � > �0.
However, even though the alternative hypothesis H1 : � �= �0 is essentially
two-sided, the critical region is one-tailed (we reject H0 for large values of
T 2). This is typical of many multivariate tests.

4. In the univariate case, t2
n−1 = F1,n−1. The statistic T 2 can also be converted to

an F-statistic as follows:

ν − p + 1

νp
T 2

p,ν = Fp,ν−p+1. (5.7)

Note that the dimension p (number of variables) of the T 2-statistic becomes
the first of the two degrees-of-freedom parameters of the F . The number of
degrees of freedom for T 2 is denoted by ν, and the F transformation is given
in terms of a general ν, since other applications of T 2 will have ν different
from n − 1 (see, for example, Sections 5.4.2 and 6.3.2).

Equation (5.7) gives an easy way to find critical values for the T 2-test. However, we
have provided critical values of T 2 in Table A.7 because of the insights they provide
into the behavior of the T 2-distribution in particular and multivariate tests in general.
The following are some insights that can readily be gleaned from the T 2-tables:
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1. The first column of Table A.7 contains squares of t-table values; that is,
T 2
α,1,ν = t2

α/2,ν . (We use t2
α/2 because the univariate test of H0 : µ = µ0 vs.

H1 : µ �= µ0 is two-tailed.) Thus for p = 1, T 2 reduces to t2. This can easily
be seen by comparing (5.5) with (5.4).

2. The last row of each page of Table A.7 contains χ2 critical values, that is,
T 2

p,∞ = χ2
p. Thus as n increases, S approaches �, and

T 2 = n(y − �0)
′S−1(y − �0)

approaches Z2 = n(y − �0)
′�−1(y − �0) in (5.2), which is distributed as χ2

p.

3. The values increase along each row of Table A.7; that is, for a fixed ν, the
critical value T 2

α,p,ν increases with p. It was noted above that in any given
sample, the calculated value of T 2 increases if a variable is added. However,
since the critical value also increases, a variable should not be added unless it
adds a significant amount to T 2.

4. As p increases, larger values of ν are required for the distribution of T 2 to
approach χ2. In the univariate case, t in (5.3) is considered a good approxima-
tion to the standard normal z in (5.1) when ν = n − 1 is at least 30. In the first
column (p = 1) of Table A.7, we see T 2

.05,1,30 = 4.171 and T 2
.05,1,∞ = 3.841,

with a ratio of 4.171/3.841 = 1.086. For p = 5, ν must be 100 to obtain
the same ratio: T 2

.05,5,100/T 2
.05,5,∞ = 1.086. For p = 10, we need ν = 200

to obtain a similar value of the ratio: T 2
.05,10,200/T 2

.05,10,∞ = 1.076. Thus one

must be very cautious in stating that T 2 has an approximate χ2-distribution
for large n. The α level (Type I error rate) could be substantially inflated. For
example, suppose p = 10 and we assume that n = 30 is sufficiently large for
a χ2-approximation to hold. Then we would reject H0 for T 2 ≥ 18.307 with
a target α-level of .05. However, the correct critical value is 34.044, and the
misuse of 18.307 would yield an actual α of P(T 2

10,29 ≥ 18.307) = .314.

Example 5.3.2. In Table 3.3 we have n = 10 observations on p = 3 variables.
Desirable levels for y1 and y2 are 15.0 and 6.0, respectively, and the expected level
of y3 is 2.85. We can, therefore, test the hypothesis

H0 : � =

 15.0

6.0
2.85


 .

In Examples 3.5 and 3.6, y and S were obtained as

y =

 28.1

7.18
3.09


 , S =


 140.54 49.68 1.94

49.68 72.25 3.68
1.94 3.68 .25


 .
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To test H0, we use (5.5):

T 2 = n(y − �0)
′S−1(y − �0)

= 10


 28.1 − 15.0

7.18 − 6.0
3.09 − 2.85




′
 140.54 49.68 1.94

49.68 72.25 3.68
1.94 3.68 .25




−1
 28.1 − 15.0

7.18 − 6.0
3.09 − 2.85




= 24.559.

From Table A.7, we obtain the critical value T 2
.05,3,9 = 16.766. Since the observed

value of T 2 exceeds the critical value, we reject the hypothesis.

5.4 COMPARING TWO MEAN VECTORS

We first review the univariate two-sample t-test and then proceed with the analogous
multivariate test.

5.4.1 Review of Univariate Two-Sample t-Test

In the one-variable case we obtain a random sample y11, y12, . . . , y1n1 from
N (µ1, σ

2
1 ) and a second random sample y21, y22, . . . , y2n2 from N (µ2, σ

2
2 ).

We assume that the two samples are independent and that σ 2
1 = σ 2

2 = σ 2,
say, with σ 2 unknown. [The assumptions of independence and equal variances
are necessary in order for the t-statistic in (5.8) to have a t-distribution.] From
the two samples we calculate y1, y2, SS1 = ∑n1

i=1(y1i − y1)
2 = (n1 − 1)s2

1 ,
SS2 = ∑n2

i=1(y2i − y2)
2 = (n2 − 1)s2

2 , and the pooled variance

s2
pl = SS1 + SS2

n1 + n2 − 2
= (n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
,

where n1 +n2 −2 is the sum of the weights n1 −1 and n2 −1 in the numerator. With
this denominator, s2

pl is an unbiased estimator for the common variance, σ 2, that is,

E(s2
pl) = σ 2.

To test

H0 : µ1 = µ2 vs. H1 : µ1 �= µ2,

we use

t = y1 − y2

spl

√
1

n1
+ 1

n2

, (5.8)
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which has a t-distribution with n1 + n2 − 2 degrees of freedom when H0 is true. We
therefore reject H0 if |t | ≥ tα/2,n1+n2−2.

Note that (5.8) exhibits the characteristic form of a t-statistic. In this form, the
denominator is the sample standard deviation of the numerator; that is,

spl
√

1/n1 + 1/n2

is an estimate of

σy1−y2 = √
var(y1 − y2) =

√
σ 2

1

n1
+ σ 2

2

n2

=
√
σ 2

n1
+ σ 2

n2
= σ

√
1

n1
+ 1

n2
.

5.4.2 Multivariate Two-Sample T2-Test

We now consider the case where p variables are measured on each sampling unit in
two samples. We wish to test

H0 : �1 = �2 vs. H1 : �1 �= �2.

We obtain a random sample y11, y12, . . . , y1n1 from Np(�1,�1) and a second ran-
dom sample y21, y22, . . . , y2n2 from Np(�2,�2). We assume that the two samples
are independent and that �1 = �2 = �, say, with � unknown. These assumptions
are necessary in order for the T 2-statistic in (5.9) to have a T 2-distribution. A test of
H0 : �1 = �2 is given in Section 7.3.2. For an approximate test of H0 : �1 = �2
that can be used when �1 �= �2, see Rencher (1998, Section 3.9).

The sample mean vectors are y1 = ∑n1
i=1 y1i/n1 and y2 = ∑n2

i=1 y2i/n2. Define
W1 and W2 to be the matrices of sums of squares and cross products for the two
samples:

W1 =
n1∑

i=1

(y1i − y1)(y1i − y1)
′ = (n1 − 1)S1,

W2 =
n2∑

i=1

(y2i − y2)(y2i − y2)
′ = (n2 − 1)S2.

Since (n1 −1)S1 is an unbiased estimator of (n1 −1)� and (n2 −1)S2 is an unbiased
estimator of (n2 − 1)�, we can pool them to obtain an unbiased estimator of the
common population covariance matrix, �:

Spl = 1

n1 + n2 − 2
(W1 + W2)
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= 1

n1 + n2 − 2
[(n1 − 1)S1 + (n2 − 1)S2].

Thus E(Spl) = �.
The square of the univariate t-statistic (5.8) can be expressed as

t2 = n1n2

n1 + n2
(y1 − y2)(s

2
pl)

−1(y1 − y2).

This can be generalized to p variables by substituting y1 −y2 for y1 − y2 and Spl for
s2

pl to obtain

T 2 = n1n2

n1 + n2
(y1 − y2)

′S−1
pl (y1 − y2), (5.9)

which is distributed as T 2
p,n1+n2−2 when H0 : �1 = �2 is true. To carry out the

test, we collect the two samples, calculate T 2 by (5.9), and reject H0 if T 2 ≥
T 2
α,p,n1+n2−2. Critical values of T 2 are found in Table A.7. For tables of the power

of the T 2-test (probability of rejecting H0 when it is false) and illustrations of their
use, see Rencher (1998, Section 3.10).

The T 2-statistic (5.9) can be expressed in characteristic form as the standardized
distance between y1 and y2:

T 2 = (y1 − y2)
′
[(

1

n1
+ 1

n2

)
Spl

]−1

(y1 − y2), (5.10)

where (1/n1 + 1/n2)Spl is the sample covariance matrix for y1 − y2 and Spl is
independent of y1 − y2 because of sampling from the multivariate normal. For a
discussion of robustness of T 2 to departures from the assumptions of multivariate
normality and homogeneity of covariance matrices (�1 = �2), see Rencher (1998,
Section 3.7).

Some key properties of the two-sample T 2-test are given in the following list:

1. It is necessary that n1 + n2 − 2 > p for Spl to be nonsingular.

2. The statistic T 2 is, of course, a scalar. The 3p + p(p − 1)/2 quantities in
y1, y2, and Spl have been reduced to a single scale on which T 2 is large if
the sample evidence favors H1 : �1 �= �2 and small if the evidence supports
H0 : �1 = �2; we reject H0 if the standardized distance between y1 and y2 is
large.

3. Since the lower limit of T 2 is zero and there is no upper limit, the density
is skewed. In fact, as noted in (5.11), T 2 is directly related to F , which is a
well-known skewed distribution.

4. For degrees of freedom of T 2 we have n1 + n2 − 2, which is the same as for
the corresponding univariate t-statistic (5.8).
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5. The alternative hypothesis H1 : �1 �= �2 is two sided. The critical region
T 2 > T 2

α is one-tailed, however, as is typical of many multivariate tests.

6. The T 2-statistic can be readily transformed to an F-statistic using (5.7):

n1 + n2 − p − 1

(n1 + n2 − 2)p
T 2 = Fp,n1+n2−p−1, (5.11)

where again the dimension p of the T 2-statistic becomes the first degree-of-
freedom parameter for the F-statistic.

Example 5.4.2. Four psychological tests were given to 32 men and 32 women. The
data are recorded in Table 5.1 (Beall 1945). The variables are

y1 = pictorial inconsistencies y3 = tool recognition

y2 = paper form board y4 = vocabulary

The mean vectors and covariance matrices of the two samples are

y1 =




15.97
15.91
27.19
22.75


 , y2 =




12.34
13.91
16.66
21.94


 ,

S1 =




5.192 4.545 6.522 5.250
4.545 13.18 6.760 6.266
6.522 6.760 28.67 14.47
5.250 6.266 14.47 16.65


 ,

S2 =




9.136 7.549 4.864 4.151
7.549 18.60 10.22 5.446
4.864 10.22 30.04 13.49
4.151 5.446 13.49 28.00


 .

The sample covariance matrices do not appear to indicate a disparity in the popu-
lation covariance matrices. (A significance test to check this assumption is carried
out in Example 7.3.2, and the hypothesis H0 : �1 = �2 is not rejected.) The pooled
covariance matrix is

Spl = 1

32 + 32 − 2
[(32 − 1)S1 + (32 − 1)S2]

=




7.164 6.047 5.693 4.701
6.047 15.89 8.492 5.856
5.693 8.492 29.36 13.98
4.701 5.856 13.98 22.32


 .
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Table 5.1. Four Psychological Test Scores on 32 Males and 32 Females

Males Females

y1 y2 y3 y4 y1 y2 y3 y4

15 17 24 14 13 14 12 21
17 15 32 26 14 12 14 26
15 14 29 23 12 19 21 21
13 12 10 16 12 13 10 16
20 17 26 28 11 20 16 16
15 21 26 21 12 9 14 18
15 13 26 22 10 13 18 24
13 5 22 22 10 8 13 23
14 7 30 17 12 20 19 23
17 15 30 27 11 10 11 27
17 17 26 20 12 18 25 25
17 20 28 24 14 18 13 26
15 15 29 24 14 10 25 28
18 19 32 28 13 16 8 14
18 18 31 27 14 8 13 25
15 14 26 21 13 16 23 28
18 17 33 26 16 21 26 26
10 14 19 17 14 17 14 14
18 21 30 29 16 16 15 23
18 21 34 26 13 16 23 24
13 17 30 24 2 6 16 21
16 16 16 16 14 16 22 26
11 15 25 23 17 17 22 28
16 13 26 16 16 13 16 14
16 13 23 21 15 14 20 26
18 18 34 24 12 10 12 9
16 15 28 27 14 17 24 23
15 16 29 24 13 15 18 20
18 19 32 23 11 16 18 28
18 16 33 23 7 7 19 18
17 20 21 21 12 15 7 28
19 19 30 28 6 5 6 13

By (5.9), we obtain

T 2 = n1n2

n1 + n2
(y1 − y2)

′S−1
pl (y1 − y2) = 97.6015.

From interpolation in Table A.7, we obtain T 2
.01,4,62 = 15.373, and we therefore

reject H0 : �1 = �2. See Example 5.5 for a discussion of which variables contribute
most to separation of the two groups.
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