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whereas the univariate tests inflate . Consequently, when the multivariate and uni-
variate results disagree, our tendency is to trust the multivariate result. In Section 5.5,
we discuss various procedures for ascertaining the contribution of the individual vari-
ables after the multivariate test has rejected the hypothesis. O

5.3 TESTS ON p WHEN 3 IS UNKNOWN

In Section 5.2, we said little about properties of the tests, because the tests discussed
were of slight practical consequence due to the assumption that 3, is known. We will
be more concerned with test properties in Sections 5.3 and 5.4, first in the one-sample
case and then in the two-sample case. The reader may wonder why we include one-
sample tests, since we seldom, if ever, have need of a test for Hy: p = po. However,
we will cover this case for two reasons:

1. Many general principles are more easily illustrated in the one-sample frame-
work than in the two-sample case.

2. Some very useful tests can be cast in the one-sample framework. Two examples
are (1) Hy: mg = 0 used in the paired comparison test covered in Section 5.7
and (2) Hy: Cp = 0 used in profile analysis in Section 5.9, in analysis of
repeated measures in Section 6.9, and in growth curves in Section 6.10.

5.3.1 Review of Univariate ¢-Test for Hy: ;& = 1o with 0 Unknown

We first review the familiar one-sample #-test in the univariate case, with only one
variable measured on each sampling unit. We assume that a random sample yi,
Y2, ..., yn is available from N (i, 02). We estimate p by ¥ and o2 by s2, where
y and s? are given by (3.1) and (3.4). To test Hy: . = po vs. Hy: (0 # [Lo, We use

Y=t _ VG~ po)
os/n s '

If Hy is true, ¢ is distributed as f,_1, where n — 1 is the degrees of freedom. We reject
Hy if |/n(y — o) /s| = ta/2.n—1, Where 1o /2 o1 is a critical value from the z-table.

The first expression in (5.3), t = (3 — wo)/(s/+/n), is the characteristic form of
the ¢-statistic, which represents a sample standardized distance between y and 0. In
this form, the hypothesized mean is subtracted from y and the difference is divided
by sy = s/+/n. Since y1, y2, ... , ¥, is arandom sample from N (u, o2), the random
variables y and s are independent. We will see an analogous characteristic form for
the T2-statistic in the multivariate case in Section 5.3.2.

(5.3)

5.3.2 Hotelling’s T2-Test for Hy: j1 = p19 with ¥ Unknown

We now move to the multivariate case in which p variables are measured on each
sampling unit. We assume that a random sample yi, y2, ... , Yy, is available from
Np(p, %), where y; contains the p measurements on the ith sampling unit (subject
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or object). We estimate g by y and 3 by S, where y and S are given by (3.16), (3.19),
(3.22), (3.27), and (3.29). In order to test Hy: p = po versus Hy: p # po, we use
an extension of the univariate z-statistic in (5.3). In squared form, the univariate ¢ can
be rewritten as

- 2
P = OB 5 o - o) (5.4)

When ¥ — o and s are replaced by y — mo and S, we obtain the test statistic
T? =n@ — po)'S™' G — mo)- (5.5)

Alternatively, 77 can be obtained from Z? in (5.2) by replacing % with S.

The distribution of T2 was obtained by Hotelling (1931), assuming Hy is true
and sampling is from N,(m, ). The distribution is indexed by two parameters,
the dimension p and the degrees of freedom v = n — 1. We reject Hy if 7% >
Taz’ -1 and accept Hy otherwise. Critical values of the T2-distribution are found in
Table A.7, taken from Kramer and Jensen (1969a).

Note that the terminology “accept Hp” is used for expositional convenience to
describe our decision when we do not reject the hypothesis. Strictly speaking, we do
not accept Hy in the sense of actually believing it is true. If the sample size were
extremely large and we accepted Hy, we could be reasonably certain that the true p
is close to the hypothesized value p. Otherwise, accepting Hy means only that we
have failed to reject Hp.

The T-statistic can be viewed as the sample standardized distance between the
observed sample mean vector and the hypothetical mean vector. If the sample mean
vector is notably distant from the hypothetical mean vector, we become suspicious
of the hypothetical mean vector and wish to reject Hy.

The test statistic is a scalar quantity, since 72 = n(y — mo)'S™ (¥ — mo) is
a quadratic form. As with the Xz—distribution of Z2, the density of T? is skewed
because the lower limit is zero and there is no upper limit.

The characteristic form of the T2-statistic (5.5) is

_ S\ ! _
T? = (F — mo) (;) F — po)- (5.6)
The characteristic form has two features:

1. S/n is the sample covariance matrix of y and serves as a standardizing matrix
in the distance function.

2. Since yi, y2, ...,y are distributed as N, (p, Y), it follows that y is Np(p,
%2), (n—1Sis W(n—1, %), andy and S are independent (see Section 4.3.2).
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In (5.3), the univariate 7-statistic represents the number of standard deviations y
is separated from j0. In appearance, the T2-statistic (5.6) is similar, but no such
simple interpretation is possible. If we add a variable, the distance in (5.6) increases.
(By analogy, the hypotenuse of a right triangle is longer than either of the legs.)
Thus we need a test statistic that indicates the significance of the distance from y
to po, while allowing for the number of dimensions (see comment 3 at the end of
this section about the 72-table). Since the resulting T2-statistic cannot be readily
interpreted in terms of the number of standard deviations ¥y is from po, we do not
have an intuitive feel for its significance as we do with the univariate . We must
compare the calculated value of T2 with the table value. In addition, the T2-table
provides some insights into the behavior of the T'-distribution. Four of these insights
are noted at the end of this section.

If a test leads to rejection of Hy: p = mo, the question arises as to which variable
or variables contributed most to the rejection. This issue is discussed in Section 5.5
for the two-sample T2-test of Hy: M1 = M2, and the results there can be easily
adapted to the one-sample test of Hy: o = pyo. For confidence intervals on the
individual ;s in p, see Rencher (1998, Section 3.4).

The following are some key properties of the T2-test:

1. We musthave n—1 > p. Otherwise, S is singular and 72 cannot be computed.

2. In both the one-sample and two-sample cases, the degrees of freedom for the
T2-statistic will be the same as for the analogous univariate ¢-test; that is, v =
n — 1 for one sample and v = n| + ny — 2 for two samples (see Section 5.4.2).

3. The alternative hypothesis is two-sided. Because the space is multidimen-
sional, we do not consider one-sided alternative hypotheses, such as p > .
However, even though the alternative hypothesis Hy: . # pyo is essentially
two-sided, the critical region is one-tailed (we reject Hy for large values of
T?). This is typical of many multivariate tests.

4. In the univariate case, t;%—l = Fi ,—1. The statistic T? can also be converted to
an F-statistic as follows:

v — 1
#T,ﬁv = Fpumpii. (5.7)
Note that the dimension p (number of variables) of the T2-statistic becomes
the first of the two degrees-of-freedom parameters of the F'. The number of
degrees of freedom for T2 is denoted by v, and the F transformation is given
in terms of a general v, since other applications of 72 will have v different
from n — 1 (see, for example, Sections 5.4.2 and 6.3.2).

Equation (5.7) gives an easy way to find critical values for the T'2-test. However, we
have provided critical values of T2 in Table A.7 because of the insights they provide
into the behavior of the T'2-distribution in particular and multivariate tests in general.
The following are some insights that can readily be gleaned from the 7-tables:
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1. The first column of Table A.7 contains squares of z-table values; that is,

Til’v = t£/2’v. (We use t§/2 because the univariate test of Hy: & = o Vs.

Hi: ju # o is two-tailed.) Thus for p = 1, T2 reduces to 2. This can easily
be seen by comparing (5.5) with (5.4).

2. The last row of each page of Table A.7 contains X2 critical values, that is,
ng, o= X;- Thus as n increases, S approaches 3, and

T? = n(¥ — o)'S™' (¥ — o)

approaches Z> = n(y — mo)' 2~ (¥ — mo) in (5.2), which is distributed as X§~
3. The values increase along each row of Table A.7; that is, for a fixed v, the
critical value Toi p,v increases with p. It was noted above that in any given
sample, the calculated value of T2 increases if a variable is added. However,
since the critical value also increases, a variable should not be added unless it

adds a significant amount to T2.

4. As p increases, larger values of v are required for the distribution of 72 to
approach 2. In the univariate case, 7 in (5.3) is considered a good approxima-
tion to the standard normal z in (5.1) when v = n — 1 is at least 30. In the first
column (p = 1) of Table A.7, we see T | 50 =4.171 and T | . = 3.841,
with a ratio of 4.171/3.841 = 1.086. For p = 5, v must be 100 to obtain
the same ratio: T.(2JS,5,100/T.%5,5,<>0 = 1.086. For p = 10, we need v = 200

to obtain a similar value of the ratio: T.(2)5,10,2()O / T.(2)5,10, s = 1.076. Thus one

must be very cautious in stating that 72 has an approximate x >-distribution
for large n. The « level (Type I error rate) could be substantially inflated. For
example, suppose p = 10 and we assume that n = 30 is sufficiently large for
a x2-approximation to hold. Then we would reject Hy for T2 > 18.307 with
a target a-level of .05. However, the correct critical value is 34.044, and the
misuse of 18.307 would yield an actual « of P(T120,29 > 18.307) = .314.

Example 5.3.2. In Table 3.3 we have n = 10 observations on p = 3 variables.
Desirable levels for y; and y; are 15.0 and 6.0, respectively, and the expected level
of y3 is 2.85. We can, therefore, test the hypothesis

15.0
Hy: p= 6.0
2.85

In Examples 3.5 and 3.6,y and S were obtained as
28.1 140.54 49.68 1.94

y=\| 718 |, S= 49.68 72.25 3.68
3.09 1.94 3.68 .25
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To test Hy, we use (5.5):

T? = n(y — mo)'S™ (¥ — mo)

/ -1

281 — 15.0 140.54 49.68 1.94 281 — 150
=10| 7.18 — 6.0 49.68 72.25 3.68 7.18 — 6.0

3.09 — 285 1.94 368 .25 3.09 — 285
= 24.559.

From Table A.7, we obtain the critical value T.%5,3,9 = 16.766. Since the observed
value of T2 exceeds the critical value, we reject the hypothesis. Il
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We first review the univariate two-sample 7-test and then proceed with the analogous
multivariate test.

5.4.1 Review of Univariate Two-Sample #-Test

In the one-variable case we obtain a random sample yii, yi2,..., Y1, from
N(,ul,crlz) and a second random sample y21, y22,..., Y2, from N(,uz,azz).
We assume that the two samples are independent and that 012 = 022 = o2,

say, with o2 unknown. [The assumptions of independence and equal variances
are necessary in order for the z-statistic in (5.8) to have a r-distribution.] From
the two samples we calculate y;, y,, SS; = Z?;l(yli —y)? = (n — l)slz,
SS, = Z?i1(y2i -3, = (ny — l)sg, and the pooled variance

2 SSi+8S;  (n1—Dsi+(n2—1)sj

spl_n1+n2—2 ny+ny—2

’

where n1 +ny — 2 is the sum of the weights n; — 1 and ny — 1 in the numerator. With
this denominator, s2 is an unbiased estimator for the common variance, o2, that is,

pl
E(sgl) =o2
To test
Ho: py =p2 vs. Hi:py # po,
we use
Y1 — )2
t= ——-= 5.8
: : (5.8)
sp] - + -
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which has a 7-distribution with n| + n, — 2 degrees of freedom when Hj is true. We
therefore reject Ho if [t]| > t4/2,n 41,2

Note that (5.8) exhibits the characteristic form of a t-statistic. In this form, the
denominator is the sample standard deviation of the numerator; that is,

spiy/ 1/ny +1/n3

is an estimate of

e _ [0f , %
oy, -y, =/ var(y; — yy) = n_l n—z

o2 o2 1 1

ni np ni np

5.4.2 Multivariate Two-Sample T2-Test

We now consider the case where p variables are measured on each sampling unit in
two samples. We wish to test

Hyo: py=p2 vs. Hi:p # po.

We obtain a random sample y11, y12, ... , Yin, from Np(p, Y1) and a second ran-
dom sample y»1, ¥22, ... , Yan, from N, (M2, 3,). We assume that the two samples
are independent and that 3 = X, = 3, say, with 3 unknown. These assumptions
are necessary in order for the T2-statistic in (5.9) to have a T2-distribution. A test of
Hy: 3| = 3, is given in Section 7.3.2. For an approximate test of Hyp: p; = pa
that can be used when X # X, see Rencher (1998, Section 3.9).

The sample mean vectors are y; = Y ., y1;/n1 and ¥, = Y 2, y2i/n2. Define
Wi and W3 to be the matrices of sums of squares and cross products for the two
samples:

ni
Wi=> (i — ¥ —¥) = (m — DSy,
i=1

no

W = Z(Yy —¥) (2 —¥) = (2 — DSs.
i=1

Since (n1 — 1)S; is an unbiased estimator of (n; — 1) and (1 — 1)S; is an unbiased
estimator of (n, — 1), we can pool them to obtain an unbiased estimator of the
common population covariance matrix,

1
Spj=——-(W w
ol n1+n2—2( 1+ W)
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=, 2l = DS+ (2 = DSy

Thus E(Sp1) = X.
The square of the univariate 7-statistic (5.8) can be expressed as

2 niny

— _ 28 —1,— —
- = — — )
. 01 =265 01 —¥2)

This can be generalized to p variables by substituting y, —y, for y; —y, and Sy for
sgl to obtain

niny  _ — —1 — —
T = G = VS 1 - o), (5.9)

which is distributed as Tlgnl 4ry—2 when Hp: m1 = mo is true. To carry out the

test, we collect the two samples, calculate T2 by (5.9), and reject Hy if T? >

Ta% Py tny—2" Critical values of 72 are found in Table A.7. For tables of the power

of the T?-test (probability of rejecting Hy when it is false) and illustrations of their
use, see Rencher (1998, Section 3.10).

The T2-statistic (5.9) can be expressed in characteristic form as the standardized
distance between y; and y,:

1 1 -1
T’ =@, -V [<_ + _> Spl] ¥ — Y2 (5.10)
ny  np

where (1/n; + 1/n2)Sp is the sample covariance matrix for y; — ¥, and Sy is
independent of y; — ¥, because of sampling from the multivariate normal. For a
discussion of robustness of 72 to departures from the assumptions of multivariate
normality and homogeneity of covariance matrices (2] = 27), see Rencher (1998,
Section 3.7).

Some key properties of the two-sample T'-test are given in the following list:

1. Itis necessary that ny + ny — 2 > p for S, to be nonsingular.

2. The statistic T2 is, of course, a scalar. The 3p + p(p — 1)/2 quantities in
Y1, ¥2, and Sy have been reduced to a single scale on which T2 is large if
the sample evidence favors Hy: py # pp and small if the evidence supports
Hy: m1 = po; we reject Hy if the standardized distance between y; and y, is
large.

3. Since the lower limit of 72 is zero and there is no upper limit, the density
is skewed. In fact, as noted in (5.11), T2 is directly related to F, which is a
well-known skewed distribution.

4. For degrees of freedom of T? we have nj + ny — 2, which is the same as for
the corresponding univariate ¢-statistic (5.8).
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5. The alternative hypothesis Hi: m; # mo is two sided. The critical region
T? > Tal2 is one-tailed, however, as is typical of many multivariate tests.

6. The T2-statistic can be readily transformed to an F-statistic using (5.7):

ni+ny—p-—1_,
— 7" =F —p—1, 5.11
() —|—n2—2)p p,ni+ny—p—1 ( )

where again the dimension p of the T'2-statistic becomes the first degree-of-
freedom parameter for the F-statistic.

Example 5.4.2. Four psychological tests were given to 32 men and 32 women. The
data are recorded in Table 5.1 (Beall 1945). The variables are

y1 = pictorial inconsistencies y3 = tool recognition

y2 = paper form board y4 = vocabulary

The mean vectors and covariance matrices of the two samples are

15.97 12.34

| 1501 | 1391

Yi=1 2719 | Y271 1666 |
22.75 21.94

5.192 4545 6.522 5.250
4.545 13.18 6.760 6.266

Si1=1 652 6760 28.67 1447 |’
5250 6.266 14.47 16.65
9.136 7.549 4.864 4.151

S, = 7.549 18.60 10.22 5.446

4.864 10.22 30.04 13.49
4.151 5.446 13.49 28.00

The sample covariance matrices do not appear to indicate a disparity in the popu-
lation covariance matrices. (A significance test to check this assumption is carried
out in Example 7.3.2, and the hypothesis Hy: 3| = % is not rejected.) The pooled
covariance matrix is

=—J(B32-1 32—-1
Spi 3532 - 2[( )S1 + ( )S2]
7.164 6.047 5.693 4.701
6.047 15.89 8.492 5.856
5.693 8.492 29.36 13.98
4,701 5.856 1398 22.32
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Table 5.1. Four Psychological Test Scores on 32 Males and 32 Females

Males Females
Vi 2 3 Y4 Vi » V3 Y4
15 17 24 14 13 14 12 21
17 15 32 26 14 12 14 26
15 14 29 23 12 19 21 21
13 12 10 16 12 13 10 16
20 17 26 28 11 20 16 16
15 21 26 21 12 9 14 18
15 13 26 22 10 13 18 24
13 5 22 22 10 8 13 23
14 7 30 17 12 20 19 23
17 15 30 27 11 10 11 27
17 17 26 20 12 18 25 25
17 20 28 24 14 18 13 26
15 15 29 24 14 10 25 28
18 19 32 28 13 16 8 14
18 18 31 27 14 8 13 25
15 14 26 21 13 16 23 28
18 17 33 26 16 21 26 26
10 14 19 17 14 17 14 14
18 21 30 29 16 16 15 23
18 21 34 26 13 16 23 24
13 17 30 24 2 6 16 21
16 16 16 16 14 16 22 26
11 15 25 23 17 17 22 28
16 13 26 16 16 13 16 14
16 13 23 21 15 14 20 26
18 18 34 24 12 10 12 9
16 15 28 27 14 17 24 23
15 16 29 24 13 15 18 20
18 19 32 23 11 16 18 28
18 16 33 23 7 7 19 18
17 20 21 21 12 15 7 28
19 19 30 28 6 5 6 13
By (5.9), we obtain
2= 2§, —5,)'S, F —T,) = 97.6015.
ny+ny
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From interpolation in Table A.7, we obtain T%l 462 = 15.373, and we therefore
reject Hy: pp = mo. See Example 5.5 for a discussion of which variables contribute
most to separation of the two groups.

O
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Thus LR is small when #? is large, and rejection of Hy for LR =< c is equivalent to
rejection of Hy for 2= ti /2 The t-test in (3.2) is therefore a likelihood ratio test
statistic. O

The likelihood ratio method of test construction usually leads to tests that are
relatively powerful and sometimes produces tests with optimum power over a wide
class of alternatives. Many multivariate tests are derived in this fashion.

3.3.3 One-Sample T2-Test

We now consider the multivariate case in which the hypothesis Hy: o = pg is
p-dimensional. In order to test Hy: @ = pq versus Hj: g # py, we assume that
a random sample yj,ya,...,Y, is available from N,(p,2), with 3 unknown. By
analogy with the univariate ¢-statistic in (3.2) and the Z2-statistic in (3.1), we use
the sample mean vector § and the sample covariance matrix S to construct the test
statistic,

T? = n(¥ — pe)'S™'F — mo), (3.14)

which is the standardized distance from y to p,. We show in Section 3.3.7 that this
is the likelihood ratio test statistic.

If Hy is true and if sampling is from N,(, %), then T? in (3.14) has Hotelling’s
(1931) T2-distribution with dimension p and degrees of freedom n — 1. We reject
Hyif T? = T‘f,p’n_, and accept Hj otherwise. We use the terminology “accept Hy”
for expositional convenience; it means only that we have failed to reject Hy. Critical
values Taz,p,n_l of the T2-distribution are given in Table B.1 in Appendix B (Kramer
and Jensen 1969a). For an analysis of patterns in the T2-table and the insights
that these patterns provide about the T2-test and multivariate testing in general, see
Rencher (1995, Section 5.3.2).

For p = 1, the T?2-statistic in (3.14) reduces to the square of the univariate ¢ in
(3.2):

n(y — po)? _
52 -

2.

T? = n(y — po)(sH) 7' — po) =
Another link between T2 and the univariate ¢ is that in cases where there is an
analogous z-test, the degrees of freedom for the T2-test will be the same as for the
univariate z-test. Thus the one-sample T2-test has n — 1 degrees of freedom, and
the two-sample T?-test (to be defined in Section 3.5.2) has n; + ny — 2 degrees of
freedom.
To avoid inverting S, an alternative formula for computing T? in (3.14) can be
obtained using (A.7.10):

_ IS+ nF - pG —po)'l _

T2
IS|

1. (3.15)
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A key assumption in the T2-distribution is the independence of § and S; this
assumption holds when sampling from a multivariate normal population (Theorem
2.3D). Usually y and S are obtained from the same sample, although this is not neces-
sary. As long as S is an unbiased estimator of 3, and is independent of y, the estimator
S could come wholly or partly from another sample. For example, suppose ¥, and S,
arise from a sample of size n; from N,(p,,2) and that a supplementary estimate S, is
available from a sample of size n, from N,(p,, %), where the two distributions have
a common covariance matrix 2, and the two samples are independent. We estimate
3, by the pooled estimator Soi = [(n; — 1)S; + (n, — 1)S,1/(n) + ny — 2), which has
n; + ny — 2 degrees of freedom. Then a T2-statistic could be based on S, S5, or Spi:

ni(y, — “1)’STI(YI — ) is Tzinl—l’

ni(y, — "'I)ISZ_I(yl — Q) is T;?,n;—l’

m@ — w)'Sp' G1 — 1) is Tpp iy
The coefficient of the quadratic form in all three cases is n; because each of
S)/n1,8;/ny, and Sy /n; estimates cov(y,) = 3, /n,. Thus the leading coefficient
in these T2-statistics is the sample size for ¥, and the degrees of freedom is the
denominator of the unbiased estimator of 3,.

3.3.4 Formal Definition of 72 and Relationship to F

The formal definition of a T? random variable is similar to the formal definition of
the ¢ random variable given in (3.3). Let z be distributed as the multivariate normal
N,(0,%) and W be distributed as the Wishart W,(v, ), with z and W independent.
Then the T2 random variable with dimension p and degrees of freedom v is defined

as
-1
T? = z’(ﬂ) z. (3.16)

14

The distribution of Hotelling’s T2 can be derived from this definition.

It is easy to show that the T2-statistic (3.14) satisfies the formal definition (3.16).
Define vV = \/n(¥ — py) and W = (n — 1)S. Then ¥ is N,(0,3) if . = gy, W is
Wy(n—1,2), and Vv and W are independent. Hence 72 = ¥/[W/(n — 1)] ¥ satisfies
(3.16) and can be expressed as

-1
T2=v’( w ) v
n—1

— 1 -1
= [/n(¥ — po)l’ [u} [V — po)l

n—1

= n¥ — po)'S”'F — my),
which is (3.14).
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Table 3.1. Calcium in Soil and Turnip Greens

Observation
Number N y2 y3
1 35 35 2.80
2 35 49 2.70
3 40 30.0 4.38
4 10 2.8 321
5 6 2.7 2.73
6 20 2.8 2.81
7 35 4.6 2.88
8 35 10.9 2.90
9 35 8.0 3.28
10 30 1.6 3.20

Example 3.3.5. Table 3.1 lists observations of three types of calcium measure-

ments in soil and turnip greens (Kramer and Jensen 1969a).

Target values of these three variables are 15.0, 6.0, and 2.85. Using gy =
(15.0,6.0,2.85)' in (3.14) gives Ty2,x = 24.559. We now examine the effect of each

variable on T2 by using (3.19) and (3.20). We first consider the effect of y; as it is

added to T? based on y; and y,. With x = y; we have

_ 28.1
( y ) =| 718 |, (3,”
* 3.089 xy

140.54 49.68

sxg) = | 49.68 7225
o 194 368 25

The value of T2 based ony = (y1, y2)' is

T} = n@ — poy)'S,, G — Hoy)

7.18 — 6.0
= 14.388.

_ 1o 81— 150)'( 14054 49.68
49.68 72.25

second term on the right side of both (3.19) and (3.20):

B =sls, = (14054 49.68 ~' (194
yy 49.68 72.25

s _ ﬁl(y_"’()y) _

3.68

—.007720

' Sx/\/’_2

~ /2501/10

) (

Thus, without y3, T falls from T2, = 24.559to T2 = 14.388, a reduction of 10.171.
To see what factors contribute to this difference, we examine the elements of the

(

28.1 — 15.0

7.18 - 6.0

—.00551
.05467

’
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covariance matrix of y by S,, and the sample mean and hypothesized mean of y by ¥
and p,, respectively. Then the effect of x on T2 is given in the following theorem.

Theorem 3.3C. For the p + 1 variables (y1,¥2,-..,¥pX) = (¥',x), T? can be
expressed as

nlB'F — poy) — G — pol?

2 _ 72
T2, = T2 + 20— (3.19)
2 (ix - tx)2

where T?, is the value of T? based on the y’s and x, Ty2 is the value of 72 based on
the y’s alone, B = Sy_y1 Sxy is the vector of regression coefficients of x with the y’s

[corrected for their means, see (7.26)], R? = s, S 's,,/ s2 is the squared multiple

correlation of x regressed on the y’s [see (7.66)], tx = \/ﬁ(f — Mox)/Sx, and

P o= Bl(y_“'Oy)
i N

Thus ¢, is the ordinary t-statistic for x by itself, and 1, can be interpreted as a
“predicted” value of #, based on the information about X — o, already available in
the y’s. If #, and , are of the same sign, there are three ways in which the contribution
of x can be important: (a) t, substantially larger in absolute value than i, (b) [
substantially larger in absolute value than t,, and (c) R? large. Otherwise, if #, is close
to 7,, so that most of the evidence ¥ provides against the hypothesis is predictable
from ¥, there is little reason to include x. If ¢, and Z, are of opposite signs, their effect
combines to increase T2. Theorem 3.3C also demonstrates that if x were orthogonal
to the y’s (B = 0), the addition of x to T2 would reduce to t;.

Note that (3.19) proves that the addition of a variable can only increase T 2. It may
seem surprising that this increase in T? is inversely related to 1 — R? rather than to
R?; that is, the larger the value of R?, the larger the increase in T?2. Perhaps we can
draw an analogy to simple linear regression, in which a given difference between y
and $ is more important if the squared correlation r? is larger.

The net effect of a variable on T? is given by the second term on the right
side of (3.19) or (3.20). This effect can be either greater or less than what would
be expected from its univariate contribution. It is intuitively obvious that overlap
with other variables can render a variable partially redundant so that its multivariate
contribution is less than its univariate effect, but heretofore it has not been easy to
grasp how the contribution of a variable can be enhanced in the presence of the
others. [For illustrations of such situations, see Flury (1989) and Hamilton (1987).]
In Theorem 3.3C, the breakdown of the effect of each variable makes clear how this
can happen. Note the linearity inherent in the effect of each variable, as manifested
hv the presence of B and R2.



The square of a univariate ¢ has an F-distribution. In the multivariate case, a simple
function of T also has an F-distribution, as shown in the following theorem.

Theorem 3.3B. The T2-statistic with v degrees of freedom can be transformed to
an F-statistic with p and v — p + 1 degrees of freedom:

v—p+1

o T}, = Fpypt1. (3.17)

Proof. An F random variable is defined as the ratio of two independent y? random
variables, each divided by its degrees of freedom. To express (3.16) in this form,
multiply and divide by z'S ~'z to obtain

vz'3 "z
2’3 '2/2'W-1z’
where z is Ny(0,%), W is W,(»,X), and z and W are independent. By Theorem

2.2F, the quadratic form z'3, 'z in the numerator is distributed as X5- It can be
shown (Seber 1984, pp. 30—31; Styan 1989) that the denominator z'S, ~'z/z'W™ !z is
distributed as x2_ p+1 and is independent of 2’3, '2. If each of these two independent
x° random variables is divided by its degrees of freedom, the resulting ratio will have
an F-distribution. Multiplying both sides of (3.18) by the ratio (v — p + 1)/vp, we
obtain

T? = va’'Wlz =

(3.18)

v—p+1T2_ 2’3 " 'z/p
vp @2 '2/2W-z) /(v —p+ 1)
which, by definition, has an F-distribution with p and v — p + 1 degrees of freedom.

a

3.3.5 Effect on T2 of Adding a Variable

The addition of a variable to T2 may either strengthen the evidence against the
hypothesis or weaken it. For example, from Table B.1, we obtain, for 20 degrees of
freedom,

Tos620 — Toss20 = 22.324 — 17.828 = 4.496.

Thus, if a sixth variable is added to the five already present, the critical value is
increased by 4.496. If the new variable does not potentially increase the calculated
T? by that amount, then T2 is less likely to reject Hy. (A test of the significance of
the increase in T? is given in Section 3.11.4.)

Rencher (1993) has given a breakdown of the factors that influence the increase in
T? caused by an additional variable. The term “additional variable” is for convenience.
In some cases, new variables may be available, but typically we are interested in the
effect on T2 of each of the present variables. Let x designate the variable of interest or
additional variable to be added toy = (yy, y2,...,y,)’. We denote the sample mean
and variance of x by X and s2, the vector of sample covariances of x with the y’s by
Sxy, and the hypothesized mean of x by uo,. For consistency, we denote the sample
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¥ — oy 3.089—285

Ix = = = 1.511,
ss/\/n /2501710
-1
R = s___;ysyzy 0 _ 7607,
sx
2 5 (= t)*  (—.0488 — 1.511)?
-1y = = = 10.171.
L= =g 1 — 7607 10.171

Thus the increase in T2 due to x = y; is largely induced by ¢, = 1.511 and the fairly
high squared multiple correlation of y; with y; and y,, R? = .7607. For x = y, and
x = y,, we have

2 2 _ 72
x| & . R T2 -T,

y» | 2009 438 .797 12.198
y1 | —227 3494 282 19.289

For y,, the increase in T2 is due to 7, and R?. For y,, the increase is due almost
entirely to #,.

3.3.6 Properties of the T>-Test

Some important properties of the T2-test of Hy: o = g versus Hy: . # g are as
follows:

1. The T?2-statistic is invariant to transformations of the form z; = Ay; + b,
where A is a nonsingular matrix, that is, Tz2 = Ty2 (see problems 3.9 and 3.37).
Invariance of this type, often referred to as affine invariance (or equivariance),
includes changes in scale, as, for example, from inches to centimeters.

2. The T?-test is the uniformly most powerful invariant test (Anderson 1984,
Section 5.6.1).

3. The T2-test is sensitive to certain departures from normality (see Section 3.7.2).

4. The T2-test is the likelihood ratio test (see Section 3.3.7).

5. The T?-test is the union—intersection test (see Section 3.3.8).

In the univariate case (p = 1), the r-statistic can be adapted to serve for a one-
sided alternative hypothesis such as H;: u > po. The resulting one-tailed ¢-test has
some optimal properties. In the multivariate case, however, the T2-test cannot be
similarly adapted to have optimal properties for a one-sided alternative. For p > 1,
the one-sided alternative H;: p > p, can be defined to mean that u; > py; for all
j = 1,2,..., p. Kariya and Cohen (1992) showed that for this case there is no scale
invariant test statistic with satisfactory properties. The T-test is invariant but cannot
be recommended for obvious reasons—it would reject Hy when we want to accept
it, namely, when some or all y; are considerably less than the corresponding po;.
For additional discussion of the one-sided multivariate problem, see Perlman (1969),
Marden (1982), and Troendle (1996).
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Hence, in the case of Hy: u = p, both the likelihood ratio and union—intersection
approaches lead to the same test.

From (3.32), it is clear that any multiple of a = S~1(§ — p) maximizes t2(a), that
is, maximally separates a’y from a’p,. The linear function z = a'y, with coefficient
vector a = S”I(Y — my), is called the discriminant function. We will discuss the
discriminant function z = a'y further in Sections 3.4.5, 3.55,52,54,55.1,5.7.2a,
and 5.11.1.

34 CONFIDENCE INTERVALS AND TESTS FOR
LINEAR FUNCTIONS OF p

We now consider confidence intervals and tests for various linear combinations of
p, including the individual elements u;. We begin with a confidence region for the
entire mean vector p.

3.4.1 Confidence Region for p

Since n(y — p)'S 1§ — w) is distributed as 72, we can make the probability statement
Pin(y — u)’S“,‘(‘y’ —p)= Taz,p,n—l] = 1 — a, from which a 100(1 — a)% confidence
region for p is given by all vectors p that satisfy

nF—p)'S\F—p) =Ti 1 (3.34)

This hyperellipsoidal region for p is centered at u = y. However, the values of p
that satisfy (3.34) are not easy to visualize except in the case p = 2, where we can
draw an ellipse. For p > 2, we can substitute various values of g into (3.34) to
determine if they are inside the region. But this is equivalent to finding those values
of p, that would not be rejected by the T>-test of Ho: p = o in (3.14). Thus we
are back to the hypothesis test, and (3.34) provides little additional insight into the
possible position of u.

34.2 Confidence Interval for a Single Linear Combination a’u

By (3.28), a 100(1 — a)% confidence interval for a’p is given by

_ a’Sa _ [a'Sa
a'y — ta/2n-1 Vo = ap=ay+ tajan-1y/ — (3.35)

If confidence intervals are desired for several linear combinations, see Sec-
tions 3.4.3 and 3.4.4.

3.4.3 Simultaneous Confidence Intervals for 1; and a’p

Because the confidence region for p in (3.34) is unwieldy, we look for confidence
intervals for p; or for a’p for arbitrary a. The linear combination a’u allows for
contrasts of the form &, — wy or w; — 21, + p3 and also yields each p; by choosing
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— 11 - S11
yr — Ta,p,n—l < py <Y + Ta,p,n—l” '_"1_,

_ 52 - 522
¥, — Ta,,,,,,_l,/ — <m < + Topn-14/ 7 (3.37)

- [s _ [5p
Yp— Ta,p,n—l '%E < pp < Yp + T pn-1 _n_P

However, because (3.36) allows for all possible a'u, the intervals in (3.37) are
ordinarily much wider than necessary to provide anoverall confidence level of 100(1—
@)% for these p intervals. The coefficient T pn—1 18 considerably greater than z, /> n—1
used in (3.35) (except for p = 1). For example, with n = 25 and p = 10, we have
Tos.1024 = 6.380 and tops524 = 2.064. But clearly the use of p intervals of the form
¥t ta J2n-1V Sii /n, j = 1,2,...,p, would be inappropriate because the overall
confidence level for all p intervals would be less than 100(1 — a)%. Some coefficient
between #,/7 ,—1 and Ta pn-1 is needed in order for the p intervals to achieve an
overall confidence level closer to the nominal 100(1 — a)%. We will discuss such a
coefficient in Section 3.4.4.

Note that when p = 1, the vector ¥ has only the single element y, and the intervals
in (3.37) reduce to

_ 52 §2
Y= Torn-14] — S B =Y T Tan1{/
n n

This is the usual univariate confidence interval, since Ty 1 n—1 = fa/2,n-1"

=

Example 3.4.3. We illustrate the computation of simultaneous confidence inter-
vals for the calcium data in Table 3.1. The mean vector and covariance matrix are

28.1 140.54 49.68 1.94
y= (7-18>, S = 49.68 7225 3.68 |.
3.09 194 368 .25

With p = 3 and n = 10, we obtain Tgs39 = V 16.776 = 4.0946 from Table B.1 in
Appendix B. From (3.37), the intervals are as follows:

140.54 A
3, % Tos3.94 /i;—‘, 28.1 % 4.0946,/-—165—, 28.1 + 15.35, (12.75,43.45);

/ [72.2
Vo = Tos539 _S_:_lz_, 7.18 * 4.0946 —T(—)—S-, 7.18 + 11.009, (—3.829,18.189);

- 25
5, % Tosson | 52—3 3.09 + 4.09464/ 1=, 3.09 % 648, (2.442,3.738).
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