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1 Introduction

We always denote by X our universe, i.e. all the sets we shall consider are subsets of X.

Recall some standard notation. 2% everywhere denotes the set of all subsets of a given
set X. If AN B = & then we often write A LI B rather than A U B, to underline the
disjointness. The complement (in X) of a set A is denoted by A°. By AA B the symmetric
difference of A and B is denoted, i.e. AA B = (A\ B)U(B\ A). Letters i, j, k always
denote positive integers. The sign [ is used for restriction of a function (operator etc.) to
a subset (subspace).

1.1 The Riemann integral

Recall how to construct the Riemannian integral. Let f : [a,b] — R. Consider a partition
7 of [a, b]:

Aa=20<T1<Ta<...<Xp1<xp,=2"0
and set Az, = xpyq — xp, || = max{Azx, : £k =0,1,...,n— 1}, mp = inf{f(z) : = €
[k, Xk}, My = sup{f(z) : * € [rg, Tx41]}. Define the upper and lower Riemann—
Darboux sums

One can show (the Darboux theorem) that the following limits exist

lim s(f, )—sups f,m) / fdz

|7|—=0

lim s(f,7) = mfs (f,m) /fd:l:

|| =0



Clearly,

s(f,m) S/bfdxg/bfdxgs(f,w)

for any partition 7.

The function f is said to be Riemann integrable on [a, b] if the upper and lower integrals
are equal. The common value is called Riemann integral of f on [a, b].

The functions cannot have a large set of points of discontinuity. More presicely this
will be stated further.

1.2 The Lebesgue integral

It allows to integrate functions from a much more general class. First, consider a very
useful example. For f, g € Cla,b], two continuous functions on the segment [a,b] = {z €
R:a < x < b} put

pi(f,9) = max |f(z) — g(z)],

a<zh

p2(f,9) = / |f(z) — g(z)|dx.

Then (C|a, b, p1) is a complete metric space, when (Cla, b], p2) is not. To prove the latter

statement, consider a family of functions {¢,}°, as drawn on Fig.1. This is a Cauchy

sequence with respect to po. However, the limit does not belong to Cla, b].
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Figure 1: The function ¢,.

2 Systems of Sets

Definition 2.1 A ring of sets is a non-empty subset in 2% which is closed with respect
to the operations U and \.

Proposition. Let K be a ring of sets. Then @ € K.

Proof. Since R # O, there exists A € K. Since K contains the difference of every two
its elements, one has A\A=2 c R

Examples.

1. The two extreme cases are & = {@} and & = 2%,

2. Let X =R and denote by R all finite unions of semi-segments [a, ).

Definition 2.2 A semi-ring is a collection of sets B C 2% with the following properties:

1. If A,B € 3 then AN B €*B;



2. For every A, B € B there exists a finite disjoint collection (C;) j =1,2,...,n of
sets (i.e. C;NC; =@ ifi # j) such that

wo{)e

j=1
Example. Let X =R, then the set of all semi-segments, [a, ), forms a semi-ring.
Definition 2.3 An algebra (of sets) is a ring of sets containing X € 2%.

Examples.

1. {2, X} and 2% are the two extreme cases (note that they are different from the
corresponding cases for rings of sets).

2. Let X = [a,b) be a fixed interval on R. Then the system of finite unions of subin-
tervals [a, 3) C [a,b) forms an algebra.

3. The system of all bounded subsets of the real axis is a ring (not an algebra).

Remark. 2 is algebra if (i) A, Be A= AUBec, (i) AcA= A
Indeed, 1) ANB = (A°UB°) 2) A\ B=AnNB".

Definition 2.4 A o-ring (a o-algebra) is a ring (an algebra) of sets which is closed with
respect to all countable unions.

Definition 2.5 A ring (an algebra, a o-algebra) of sets, K(U) generated by a collection
of sets 4 C 2% is the minimal ring (algebra, o-algebra) of sets containing .

In other words, it is the intersection of all rings (algebras, o-algebras) of sets containing

M.



3 Measures
Let X be a set, 2 an algebra on X.

Definition 3.1 A function p: A — Ry U {oco} is called a measure if

1. p(A) =0 for any A € A and u(@) = 0;
2. if (A)ix1 is a disjoint family of sets in A (A, N A; = & for any i # j) such that

L2, Ai € A, then
p( ] A) =) u(A).
i=1 i=1

The latter important property, is called countable additivity or o-additivity of the measure
1.

Let us state now some elementary properties of a measure. Below till the end of this
section 2 is an algebra of sets and y is a measure on it.

1. (Monotonicity of ) If A, B € 2 and B C A then pu(B) < pu(A).
Proof. A= (A\ B)U B implies that
1(A) = u(A\ B) + p(B).
Since u(A\ B) > 0 it follows that p(A) > u(B).

2. (Subtractivity of p). If A;B € A and B C A and u(B) < oo then pu(A\ B) =
pu(A) = u(B).
Proof. In 1) we proved that
1(A) = WA\ B) + pu(B).

If u(B) < oo then
w(A) — u(B) = u(A\ B).

3. If A,B € and (AN B) < oo then u(AUB) = u(A) + n(B) — p(AN B).
Proof. ANB C A, AN B C B, therefore

AUB=(A\(ANB))UB.
Since p(A N B) < 0o, one has
W(AUB) = (u(A) — u(A N B)) + u(B).



4. (Semi-additivity of p). If (A;);>1 C A such that (J;2; 4; € A then
p(JA) <D (4.
i=1 i=1

Proof. First let us proove that

Note that the family of sets
Bl = Al

BQIAQ\Al
BgZAg\(A1UA2)

n—1
=1

is disjoint and | |, B; = J_, A;. Moreover, since B; C A;, we see that u(B;) <
1(A;). Then

n

M(U A=l |B) = ZM(Bz’) < ZM(Ai)-

1=
Now we can repeat the argument for the infinite family using o-additivity of the
measure.

3.1 Continuity of a measure

Theorem 3.1 Let A be an algebra, (A;)i>1 C A a monotonically increasing sequence of
sets (A; C Aiy1) such that U5, € A. Then

N(U A;) = lim p(4,).

) n—00
=1

Proof. 1). If for some ng pu(Ap,) = 400 then p(A,) = +o00Vn > ng and p(J;2, 4;) = +o0.
2). Let now u(A;) < oo Vi > 1.



Then

M(UAi):M(Alu(AQ\Al)u...u(An\An_l)u...)

= (A1) + D p(Ap\ Axy)

k=2

= p(A) + lim Y (u(A) = p(Ax-r)) = lim pi(Ay).

n—oo

3.2 QOuter measure

Let a be an algebra of subsets of X and p a measure on it. Our purpose now is to extend
i to as many elements of 2% as possible.

An arbitrary set A C X can be always covered by sets from 2, i.e. one can always find
Ey, E,, ... € A such that |J;2, E; D A. For instance, B} = X, Ey = E3 = ... = O.

Definition 3.2 For A C X its outer measure is defined by
p(A) = inf S (B
i=1

where the infimum is taken over all A-coverings of the set A, i.e. all collections (E;), E; €

A with |J, E; D A.

Remark. The outer measure always exists since p(A) > 0 for every A € 2.

Example. Let X = R?, 2 = &(P), -o-algebra generated by B, P = {[a,b) x R'}.
Thus A consists of countable unions of strips like one drawn on the picture. Put u([a, b) X
R') = b — a. Then, clearly, the outer measure of the unit disc z? + y? < 1 is equal to 2.
The same value is for the square |z| < 1, |y| < 1.

Theorem 3.2 For A € 2 one has p*(A) = u(A).

In other words, p* is an extension of .

Proof. 1. A is its own covering. This implies p*(A) < u(A).

2. By definition of infimum, for any € > 0 there exists a 2-covering (F;) of A such that
> (E;) < p*(A) + €. Note that

A=An(JE)={JAnE).

)

7
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Using consequently o-semiadditivity and monotonicity of u, one obtains:

1(A) < Zu(A NE;) < ZN(ED <p(A) +e

Since ¢ is arbitrary, we conclude that u(A) < p*(A). B
It is evident that u*(A) >0, p*(@) =0 (Check !).

Lemma. Let 2 be an algebra of sets (not necessary o-algebra), u a measure on 2. If
there exists a set A € A such that pu(A) < oo, then (@) = 0.

Proof. p(A\ A) = p(A) —p(4) =0. B
Therefore the property (@) = 0 can be substituted with the existence in 2 of a set

with a finite measure.
Theorem 3.3 (Monotonicity of outer measure). If A C B then p*(A) < p*(B).

Proof. Any covering of B is a covering of A.

Theorem 3.4 (c-semiadditivity of pn*). p*(Uj2, A;) < D272, 1 (Aj).



Proof. 1f the series in the right-hand side diverges, there is nothing to prove. So assume
that it is convergent.

By the definition of outer measur for any € > 0 and for any j there exists an 2-covering
U, Exj O A, such that

Z“Ekﬂ < ( )"’2_]
k=1

Since

U Ekj D) UA],

7,k=1

the definition of p* implies

UA Z (Ek;)

J,k=1

u*(U Aj) < ZM*(AJ) +e

and therefore

3.3 Measurable Sets

Let 2 be an algebra of subsets of X, y a measure on it, u* the outer measure defined in
the previous section.

Definition 3.3 A C X is called a measurable set (by Caratheodory) if for any E C X
the following relation holds:

p(E) =p (ENA)+p (BN A).
Denote by 2 the collection of all set which are measurable by Caratheodory and set

po=p A
Remark Since £ = (ENA)U (E N A°), due to semiadditivity of the outer measure

p(E) < p(ENA)+p (BN A%).

Theorem 3.5 U is a o-algebra containing A, and [L 1S a measure on 2.



Proof. We devide the proof into several steps.
1.If A,B € A then AU B € .
By the definition one has

W' (E) = w*(E N B) + 1" (B 0 B°). 1)
Take £ N A instead of E:
p(ENA) =p(ENANB)+p" (ENANB°). (2)
Then put £ N A€ in (1) instead of £
p(ENAY) =p (ENA°NB)+ p*(ENA°N B°). (3)
Add (2) and (3):
p(E)=p (ENANB)+ " (ENANBY) +p (ENANB)+ " (ENANBY).  (4)
Substitute £ N (AU B) in (4) instead of E. Note that

1) EN(AUB)NANB=ENANB

)
2) EN(AUB)NA°NB=ENA‘NB
3) EN(AUB)NANB°=ENANB°
4) EN(AUB)NA°NB°=@.
One has
p(EN(AUB))=p (ENANB)+p (ENA°NB)+u (ENANB°). (5)

From (4) and (5) we have
p(E) = p(EN(AUB)) + p"(EN (AU B)Y).
2. If A € 2 then A° € 4.
The definition of measurable set is symmetric with respect to A and A°.
Therefore 2 is an algebra of sets.

3.
Let A, Be A, ANB = @. From (5)

p(EN(AUB))=p(ENANB)+pu (ENANBY) =p (ENB)+p (ENA).

10



4. is a o-algebra.

From the previous step, by induction, for any finite disjoint collection (B;) of sets:

w(EN( | B) ZZM*(EHB;-)' (6)

J=1

Let A=, A;,4; €A Then A=, B;, Bj=A;\Uj_; A and
B,NB; =@ (i # j). It suffices to prove that

' (E) |_| D+ En (B (7)

j=1
Indeed, we have already proved that p* is o-semi-additive.

Since 2 is an algebra, it follows that -, Bj € 2(Vn € N) and the following inequality
holds for every n:

n n

W(E) z @ (EN (| By) +w (En (] By)). (8)

j=1 j=1

Since £ N (L;Z, B;)* € E N (Lj—, B;), by monotonicity of the mesasure and (8)

W(E) 2 37 1 (B0 By) + (BN A9, (9)

j=1

Passing to the limit we get

p(B) 2 3 (B0 By) + (B0 A9, (10)
=1
Due to semiadditivity
p(ENA) = |_| w(| |(EnBy)) Z (ENBy).
: ]:]_ :

Compare this with (10):
p(E) =z W (ENA)+p (BN A%).
Thus, A € 2, which means that 2 is a o-algebra.

5. 0= p* | 2l is a measure.

11



We need to prove only o-additivity. Let £ =| |2, A;. From(10) we get
pr(| A =D (4.
j=1 j=1
The oposite inequality follows from o-semiadditivity of p*.
6.2 D 2
Let A€, E C X. We need to prove:
pr(E) Z p(ENA)+ p* (BN A%). (11)

If £ € A then (11) is clear since EN A and E N A° are disjoint and both belong to
where p* = p and so is additive.

For E C X for Ve > 0 there exists a «A-covering (E;) of £ such that
W) +2 > 3 ulEy). (12)
j=1

Now, since E; = (E; N A) U (E; N A€), one has
u(E;) = p(E; 0 A) + p(E; N A)
and also

EnAc|J(E;nA)

j=1
EnA°c | J(EnAY)
j=1

By monotonicity and o-semiadditivity

NE

W(ENA) <Y ulB N A),

1

<.
Il

NE

W(ENA) < S p(E; N A).

1

<.
Il

Adding the last two inequalities we obtain

p(ENA) +u(ENAY) <> ' (By) < p*(B) + .
j=1
Since € > 0 is arbitrary, (11) is proved. W

The following theorem is a direct consequence of the previous one.

12



Theorem 3.6 Let A be an algebra of subsets of X and pu be a measure on it. Then there
exists a o-algebra Ay DO A and a measure p; on Ay such that py [ A = p.

Remark. Consider again an algebra 2 of subsets of X. Denot by 2, the generated
o-algebra and construct the extension p, of p on 2A,. This extension is called minimal
extension of measure.

Since A D A therefore A, C 2. Hence one can set e = it [ ™Ay Obviously u, is a
minimal extension of u. It always exists. On can also show (see below) that this extension
is unique.

Theorem 3.7 Let i be a measure on an algebra 24 of subsets of X, p* the corresponding
outer measure. If f*(A) =0 for a set A C X then A € and i(A) = 0.

Proof. Clearly, it suffices to prove that A € 2. Further, it suffices to prove that p*(E) >
W (ENA)+ p (EN A°). The latter statement follows from monotonicity of p*. Indeed,
one has p*(FNA) < p*(A)=0and p*(ENA°) < p*(E). B

Definition 3.4 A measure p on an algebra of sets A is called complete if conditions
BCcA, AeA, p(A) =0 imply BeA and pu(B) =0.

Corollary. ji is a complete measure.

Definition 3.5 A measure p on an algebra A is called finite if p(X) < oo. It is called
o-finite if the is an increasing sequence (Fy);>1 C A such that X = J; F; and p(Fy) < oo
V.

Theorem 3.8 Let p1 be a o-finite measure on an algebra A. Then there exist a unique
extension of p to a measure on 2.

Proof. 1t suffices to sjow uniqueness. Let v be another extension of p (v [ A = pu [ ).

First, let u (and therefore v, ;*) be finite. Let A € A. Let (E;) C 2 such that
A cU; Ej. We have

o0 o0

v(4) < v By) £ o v(Ey) = 3 ulEy)

J=1 J=1

Therefore .
v(A) < u*(A) VA e

13



Since y* and v are additive (on 2) it follows that

p(A) + p(A%) = v(A) + v (A9).

The terms in the RHS are finite and v(A) < p*(A), v(A°) < p*(A°). From this we infer
that )
v(A) =p"(A) VAe

Now let 1 be o-finite, (F}) be an increasing sequence of sets from A such that p(Fj) <
oo Vj and X = U;’il F};. From what we have already proved it follows that

W (ANF) =v(ANF;) VA €.

Therefore
p(A) =limp* (AN F;) =limv(ANF;) =v(4). R
j j

Theorem 3.9 (Continuity of measure). Let 2 be a o-algebra with a measure p, {A;} C
A a monotonically increasing sequence of sets. Then

UA = lim p(A4;).

—00
Jj=1 7

Proof. One has:

e}

- U |_| j+1 \ A LI Al-
7=1

Using o-additivity and subtractivity of p,

plA) = D ((Ajs1) = i(AD) + plA) = lim p(4;). W

J=1

Similar assertions for a decreasing sequence of sets in 2 can be proved using de Morgan
formulas.

Theorem 3.10 Let A € . Then for any £ > 0 there exists A. € U such that w(AA
A) <e.

Proof. 1. For any € > 0 there exists an 2 cover | J E; D A such that
. g 3

> By < p(A) + 5 = i(A) + 5.

J

14



On the other hand,

j j
The monotonicity of ji implies
Al EBs) = 1im a(|J Ey),
7=1 7j=1

) N
N _ €
alJ E) - E)) < 3 (13)
j=1 j=1
2. Now, put
N
A =JE
j=1
and prove that p*(AA A.) <e
2a. Since .
AclJE;,
j=1
one has .
ANA.c | B\ A
j=1
Since .
A.c | JE;,
j=1

one can use the monotonicity and subtractivity of . Together with estimate (13), this
gives

A(A\ A LJE\A <<

2b. The inclusion .
ANAC|JEN\A
j=1
implies

(A N\ A) < L}E\A LJE g

15



Here we used the same properties of fi as above and the choice of the cover (Ej;).

3. Finally,
A DA < (AN A + (A A).

16



4 Monotone Classes
and Uniqueness of Extension of Measure

Definition 4.1 A collection of sets, 9N is called a monotone class if together with any
monotone sequence of sets M contains the limit of this sequence.

Example. Any o-ring. (This follows from the Exercise 1. below).

Exercises.

1. Prove that any o-ring is a monotone class.

2. If a ring is a monotone class, then it is a o-ring.

We shall denote by 9t(K) the minimal monotone class containing K.
Theorem 4.1 Let 8 be a ring of sets, &, the o-ring generated by 8. Then M(K) = K,.

Proof. 1. Clearly, 9M(R) C R,. Now, it suffices to prove that M (K) is a ring. This follows
from the Exercise (2) above and from the minimality of &,.

2. M(R) is a ring.
2a. For B C X, set

Rep={ACX:AUB,ANB,A\ B,B\ AecMR)}.

This definition is symmetric with respect to A and B, therefore A € K implies B € K4.

2b. Kp is a monotone class.

Let (A;) C 85 be amonotonically increasing sequence. Prove that the union, A = [J A4,
belongs to Kp.

Since A; € &g, one has A; U B € R, and so

AUB = G(AjuB) € M(R).

J=1

In the same way,
A\ B= (A B =\ B) e M),

17



[e.0]

B\ A= B\ ﬁB\A M(R).

Similar proof is for the case of decreasing sequence (A;).

2c. If B € R then M(R) C Rp.

Obviously, & C Rg. Together with minimality of 9t(R), this implies M(RK) C Kp.
2d. If B € M(KR) then M(R) C KRp.

Let A € K. Then M(RK) C R4. Thus if B € M(RK), one has B € R4, so A € Rp.
Hence what we have proved is & C 8g. This implies M(RK) C Kp.

2e. It follows from 2a. — 2d. that if A, B € 9(K) then A € K and so AUB, AN B,
A\ B and B\ A all belong to M(K). A

Theorem 4.2 Let 20 be an algebra of sets, p and v two measures defined on the o-
algebra A, generated by A. Then pu | A =v [ A implies p = v.

Proof. Choose A € ,, then A =lim,, o, A,, A, €2, for A, = M(A). Using continuity

of measure, one has

u(A) = lim p(A,) = lim v(A,) = v(A).

n—oo n—oo

Theorem 4.3 Let 2 be an algebra of sets, B C X such that for any € > ( there exists
A, € A with p*(B A A.) <e. Then B € .

Proof. 1. Since any outer measure is semi-additive, it suffices to prove that for any £ C X

one has
pi(E) 2w (ENB) + p*(EnN B°).

2a. Since A C Q~l, one has
W0 A) + it (B0 AS) < i (E). (14)
2b. Since A C B U (A A B) and since the outer measure p* is monotone and semi-

additive, there is an estimate |u*(A) — p*(B)| < p*(A A B) for any A, B C X. (C.f. the
proof of similar fact for measures above).

2c. 1t follows from the monotonicity of p* that

W (ENA) —p (ENB)| < ' ((ENA) A(ENB)) < p(A: N B) <&

18



Therefore, p*(ENA:) > p*(ENB) —e¢.
In the same manner, p*(E N AS) > pu*(EN B°) —e¢.
2d. Using (14), one obtains

p(E) > p (ENB)+ p (ENB°) — 2.

19



5 The Lebesgue Measure on the real line R!

5.1 The Lebesgue Measure of Bounded Sets of R!

Put 2 for the algebra of all finite unions of semi-segments (semi-intervals) on R!, i.e. all

sets of the form .

A=Jla;,b5).

j=1
Define a mapping p : 2 — R by:

Theorem 5.1 p is a measure.

Proof. 1. All properties including the (finite) additivity are obvious. The only thing to
be proved is the o-additivity.

Let (A;) C 2 be such a countable disjoint family that

A:DAjeiJl.

j=1
The condition A € 2 means that | | A; is a finite union of intervals.

2. For any positive integer n,

A4, ca,
j=1
hence n
> ulAy) < p(A),
j=1
and

ZM(AJ') = T}LTQOZM(Aj) < u(A).

3. Now, let A° a set obtained from A by the following construction. Take a connected
component of A. It is a semi-segment of the form [s,¢). Shift slightly on the left its
right-hand end, to obtain a (closed) segment. Do it with all components of A, in such a

way that
(A) < p(A°) +e. (15)

20



Apply a similar procedure to each semi-segment shifting their left end point to the left
Aj = [a;,b;), and obtain (open) intervals, A5 with

B(AS) < p(A;) + —

— (16)

4. By the construction, A® is a compact set and (A$) its open cover. Hence, there exists
a positive integer n such that

O@am
j=1

Thus .
(A7) <37 ().
j=1

The formulas (15) and (16) imply

n

n n 8
p(A) <D op(A5) +2 <D n(A) +) o5 +e,
j=1 j=1 j=1

thus .
p(A) < 3" u(Ay) + 2
j=1

Now, one can apply the Caratheodory’s scheme developed above, and obtain the mea-
sure space (2, f1). The result of this extension is called the Lebesgue measure. We shall
denote the Lebesgue measure on R! by m.

Exercises.

1. A one point set is measurable, and its Lebesgue measure is equal to 0.
2. The same for a countable subset in R'. In particular, m(Q N [0, 1]) = 0.

3. Any open or closed set in R! is Lebesgue measurable.

Definition 5.1 Borel algebra of sets, B on the real line R! is a o-algebra generated by
all open sets on RY. Any element of B is called a Borel set.

Exercise. Any Borel set is Lebesgue measurable.

Theorem 5.2 Let E C R! be a Lebesque measurable set. Then for any € > 0 there
exists an open set G D E such that m(G \ E) < e.

21



Proof. Since E is measurable, m*(E) = m(F). According the definition of an outer
measure, for any ¢ > 0 there exists a cover A = J[ag, bx) D E such that

m(A) < m(E) + g

Now, put

9
G = U(ak — W7bk)
|

Problem. Let £ C R! be a bounded Lebesgue measurable set. Then for any ¢ > 0
there exists a compact set F' C E such that m(E \ F) < e. (Hint: Cover E with a
semi-segment and apply the above theorem to the o-algebra of measurable subsets in this
semi-segment).

Corollary. For any € > 0 there exist an open set G and a compact set F' such that
GDODEDFand m(G\F) <e.

Such measures are called regular.

5.2 The Lebesgue Measure on the Real Line R!

We now abolish the condition of boundness.

Definition 5.2 A set A on the real numbers line R is Lebesque measurable if for any
positive integer n the bounded set AN [—n,n) is a Lebesque measurable set.

Definition 5.3 The Lebesque measure on R! is

m(A) = lim m(AN[-n,n)).

n—oo

Definition 5.4 A measure is called o-finite if any measurable set can be represented as
a countable union of subsets each has a finite measure.

Thus the Lebesgue measure m is o-finite.

Problem. The Lebesgue measure on R! is regular.

5.3 The Lebesgue Measure in R?

Definition 5.5 We call a d-dimensional rectangle in R? any set of the form

{r:2 R q; <oy < b}

22



Using rectangles, one can construct the Lebesque measure in R? in the same fashion as
we deed for the R case.

23



6 Measurable functions
Let X be a set, 2 a o-algebra on X.
Definition 6.1 A pair (X,2) is called a measurable space.

Definition 6.2 Let f be a function defined on a measurable space (X,2l), with values in
the extended real number system. The function f is called measurable if the set

{z: f(z) > a}

1s measurable for every real a.
Example.

Theorem 6.1 The following conditions are equivalent

{z: f(x) > a} is measurable for every real a. (17)
{z: f(x) > a} is measurable for every real a. (18)
{z: f(x) < a} is measurable for every real a. (19)
{z: f(z) < a} is measurable for every real a. (20)

Proof. The statement follows from the equalities

(01 5@ 2 a) = (o fla) > a1} 1)
o <><a}n:—1X\{x- 20 (22)
{x:f <a}—ﬂ{m )<a+ = } (23)
(1) > a) = X\ o+ f(2) < a) (21)
Theorem 6.2 Let (f,) be a sequence of measurable functions. For = € X set

g(z) = sup fa(z)(n € N)

h(z) = limsup f,(x).

n—oo

Then g and h are measurable.
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Proof.
{z:g9(x) <a}= ﬂ{x : fulz) < a}.
n=1
Since the LHS is measurable it follows that the RHS is measurable too. The same proof

works for inf.

Now
h(z) = inf g, (),
where
gm(x) = sup fu(2).

n>m

Theorem 6.3 Let f and g be measurable real-valued functions defined on X. Let F' be
real and continuous function on R?. Put

Wz) = F(f(z),9(z)) (z € X).

Then h is measurable.

Proof. Let G, = {(u,v) : F(u,v) > a}. Then G, is an open subset of R? and thus

Ga:[jl[n

where (1,,) is a sequence of open intervals
I, = {(u,v) a, <u<by,c, <v<d,}
The set {z : a, < f(x) < b,} is measurable and so is the set
{z: (f(x),9(x) e L} ={z: a, < f(x) <b,}N{z: ¢, < g(x) <d,}.

Hence the same is true for

{w: h(z)>a} = {z: (f(2),9(x) € Gu} = |J{o: (f(2),g(x)) € [}.

Corollories. Let f and g be measurable. Then the following functions are measurable

(0)f+g (25)

(ii)f - g (26)

(iid) (27)

<z‘v>§<ifg £0) (28)

(v) max{f, g}, min{/, g} (20)
(30)

since max{f,g} = 1/2(f + g+ |f —gl), min{f, g} =1/2(f +g—1f —g]).
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6.1 Step functions (simple functions)

Definition 6.3 A real valued function f : X — R is called simple function if it takes
only a finite number of distinct values.

We will use below the following notation

1 ifzekl
0 otherwise

Xe(r) = {

Theorem 6.4 A simple function f = Z?:l cixg; 15 measurable if and only if all the
sets IJ; are measurable.

Exercise. Prove the theorem.

Theorem 6.5 Let f be real valued. There exists a sequence (f,) of simple functions such
that fn,(x) — f(x) as n — oo, for every x € X. If f is measurable, (f,) may be chosen
to be a sequence of measurable functions. If f > 0, (f.) may be chosen monotonically
INCreasing.

Proof. If f >0 set
fn(l’) - Z?;Qf ngXEnl + nXxrE,
where
The sequence ( f,,) is monotonically increasing, f, is a simple function. If f(x) < oo then

f(x) < n for a sufficiently large n and |f,(x) — f(x)| < 1/2". Therefore f,(z) — f(x).
If f(x) = 400 then f,(z) =n and again f,(x) — f(x).

In the general case f = f+ — f~, where

fH(x) :=max{f(x),0}, f~(z) := —min{f(z),0}.
Note that if f is bounded then f,, — f uniformly.
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7 Integration

Definition 7.1 A triple (X,2(, u), where A is a o-algebra of subsets of X and p is a
measure on it, is called a measure space.

Let (X, 2, 1) be a measure space. Let f: X — R be a simple measurable function.

n

f@) =S e (@) (31)

i=1

and

UE =X EnE =02 (i+))

i=1
There are different representations of f by means of (31). Let us choose the represen-

tation such that all ¢; are distinct.

Definition 7.2 Define the quantity
I(f) = ZQM(EZ)
i=1

First, we derive some properties of I(f).

Theorem 7.1 Let f be a simple measurable function. If X = |_|5:1Fj and f takes the
constant value b; on Fj then

I(f) = ijM(Fj)-

Proof. Cleatly, E; = |, ,

4§ =C4 J°

n

Zciﬂ(Ei) = Zcz’u( L] F)=>a > wE)= ijM(Fj)-

J: bj=c; i=1 J: bj=c;
|
This show that the quantity I(f) is well defined.
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Theorem 7.2 If f and g are measurable simple functions then

I{af + Bg) = ol (f) + BI(g).

Proof. Let f(m) = 2;21 ijFj(x)7 X = Ll?:l Fj> g(iL‘) = ZZ; CkXGk<:C>7 X = |_|Z:1 G-
Then

m

af + g = Z Z(abj + Be)x ey, ()

j=1 k=1
where Ejk = F} N Gk
Exercise. Complete the proof.

Theorem 7.3 Let f and g be simple measurable functions. Suppose that f < g every-
where except for a set of measure zero. Then

I(f) < 1(g).

Proof. 1f f < g everywhere then in the notation of the previous proof b; < ¢;, on Ej;, and
I(f) < I(g) follows.

Otherwise we can assume that f < g + ¢ where ¢ is non-negative measurable simple
function which is zero every exept for a set N of measure zero. Then I(¢) = 0 and

I(f) < 1(g+¢) = I(f) + () = L(9)-

Definition 7.3 If f : X +— R! is a non-negative measurable function, we define the
Lebesgue integral of f by

/fdu = sup I(¢)

where sup s taken over the set of all simple functions ¢ such that ¢ < f.
Theorem 7.4 If f is a simple measurable function then [ fdu=1(f).

Proof. Since f < f it follows that [ fdu > I(f).
On the other hand, if ¢ < f then I(¢) < I(f
<

sup I(¢)
o<f

and also

)
1(f)

which leads to the inequality

[ fan< 1)
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Definition 7.4 1. If A is a measurable subset of X (A € A)and f is a non-negative
measurable function then we define

AﬂMZ/ﬁm@-
[ tan= [ rrau [ 5a

if at least one of the terms in RHS is finite. If both are finite we call f integrable.

Remark. Finiteness of the integrals [ fTdu and [ f~dpu is equivalent to the finitenes of

the integral
/ |fldp.

If it is the case we write f € L'(X, u) or simply f € L' if there is no ambiguity.

The following properties of the Lebesgue integral are simple consequences of the defi-
nition. The proofs are left to the reader.

e If f is measurable and bounded on A and ;(A) < oo then f is integrable on A.
o Ifa< f(x) <b(xeA), ulA) < oo then

ap(A) < /Afdu < bu(a).
o If f(x) < g(z) for all x € A then

/Afdus/Agdu-

e Prove that if (A) = 0 and f is measurable then

| sau=o.

The next theorem expresses an important property of the Lebesgue integral. As a con-
sequence we obtain convergence theorems which give the main advantage of the Lebesgue
approach to integration in comparison with Riemann integration.
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Theorem 7.5 Let f be measurable on X. For A € A define

o(4) = [ fau
A
Then ¢ is countably additive on 2.

Proof. 1t is enough to consider the case f > 0. The general case follows from the
decomposition f = f* — f~.

If f = xg for some E € 2 then

u(AﬂE)Z/xEdu
A

and c-additivity of ¢ is the same as this property of p.
Let f(z) =, axr(x), Lp_; Ex = X. Then for A = |2, 4;, A; € A we have

P(A) = /Afdﬂ = /fXAdM = cpu(Bp N A)
k=1

= B (| A) =3 el |(Ern A))

k= i=1 i=1

3 =

=D a) wBENA) =YY au(EnA)
k=1 i=1 i=1 k=1
(the series of positive numbers)

=3 [ =Y ()
i=1 /A i=1
Now consider general positive f’s. Let ¢ be a simple measurable function and ¢ < f.

Then - -
/ pdp = Z/ e <Y o(A)).
A i=1 7 Ai i=1

Therefore the same inequality holds for sup, hence
BA) <D o(A).
i=1

Now if for some i ¢(A;) = 400 then ¢p(A) = 400 since ¢p(A) > ¢(A,). So assume that
®(A;) < ooVi. Given € > 0 choose a measurable simple function ¢ such that ¢ < f and

/sodMZ/ fdp—e, /soduz fe.
Ay Aq Az Ag
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Hence

O(A1UAy) > /A ., odp = /A +/A odp > ¢(Ar) + ¢(Ag) — 2e,

so that (b(Al U AQ) Z (b(Al) -+ ¢(A2)
By induction

Since A D J;_; A; we have that

Passing to the limit n — oo in the RHS we obtain

6(A) 2 Y 6(A).

This completes the proof.l
Corollary. If Ac A, BC Aand u(A\ B) =0 then

/A fdu = /B fd.

/AfdMZ/deu—l— A\3fd,uz/3fd,u+0.

Proof.

Definition 7.5 f and g are called equivalent (f ~ g in writing) if p({z :

g(x)}) = 0.

It is not hard to see that f ~ g is relation of equivalence.
@) f~f () f~g g~oh=f~h (i) f~geg~f

Theorem 7.6 If f € L' then |f| € L' and
/fdu‘ < [ \ridn
A A

31




Proof.
—[f1 < f<Ifl

Theorem 7.7 (Monotone Convergence Theorem)
Let (f,,) be nondecreasing sequence of nonnegative measurable functions with limit f. Then

/ fdu = lim | fodu, A€
A n—oo A

Proof. First, note that f,(x) < f(z) so that

1?Anws/mM

It is remained to prove the opposite inequality.
For this it is enough to show that for any simple ¢ such that 0 < ¢ < f the following

inequality holds
/ edp < lim / Jndp
A noJA

A, ={z € A: fu(x) > cp(x)}

then A, C A,y and A=~ A,.
Now observe

Take 0 < ¢ < 1. Define

c/@du:/apdu: lim/ codp <
A A =0 J A,

(this is a consequence of o-additivity of ¢ proved above)

SMllwﬁﬂm/ﬁW

Pass to the limit ¢ — 1.1

Theorem 7.8 Let f = f1+ fa, f1, fo € L'(u). Then f € L'(u) and

[ tin= [ i+ [ pd
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Proof. First, let fi, fo > 0. If they are simple then the result is trivial. Otherwise, choose
monotonically increasing sequences (¢, 1), (¢n2) such that ¢, ; — fi and p,2 — fo.

Then for ¢, = @n1 + ©n2

/ Opdp = / On,1dp + / ©n 2d

and the result follows from the previous theorem.

If fi >0and fo <0 put
A={z: f()>0}, B={o: f(x) <0}

Then f, f; and — f, are non-negative on A.

Hence [, fi= [, fdu+ [,(—fo)dp

Similarly
/B(—f2)dﬂz/]3f1dﬂ+/]3(—f)dﬂ

The result follows from the additivity of integral. B

Theorem 7.9 Let A €A, (f.) be a sequence of non-negative measurable functions and

oo

fx) =) fale), z€ A

n=1

/Afd/z=§;/AfndM

Then

Exercise. Prove the theorem.

Theorem 7.10 (Fatou’s lemma)
If (fn) is a sequence of non-negative measurable functions defined a.e. and

f(x) =lim, . fo(2)

A A
Ae

then
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P?“OOf. Put gn('r) = infiZn fz(x)
Then by definition of the lower limit lim,, _..g,(z) = f(z).
Moreover, g, < gni1, 9n < frn. By the monotone convergence theorem

/fd,u:hm/gnd,uzli_mn/gnd,uﬁh_mn/fndﬂ-
A noJa A A

Theorem 7.11 (Lebesgue’s dominated convergence theorem)
Let A € A, (fn) be a sequence of measurable functions such that f,(x) — f(x) (x € A.)
Suppose there exists a function g € L'(u) on A such that

()] < g(x)

lim /A Fudp = /A Fd

Proof. From |f,(z)| < g(x) it follows that f, € L'(u). Sinnce f, + ¢ >0 and f + ¢ > 0,
by Fatou’s lemma it follows

Then

A(f+g)du§h_mn[4(fn+g)

or

[ g <t [ fua
A A

Since g — f, > 0 we have similarly

o= naw<im, [ (o~ 1yin

—/ Jdu < —li_mn/ Jndp
A A
/ Fdu > Tim, / fudi
A A

A A A

so that

which is the same as

This proves that
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8 Comparison of the Riemann
and the Lebesgue integral

To distinguish we denote the Riemann integral by (R) fab f(x)dx and the Lebesgue integral
by (L) [7 f(x)da.

Theorem 8.1 If a finction f is Riemann integrable on |a,b] then it is also Lebesque
integrable on [a,b] and

w [ e = (R) / ey

Proof. Boundedness of a function is a necessary condition of being Riemann integrable.
On the other hand, every bounded measurable function is Lebesgue integarble. So it is
enough to prove that if a function f is Riemann integrable then it is measurable.

Consider a partition m,, of [a,b] on n = 2™ equal parts by points a = 2o < x; < ... <
Tp_1 < T, = b and set

L) =S mon), Ful) = S Myw(a),

where xy is a charactersitic function of [z, zx11) clearly,

@) < [f(@) <. < fla),

f1(x) 2?2(37) > ... > f(x).

Therefore the limits

exist and are measurable. Note that f(z) < f(z) < f(x). Since f, and f.n, are simple
measurable functions, we have

0 [ty < @) [ swae < @) [T <) [

Moreover,
2m—1

b
(L)/ [ (x)dx = Z mpAzxy = s(f, mm)

k=0
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and similarly .

(L) / Fonl) = 5/, 7).
SO b b N
&MMSW/i®M§@/meSWWm

Since f is Riemann integrable,

hms(fﬂm)—hmsfﬂmz /f

Therefore ,
@) [ (7la) - fa))dz =0
and since ? > i we conclude that

f=/f=[ almost everywhere.

From this measurability of f follows. B
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9 [P-spaces

Let (X, 2, 1) be a measure space. In this section we study LP(X, %, u)-spaces which occur
frequently in analysis.

9.1 Auxiliary facts

Lemma 9.1 Let p and q be real numbers such that p > 1, = + = =1 (this numbers are

1.1
P q

called conjugate). Then for any a > 0, b > 0 the inequality
P B
ab < < + —.
p q

holds.

Proof. Note that ¢(t) := % + % — ¢ with ¢ > 0 has the only minimum at ¢ = 1. It follows
that

Then letting t = ab” 71 we obtain

abb™? 1 1
+ - 2 (lb p_la
p q

and the result follows.l

Lemma 9.2 Letp > 1, a,b € R. Then the inequality
Ja+ 0" < 277 (laf + [b]F).

holds.

Proof. For p = 1 the statement is obvious. For p > 1 the function y = 2P, x > 0 is convex

since 3" > 0. Therefore
lal + [D[\" _ Jal” + b o
2 - 2 .
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9.2 The spaces LP, 1 < p < co. Definition

Recall that two measurable functions are said to be equaivalent (with respect to the
measure p) if they are equal p-a;most everywhere.

The space LP = LP(X,, 1) consists of all p-equaivalence classes of 2A-measurable
functions f such that |f|? has finite integral over X with respect to pu.

We set U
= Pd )
1= ([ 1rpa)

9.3 Holder’s inequality

Theorem 9.3 Letp > 1, 1_17+ % = 1. Let f and g be measurable functions, |f|P and |g|?
be integrable. Then fg is integrable andthe inequality

| fgldp < | fIPdp Up |g|%d Uq.
X X X

Proof. 1t suffices to consider the case

1fllp >0, llgllg > 0.

Let
a=[f@IIF1,"5 b= lg@)lgly "

By Lemma 1

F@e@)] _ f@P g
1 Toligle = 21718 allgls

After integration we obtain

Sy - 1
T /X o<t elon

1
q
9.4 Minkowski’s inequality

Theorem 9.4 If f,ge LP, p>1, then f+ g € LP and

1+ gllo < [[f1lp + llgllp-

38



Proof. 1f || f]|, and ||g||, are finite then by Lemma 2 |f + ¢|Pis integrable and || f + ¢||,
is well-defined.

(@) +g(@)I” = |f(2)+g(@)|f (@)+g(@) P < |f (@)l f(2)+g(@)"~ +g(@)]| f(2)+g(a)"".

Integratin the last inequality and using Holder’s inequality we obtain

1/p 1/q 1/p 1/q
Pq P (p=1)q g ) ( P ) ( (r—=1)q g ) )
/X|f+g| MS(/XIfI u) </X|f+9| w) o + /Xlgl 1 /X|f+g| n

The result follows. W

9.5 [P 1<p< oo,is a Banach space

It is readily seen from the properties of an integral and Theorem 9.3 that L”, 1 < p < o0,
is a vector space. We introduced the quantity || f||,. Let us show that it defines a norm
on LP, 1 <p< o0, Indeed,

1. By the definition || f||, > 0.

2. [|fll, = 0= f(x) = 0 for p-almost all x € X. Since LP consists of u-eqivalence
classes, it follows that f ~ 0.

3. Obviously, [lef(l, = |al[| f],-

4. From Minkowski’s inequality it follows that || f + gll, < || f]l» + llgll,-

So LP, 1 < p < oo, is a normed space.
Theorem 9.5 [P, 1 <p < o0, is a Banach space.

Proof. 1t remains to prove the completeness.

Let (f,) be a Cauchy sequence in LP. Then there exists a subsequence (f,, )(k € N)
with n, increasing such that

1
||fm - fnka < ﬁ VYm > ng.

Then

» < 1.

k
Z aniJrl - fm
=1
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Let
gk = |fn1‘ + ‘fnz - fn1’ + T + |fnk+1 - fnk‘
Then gx is monotonocally increasing. Using Minkowski’s inequality we have

p
p> < ([ fnallp + 1)

k
lgxlly = llgelly < (Hmep + > Mfuis = fos
i=1

Put
g(x) := lim gy (x).

By the monotone convergence theorem

hm/ / gPdpu.

Moreover, the limit is finite since ||gh]l1 < C' = (|| fu, |, + 1)
Therefore

(o9}
| frr| + Z | fn;s1 — Jn;| converges almost everywhere

and so does

fr + Z Fryer = fny),

which means that

fri + Z<f”j+1 — fn;) = fan,, converges almost everywhere as N — oo.

Define
fl@) = Jim f,,(2)

where the limit exists and zero on the complement. So f is measurable.

Let € > 0 be such that for n,m > N
o= Sl = [ 1o = b < /2,
Then by Fatou’s lemma
18 b= [ o = gl <tim [ 1~ P

which is less than € for m > N. This proves that

\f = fullp, = 0 as m — oo. [ ]
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