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Growth Curves

Matrices in Repeated Measures Tests

When the subject responds to a treatment or stimulus at
successive time periods, the pattern of responses is often referred
to as a growth curve. As in repeated measures experiments,
subjects are usually human or animal.
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Growth Curves

Comparisons via Contrasts
Response curves as polynomials

The usual approach is to approximate the shape of the growth
curve by a polynomial function of time. If the time points are
equally spaced, we can use orthogonal polynomials. This approach
will be described first, followed by a method suitable for unequal
time intervals. Orthogonal polynomials are special contrasts that
are often used in testing for linear, quadratic, cubic, and higher
order trends in quantitative factors.
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Growth Curves

Suppose we administer a drug to some subjects and measure a
certain reaction at 3-min intervals. Let µ1, µ2, µ3, µ4, and µ5,
designate the average responses at 0, 3, 6, 9, and 12 min,
respectively. To test the hypothesis that there are no trends in the
µ1’s, we could test H0 : µ1 = µ2 = µ3 = µ4 = µ5 or H0: Cµ

using the contrast matrix

C =









−2 −1 0 1 2
2 −1 −2 −1 2

−1 2 0 −2 1
1 −4 6 −4 1








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T
2 = n (Cy)′

(

CSC′
)

−1
(Cy)′ ∼ T

2
p−1,n−1
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Growth Curves

The four rows of C are orthogonal polynomials that test for linear,
quadratic, cubic, and quartic trends in the means. As noted in
Section 6.9.2 , any set of orthogonal contrasts in C will give the
same value of T 2 to test H0 : µ1 = µ2 = µ3 = µ4 = µ5.
However, in this case we will be interested in using a subset of the
rows of C to determine the shape of the response curve.
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a sample of n observation vectors y1, y2, . . . , yn , for which we compute y and S.
The usual approach is to approximate the shape of the growth curve by a polyno-
mial function of time. If the time points are equally spaced, we can use orthogonal
polynomials. This approach will be described first, followed by a method suitable
for unequal time intervals.

Orthogonal polynomials are special contrasts that are often used in testing for lin-
ear, quadratic, cubic, and higher order trends in quantitative factors. For a more com-
plete description and derivation see Guttman (1982, pp. 194–207), Morrison (1983,
pp. 182–188), or Rencher (2000, pp. 323–331). Here we give only a heuristic intro-
duction to the use of these contrasts.

Suppose we administer a drug to some subjects and measure a certain reaction at
3-min intervals. Let µ1, µ2, µ3, µ4, and µ5 designate the average responses at 0, 3,
6, 9, and 12 min, respectively. To test the hypothesis that there are no trends in the
µ j ’s, we could test H0 : µ1 = µ2 = · · · = µ5 or H0 : C� = 0 using the contrast
matrix

C =




−2 −1 0 1 2
2 −1 −2 −1 2

−1 2 0 −2 1
1 −4 6 −4 1


 (6.109)

in T 2 = n(Cy)′(CSC′)−1(Cy), as in (6.90). The four rows of C are orthogonal
polynomials that test for linear, quadratic, cubic, and quartic trends in the means. As
noted in Section 6.9.2 , any set of orthogonal contrasts in C will give the same value
of T 2 to test H0 : µ1 = µ2 = · · · = µ5. However, in this case we will be interested
in using a subset of the rows of C to determine the shape of the response curve.

Table A.13 (Kleinbaum, Kupper, and Muller 1988) gives orthogonal polynomials
for p = 3, 4, . . . , 10. The p − 1 entries for each value of p constitute the matrix C.
Some software programs will generate these automatically.

As with all orthogonal contrasts, the rows of C in (6.109) sum to zero and are
mutually orthogonal. It is also apparent that the coefficients in each row increase
and decrease in conformity with the desired pattern. Thus the entries in the first row,
(−2, −1, 0, 1, 2), increase steadily in a straight-line trend. The values in the second
row dip down and back up in a quadratic-type bend. The third-row entries increase,
decrease, then increase in a cubic pattern with two bends. The fourth row bends three
times in a quartic curve.

To further illustrate how the orthogonal polynomials pinpoint trends in the
means when testing H0 : C� = 0, consider the three different patterns for �
depicted in Figure 6.4, where �′

a = (8, 8, 8, 8, 8), �′
b = (20, 16, 12, 8, 4), and

�′
c = (5, 12, 15, 12, 5). Let us denote the rows of C in (6.109) as c′

1, c′
2, c′

3, and c′
4.

It is clear that c′
i �a = 0 for i = 1, 2, 3, 4; that is, when H0 : µ1 = · · · = µ5 is true,

all four comparisons confirm it. If � has the pattern �b, only c′
1�b is nonzero. The

other rows are not sensitive to a linear pattern. We illustrate this for c′
1 and c′

2:

c′
1�b = (−2)(20)+ (−1)(16)+ (0)(12)+ (1)(8)+ (2)(4) = −44,

c′
2�b = 2(20)− 16 − 2(12)− 8 + 2(4) = 0.
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Figure 6.4. Three different patterns for �.

For �c, only c′
2�c is nonzero. For example,

c′
1�c = −2(5)− 12 + 12 + 2(5) = 0,

c′
2�c = 2(5)− 12 − 2(15)− 12 + 2(5) = −19.

Thus each orthogonal polynomial independently detects the type of curvature it is
designed for and ignores other types. Of course real curves generally exhibit a mix-
ture of more than one type of curvature, and in practice more than one orthogonal
polynomial contrast may be significant.

To test hypotheses about the shape of the curve, we therefore use the appropriate
rows of C in (6.109). Suppose we suspected a priori that there would be a combined
linear and quadratic trend. Then we would partition C as follows:

C1 =
( −2 −1 0 1 2

2 −1 −2 −1 2

)
,

C2 =
( −1 2 0 −2 1

1 −4 6 −4 1

)
.

We would test H0 : C1� = 0 by

T 2 = n(C1y)′(C1SC′
1)

−1(C1y),

which is distributed as T 2
2,n−1, where 2 is the number of rows of C1, n is the number

of subjects in the sample, and y and S are the mean vector and covariance matrix for
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the sample. Similarly, H0 : C2� = 0 is tested by

T 2 = n(C2y)′(C2SC′
2)

−1(C2y),

which is T 2
2,n−1. In this case we might expect the first to reject H0 and the second to

accept H0.
If we have no a priori expectations as to the shape of the curve, we could proceed

as follows. Test the overall hypothesis H0 : C� = 0, and if H0 is rejected, use each
of the rows of C separately to test H0 : c′

i � = 0, i = 1, 2, 3, 4. The respective test
statistics are

T 2 = n(Cy)′(CSC′)−1(Cy),

which is T 2
4,n−1, and

ti = c′
i y√

c′
i Sci/n

, i = 1, 2, 3, 4,

each of which is distributed as tn−1 (see Example 6.9.2).
In a case where p is large so that � has a large number of levels, say 10 or more,

we would likely want to stop testing after the first four or five rows of C and test
the remaining rows in one group. However, for larger values of p, most tables of
orthogonal polynomials give only the first few rows and omit those corresponding
to higher degrees of curvature. We can find a matrix whose rows are orthogonal
to the rows of a given matrix as follows. Suppose p = 11 so that C is 10 × 11
and C1 contains the first five orthogonal polynomials. Then a matrix C2, with rows
orthogonal to those of C1, can be obtained by selecting five linearly independent
rows of

B = I − C′
1(C1C′

1)
−1C1, (6.110)

whose rows can easily be shown to be orthogonal to those of C1. The matrix B
is not full rank, and some care must be exercised in choosing linearly independent
rows. However, if an incorrect choice of C2 is made, the computer algorithm should
indicate this as it attempts to invert C2SC′

2 in T 2 = n(C2y)′(C2SC′
2)

−1(C2y).
Alternatively, to check for significant curvature beyond the rows of C1 without

finding C2, we can use the test for additional information in a subset of variables in
Section 5.8. We need not find C2 in order to find the overall T 2, since, as noted in
Section 6.9.2 , any full rank (p − 1) × p matrix C such that Cj = 0 will give the
same value in the overall T 2-test of H0 : C� = 0. We can conveniently use a simple
contrast matrix such as

C =




1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

...

0 0 0 · · · −1


 .
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in

T 2 = n(Cy)′(CSC′)−1(Cy), (6.111)

which is T 2
p−1,n−1. Let p1 be the number of orthogonal polynomials in C1 and p2 be

the number of rows of C2 if it were available; that is p1 + p2 = p − 1. Then the test
statistic for the p1 orthogonal polynomials in C1 is

T 2
1 = n(C1y)′(C1SC′

1)
−1(C1y), (6.112)

which is T 2
p1,n−1. We wish to compare T 2

1 in (6.112) to T 2 in (6.111) to check for
significant curvature beyond the rows of C1. However, the test for additional infor-
mation in a subset of variables in Section 5.8 was for the two-sample case. We can
adapt (5.29) for use with the one-sample case, as follows. The test for significance
of any curvature remaining after that accounted for in C1 is made by comparing

(n − p1 − 1)
T 2 − T 2

1

n − 1 + T 2
1

with the critical value T 2
α,p2,n−p1−1.

We now describe an approach that can be used when the time points are not
equally spaced. It may also be of interest in the equal-time-increment case because
it provides an estimate of the response function.

Suppose we observe the response of the subject at p time points t1, t2, . . . , tp and
that the average response µ at any time point t is a polynomial in t of degree k < p:

µ = β0 + β1t + β2t2 + · · · + βk tk .

This holds for each point tr and the corresponding average response µr . Thus our
hypothesis becomes

H0 :



µ1
µ2
...

µp




=
=

=



β0 + β1t1 + β2t2

1 + · · · + βk tk
1

β0 + β1t2 + β2t2
2 + · · · + βk tk

2
...

β0 + β1tp + β2t2
p + · · · + βk tk

p


 , (6.113)

which can be expressed in matrix notation as

H0 : � = A�, (6.114)

where
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A =




1 t1 t2
1 · · · tk

1

1 t2 t2
2 · · · tk

2
...

...
...

...

1 tp t2
p · · · tk

p


 and � =



β0
β1
...

βk


 .

In practice, it may be useful to transform the tr ’s by subtracting the mean or the
smallest value in order to reduce their size for computational purposes.

The following method of testing H0 is due to Rao (1959, 1973). The model � =
A� is similar to a regression model E(y) = X� (see Section 10.2.1). However,
in this case, we have cov(y) = � rather than σ 2I, as in the standard regression
assumption. In place of the usual regression approach of seeking �̂ to minimize
SSE = (y−X�̂)′(y−X�̂) [see (10.4) and (10.6)], we use a standardized distance as
in (3.80), (y − A�̂)′S−1(y − A�̂). The value of �̂ that minimizes (y − A�̂)′S−1(y −
A�̂) is

�̂ = (A′S−1A)−1A′S−1y (6.115)

[see Rencher (2000, Section 7.8.1)], and H0 : � = A� can be tested by

T 2 = n(y − A�̂)′S−1(y − A�̂), (6.116)

which is distributed as T 2
p−k−1,n−1. The dimension of T 2 is reduced from p to p −

k −1 because k +1 parameters have been estimated in �̂. The T 2-statistic in (6.116)
is usually given in the equivalent form

T 2 = n(y′S−1y − y′S−1A�̂). (6.117)

The mean response at the r th time point,

µr = β0 + β1tr + β2t2
r + · · · + βk tk

r

= (1, tr , t2
r , . . . , tk

r )� = a′
r �,

can be estimated by

µ̂r = a′
r �̂. (6.118)

Simultaneous confidence intervals for all possible a′� are given by

a′�̂ ± Tα√
n

√
a′(A′S−1A)−1a

(
1 + T 2

n − 1

)
, (6.119)

where Tα =
√

T 2
α,k+1,n−1 is from Table A.7 and T 2 is given by (6.116) or (6.117).
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The intervals in (6.119) for a′� include, of course, a′
r � for the p rows of A, that

is, confidence intervals for the p time points. If a′
r �, r = 1, 2, . . . , p, are the only

values of interest, we can shorten the intervals in (6.119) by using a Bonferroni coef-
ficient tα/2p in place of Tα:

a′
r �̂ ± tα/2p√

n

√
a′

r (A′S−1A)−1ar

(
1 + T 2

n − 1

)
, (6.120)

where tα/2p = tα/2p,n−1. Bonferroni critical values tα/2p,ν are given in Table A.8.
See procedures 2 and 3 in Section 5.5 for additional comments on the use of tα/2p

and Tα .

Example 6.10.1. Potthoff and Roy (1964) reported measurements in a dental study
on boys and girls from ages 8 to 14. The data are given in Table 6.16.

To illustrate the methods of this section, we use the data for the boys alone. In
Example 6.10.2 we will compare the growth curves of the boys with those of the
girls. We first test the overall hypothesis H0 : C� = 0, where C contains orthogonal
polynomials for linear, quadratic, and cubic effects:

C =

 −3 −1 1 3

1 −1 −1 1
−1 3 −3 1


 . (6.121)

Table 6.16. Dental Measurements

Girls’ Ages in Years Boys’ Ages in Years

Subject 8 10 12 14 Subject 8 10 12 14

1 21.0 20.0 21.5 23.0 1 26.0 25.0 29.0 31.0
2 21.0 21.5 24.0 25.5 2 21.5 22.5 23.0 26.5
3 20.5 24.0 24.5 26.0 3 23.0 22.5 24.0 27.5
4 23.5 24.5 25.0 26.5 4 25.5 27.5 26.5 27.0
5 21.5 23.0 22.5 23.5 5 20.0 23.5 22.5 26.0
6 20.0 21.0 21.0 22.5 6 24.5 25.5 27.0 28.5
7 21.5 22.5 23.0 25.0 7 22.0 22.0 24.5 26.5
8 23.0 23.0 23.5 24.0 8 24.0 21.5 24.5 25.5
9 20.0 21.0 22.0 21.5 9 23.0 20.5 31.0 26.0

10 16.5 19.0 19.0 19.5 10 27.5 28.0 31.0 31.5
11 24.5 25.0 28.0 28.0 11 23.0 23.0 23.5 25.0

12 21.5 23.5 24.0 28.0
13 17.0 24.5 26.0 29.5
14 22.5 25.5 25.5 26.0
15 23.0 24.5 26.0 30.0
16 22.0 21.5 23.5 25.0
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From the 16 observation vectors we obtain

y =




22.88
23.81
25.72
27.47


 , S =




6.02 2.29 3.63 1.61
2.29 4.56 2.19 2.81
3.63 2.19 7.03 3.24
1.61 2.81 3.24 4.35


 .

To test H0 : C� = 0, we calculate

T 2 = n(Cy)′(CSC′)−1(Cy) = 77.957,

which exceeds T 2
.01,3,15 = 19.867. We now test H0 : c′

i � = 0 for each row of C to
determine the shape of the growth curve. For the linear effect, using the first row, c′

1,
we obtain

t1 = c′
1y√

c′
1Sc1/n

= 7.722 > t.005,15 = 2.947.

The test of significance of the quadratic component using the second row yields

t2 = c′
2y√

c′
2Sc2/n

= 1.370 < t.025,15 = 2.131.

To test for a cubic trend, we use the third row of C:

t3 = c′
3y√

c′
3Sc3/n

= −.511 > −t.025,15 = −2.131.

Thus only the linear trend is needed to describe the growth curve.
To model the curve for each variable, we use (6.113),

µr = β0 + β1tr , r = 1, 2, 3, 4, or

� = A�,

where

A =




1 −3
1 −1
1 1
1 3


 , � =

(
β0
β1

)
.

The values in the second column of A are obtained as t = age − 11. By (6.115), we
obtain
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�̂ = (A′S−1A)−1A′S−1y =
(

25.002
.834

)
,

and our prediction equation is

µ̂ = 25.002 + .834t = 25.002 + .834(age − 11)

= 15.828 + .834(age).

6.10.2 Growth Curves for Several Samples

For the case of several samples or groups, the data layout would be similar to that
in Table 6.9, where the p levels of factor A represent time points. Assuming the
time points are equally spaced, we can use orthogonal polynomials in the (p − 1)×
p contrast matrix C and express the basic hypothesis in the form H0 : C�. = 0,
where �. = ∑k

i=1 �i/k. This is equivalent to H0 : µ.1 = µ.2 = · · · = µ.p, which
compares the means of the p time points averaged across groups. As in Section 6.9.3,
let us denote the sample mean vectors for the k groups as y1., y2., . . . , yk., with
grand mean y.. and pooled covariance matrix Spl = E/νE . For the overall test of
H0 : C�. = 0 we use the test statistic

T 2 = N (Cy..)
′(CSplC′)−1(Cy..), (6.122)

which is T 2
p−1,νE

as in (6.93), where N = ∑k
i=1 ni for unbalanced data or N = kn

for balanced data. The corresponding degrees of freedom for error is given by νE =
N −k or νE = k(n −1). A test that the average growth curve (averaged over groups)
has a particular form can be tested with C1, containing a subset of the rows of C:

T 2 = N (C1y..)
′(C1SplC′

1)
−1(C1y..), (6.123)

which is distributed as T 2
p1,νE

, where p1 is the number of rows in C1.
The growth curves for the k groups can be compared by the interaction or par-

allelism test of Section 6.9.3 using either C or C1. We do a one-way MANOVA on
Cyi j or C1yi j , or equivalently calculate by (6.96),

� = |CEC′|
|C(E + H)C′| or � = |C1EC′

1|
|C1(E + H)C′

1|
, (6.124)

which are distributed as �p−1,k−1,νE and �p1,k−1,νE , respectively.

Example 6.10.2. In Example 6.10.1, we found a linear trend for the growth curve
for dental measurements of boys in Table 6.16. We now consider the growth curve
for the combined group and also compare the girls’ group with the boys’ group.

The two sample sizes are unequal and we use (6.33) to calculate the E matrix for
the two groups,
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E =




135.39 67.88 97.76 67.76
67.88 103.76 72.86 82.71
97.76 72.86 161.39 103.27
67.76 82.71 103.27 124.64


 ,

from which we obtain Spl = E/νE . Using the C matrix in (6.121), we can test the
basic hypothesis of equal means for the combined samples, H0 : C�. = 0, using
(6.122):

T 2 = N (Cy..)
′(CSplC′)−1(Cy..)

= 118.322 > T 2
.01,3,25 = 15.538.

To test for a linear trend, we use the first row of C in (6.123):

T 2 = N (c′
1y..)

′(c′
1Splc1)

−1(c′
1y..)

= 99.445 > T 2
.01,1,25 = 7.770.

This is, of course, the square of a t-statistic, but in the T 2 form it can readily be
compared with the preceding T 2 using all three rows of C. The linear trend is seen
to dominate the relationship among the means.

We now compare the growth curves of the two groups using (6.124). For C, we
obtain

� = |CEC′|
|C(E + H)C′| = 1.3996 × 108

1.9025 × 108

= .736 > �.05,3,1,25 = .717.

For the linear trend, we have

� = |c′
1Ec1|

|c′
1(E + H)c1| = 1184.2

1427.9

= .829 < �.05,1,1,25 = .855.

Thus the overall comparison does not reach significance, but the more specific com-
parison of linear trends does give a significant result.

6.10.3 Additional Topics

Jackson and Bryce (1981) presented methods of analyzing growth curves based on
univariate linear models. Snee (1972) and Snee Acuff, and Gibson (1979) proposed
the use of eigenvalues and eigenvectors of a matrix derived from residuals after fitting
the model. If one of the eigenvalues is dominant, certain simplifications result. Bryce
(1980) discussed a similar simplification for the two-group case. Geisser (1980) and
Fearn (1975, 1977) gave the Bayesian approach to growth curves, including estima-
tion and prediction. Zerbe (1979a, b) provided a randomization test requiring fewer
assumptions than normal-based tests.
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6.11 TESTS ON A SUBVECTOR

6.11.1 Test for Additional Information

In Section 5.8, we considered tests of significance of the additional information in
a subvector when comparing two groups. We now extend these concepts to several
groups and use similar notation.

Let y be a p × 1 vector of measurements and x be a q × 1 vector measured
in addition to y. We are interested in determining whether x makes a significant
contribution to the test of H0 : �1 = �2 = · · · = �k above and beyond y. Another
way to phrase the question is, Can the separation of groups achieved by x be predicted
from the separation achieved by y? It is not necessary, of course, that x represent
new variables. It may be that

(y
x

)
is a partitioning of the present variables, and we

wish to know if the variables in x can be deleted because they do not contribute to
rejecting H0.

We consider here only the one-way MANOVA, but the results could be extended
to higher order designs, where various possibilities arise. In a two-way context, for
example, it may happen that x contributes nothing to the A main effect but does
contribute significantly to the B main effect.

It is assumed that we have k samples,

(
yi j

xi j

)
, i = 1, 2, . . . , k; j = 1, 2, . . . , n,

from which we calculate

E =
(

Eyy Eyx

Exy Exx

)
, H =

(
Hyy Hyx

Hxy Hxx

)
,

where E and H are (p + q)× (p + q) and Eyy and Hyy are p × p.
Then

�(y, x) = |E|
|E + H| (6.125)

is distributed as �p+q,νH ,νE and tests the significance of group separation using the
full vector

(y
x

)
. In the balanced one-way model, the degrees of freedom are νH = k−1

and νE = k(n − 1). To test group separation using the reduced vector y, we can
compute

�(y) = |Eyy|
|Eyy + Hyy| , (6.126)

which is distributed as �p,νH ,νE .
To test the hypothesis that the extra variables in x do not contribute anything

significant to separating the groups beyond the information already available in y,
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we calculate

�(x|y) = �(y, x)
�(y)

, (6.127)

which is distributed as�q,νH ,νE −p. Note that the dimension of�(x|y) is q, the num-
ber of x’s. The error degrees of freedom, νE − p, has been adjusted for the p y’s.
Thus to test for the contribution of additional variables to separation of groups, we
take the ratio of Wilks’ � for the full set of variables in (6.125) to Wilks’ � for the
reduced set in (6.126). If the addition of x makes �(y, x) sufficiently smaller than
�(y), then �(x|y) in (6.127) will be small enough to reject the hypothesis.

If we are interested in the effect of adding a single x , then q = 1, and (6.127)
becomes

�(x |y1, . . . , yp) = �(y1, . . . , yp, x)

�(y1, . . . , yp)
, (6.128)

which is distributed as�1,νH ,νE −p. In this test we are inquiring whether x reduces the
overall � by a significant amount. With a dimension of 1, the �-statistic in (6.128)
has an exact F-transformation from Table 6.1,

F = 1 −�

�

νE − p

νH
, (6.129)

which is distributed as FνH ,νE −p . The statistic (6.128) is often referred to as a partial
�-statistic; correspondingly, (6.129) is called a partial F-statistic.

In (6.128) and (6.129), we have a test of the significance of a variable in the
presence of the other variables. For a breakdown of precisely how the contribution
of a variable depends on the other variables, see Rencher (1993; 1998, Section 4.1.6).

We can rewrite (6.128) as

�(y1, . . . , yp, x) = �(x |y1, . . . , yp)�(y1, . . . , yp) ≤ �(y1, . . . , yp), (6.130)

which shows that Wilks’ � can only decrease with an additional variable.

Example 6.11.1. We use the rootstock data of Table 6.2 to illustrate tests on subvec-
tors. From Example 6.1.7, we have, for all four variables,�(y1, y2, y3, y4) = .1540.
For the first two variables, we obtain�(y1, y2) = .6990. Then to test the significance
of y3 and y4 adjusted for y1 and y2, we have by (6.127),

�(y3, y4|y1, y2) = �(y1, y2, y3, y4)

�(y1, y2)
= .1540

.6990
= .2203,

which is less than the critical value �.05,2,5,40 = .639.
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Similarly, the test for y4 adjusted for y1, y2, and y3 is given by (6.128) as

�(y4|y1, y2, y3) = �(y1, y2, y3, y4)

�(y1, y2, y3)
= .1540

.2460

= .6261 < �.05,1,5,39 = .759.

For each of the other variables, we have a similar test:

y3: �(y3|y1, y2, y4) = .1540

.2741
= .5618 < �.05,1,5,39 = .759,

y2: �(y2|y1, y3, y4) = .1540

.1922
= .8014 > �.05,1,5,39 = .759,

y1: �(y1|y2, y3, y4) = .1540

.1599
= .9630 > �.05,1,5,39 = .759.

Thus the two variables y3 and y4, either individually or together, contribute a
significant amount to separation of the six groups.

6.11.2 Stepwise Selection of Variables

If there are no variables for which we have a priori interest in testing for significance,
we can do a data-directed search for the variables that best separate the groups. Such
a strategy is often called stepwise discriminant analysis, although it could more aptly
be called stepwise MANOVA. The procedure appears in many software packages.

We first describe an approach that is usually called forward selection. At the first
step calculate �(yi) for each individual variable and choose the one with minimum
�(yi) (or maximum associated F). At the second step calculate �(yi |y1) for each
of the p − 1 variables not entered at the first step, where y1 indicates the first vari-
able entered. For the second variable we choose the one with minimum�(yi |y1) (or
maximum associated partial F), that is, the variable that adds the maximum sepa-
ration to the one entered at step 1. Denote the variable entered at step 2 by y2. At
the third step calculate �(yi |y1, y2) for each of the p − 2 remaining variables and
choose the one that minimizes�(yi |y1, y2) (or maximizes the associated partial F).
Continue this process until the F falls below some predetermined threshold value,
say, Fin.

A stepwise procedure follows a similar sequence, except that after a variable has
entered, the variables previously selected are reexamined to see if each still con-
tributes a significant amount. The variable with smallest partial F will be removed
if the partial F is less than a second threshold value, Fout. If Fout is the same as Fin,
there is a very small possibility that the procedure will cycle continuously without
stopping. This possibility can be eliminated by using a value of Fout slightly less than
Fin. For an illustration of the stepwise procedure, see Example 8.9.
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