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1 Description of Data

The data set is taken from Ryan, Joiner and Ryan (1985), ilitthature referred to as the Minitab blackcherry
data set. The purpose for collecting these data was to mravidiay of predicting the volume of timber in
unfelled trees, from their height and diameter measuresnesing a regression model. The initial model

volume = [y + frdiameter + Poheight + €

The original data is given at the end of this report. Our fissues is to determine visually if the proposed
model is appropriate. We include in Figure 1 a pairwise sgalidt of the variables. Taking into consideration
specfically the visual relationship between the dependarialevolume and the preditor variablediameter
andheight.
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Figure 1: Scatterplot matrix of dependent and predictoiaizdes.

2 Analysis

We first describe the initial multiple linear model. The suamgnbelow is taken directly for R summary window.

Call: Im(formula = volume ~ diameter + height, data =
blackcherry.dat)

Residuals:
Min 1Q Median 3Q Max
-6.4065 -2.6493 -0.2876 2.2003 8.4847

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -57.9877 8.6382 -6.713 2.75e-07 ook



diameter 4.7082 0.2643 17.816 < 2e-16 rokk
height 0.3393 0.1302 2.607 0.0145 *

Signif. codes: 0 ° =+ ' 0001 * =’001° 0057 01"'"1

Residual standard error: 3.882 on 28 degrees of freedom
Multiple R-Squared: 0.948, Adjusted R-squared: 0.9442
F-statistic: 255 on 2 and 28 DF, p-value: 0

This suggest a significant regression of the two variablasdter and height in predicting tree volume.
Further it suggests that 95% of the variation in the volumelwaaccounted for by the two variables diameter
and height.

As suggested, the next stage would be an examination of sidueds generated by the fitted model. A plot
of the residuals against each explanatory variable in theéeind he presence of a curvilinear relationship, for
example, may suggest that a higher-order term, perhapsdaagican the explanatory variable, should be added
to the model. Figure 2 shows the standardized residualteglagainst values of explanatory variables. There
appears to be a slight curvature in the plot of the residualshe diameter. This is considered later.
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Figure 2: Standardized residuals plotted against valuegmanatory variables.

A plot of the residuals against predicted values of the nespovariable. If the variance of the response
appears to increase with predicted value, a transformatidine response may be in order. Figure 3 shows the
standardized residuals plotted against the fitted valuéseafesponse variables.

A normal probability plot of the residuals. After all the sgmatic variation has been removed from the data,
the residuals should look like a sample from the normal ilistion. A plot of the ordered residuals against the
expected order statistics from a normal distribution pitesia graphical check of this assumption. We show a
normal probability plot in figure 4.

The ordinary residuals given by residuals, however, havestailmition that is scale dependent since the
variance of each; is a function of bothy? and the diagonal values of the so-called “hat” matrxgiven by:

H =X(X'X)"1X/

Consequently it is more useful to work with a standardizedioe of the residuals that does not depend on
either of these quantities. The standardized residualsadcalated as
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Figure 3: Standardized residuals plotted against valuéted response.
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Figure 4: Normal probability plot of standardized residual
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Examination of the enhanced normal probability plot (segpifé 5), indicates that the residuals show little
departure from normality. Few lie outside the constructefidence region.

The “hat” matrix is also helpful in identifying “strange” dpeculiar’ data points, that is, those having an
unusually large potential effect on the regression. Sucdhtpa@re indicated by relatively high values in the
appropriate position in the diagonal Hf. (The maximum value of any diagonal element is one.) Tecltyic
these points are referred to as having high leverage. As@@siously, the required diagonal values can be
found as one of the elements in the list returned byitiénfluencefunction. The values of the diagonal of the

hat matrix is given fronR below:

> diag(blackcherry.hat)
[1] 0.11582883 0.14720958 0.17686186 0.05919131 0.120664 68 0.15575111
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Figure 5: Enhanced normal probability plot of standardizsiduals.

[7] 0.11480262 0.05148096 0.09200658 0.04797237 0.073825 12 0.04809206
[13] 0.04809206 0.07275901 0.03764563 0.03566543 0.13130 916 0.14346152
[19] 0.06665975 0.21123665 0.03580935 0.04541796 0.04994 875 0.11142518
[25] 0.06930648 0.08841762 0.09603041 0.10641665 0.10982 638 0.10982638
[31] 0.22705852
>

None of these values appear to be significantly influenti#héncurrent model. In general, some form of index
plot of these values is preferable to presenting them in la.tabne such plot is to show the deviation of each
component value df from the average of the values. This type of plot is shown guFe 6.
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Figure 6: Index plot of leverage measures.

Here there seem to be no obvious problem points which mighmnblaly affecting the estimation process.

The leverage values are all relatively low.
Returning now to the evidence from the residual plots, a nedehinvolving a quadratic term iDiameter
might now be considered. Such a model is fitted very simplpgugnelm function, although the extra term.
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Diameter*Diametemeeds to be enclosed in the identity functitf), when specifying the model, to protect the
special character,*.
The summary on the quadratic model is given below:

Call:
Im(formula = volume ~ diameter + I(diameter * diameter) + height)

Residuals:
Min 1Q Median 3Q Max
-4.2928 -1.6693 -0.1018 1.7851 4.3489

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) -9.92041  10.07911 -0.984 0.333729

diameter -2.88508 1.30985 -2.203 0.036343 *
I(diameter * diameter) 0.26862 0.04590 5.852 3.13e-06 *kk
height 0.37639 0.08823  4.266 0.000218 *kk
Signif. codes: 0 ° #+ ' 0,001 ° %’ 001 * 005 ‘01" "1

Residual standard error: 2.625 on 27 degrees of freedom
Multiple R-Squared: 0.9771, Adjusted R-squared: 0.9745
F-statistic: 383.2 on 3 and 27 DF, p-value: 0

Similarly, we give residual plots for the quadratic modeid aee no significant departures for this assumed
quadratic model.
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Figure 7: Standardized residuals plotted against valuegménatory variables model including quadratic terms
in diameter.

Although the results in the previous summaries indicatetti@regression coefficients of both Height and
Diameter are significantly different from zero, it is ofteseful to explore a number of models in an attempt to
find the simplest that adequately describe the data. Ealgritiis involves adding or deleting terms from an
existing model and assessing the effect of the change. Rifumctions,add1 anddropl, can be used to look
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Figure 8: Standardized residuals plotted against fittegegabf explanatory variables model including quadratic
terms in diameter.
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Figure 9: Normal plot of standardized residuals with sirtedaconfidence interval for model including quadratic
effect of diameter.

at the effects of adding or dropping single terms from a mo#er exampleplackcherry.fitinvolves a linear
regression model with two explanatory variablameterandHeight The two models that can be formed from
deleting either variable can each be examined by using:

> blackcherry.dropl <-dropl(blackcherry.fit)

The information contained iblackcherry.droplis detailed in the summary below. Sums of squares due to
the deleted terms and residual sums of squares for the redocdel are given. Here their values indicate the
great importance of Diameter in the model. Also given arevidaes ofAlC (Akaike's Criterion). In models
involving large numbers of explanatory variables, thigistia can be helpful in identifying important subsets.

> blackcherry.dropl
Single term deletions



Model:
volume ~ diameter + height
Df Sum of Sq RSS AIC

<none> 421.9 86.9
diameter 1 4783.0 5204.9 162.8
height 1 102.4 524.3 91.7

The opposite approach starts from a model and adds on tefirfer €xample, the current model for the
data is one involving only an intercept:

> blackcherryO.fit

Call: Im(formula = volume ~ 1, data = blackcherry.dat)
Coefficients:
(Intercept)

30.17
> summary(blackcherryO.fit)
Call: Im(formula = volume = 1, data = blackcherry.dat)
Residuals:

Min 1Q Median 30 Max

-19.971 -10.771 -5.971  7.129 46.829

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept)  30.171 2.952 10.22 2.75e-11 ok

Signif. codes: 0 ° »*+ ' 0,001 ° =’ 001°' 005011

Residual standard error: 16.44 on 30 degrees of freedom

This function is slightly different from the S-Plus funatiadd1. Theadd1 function inR assumed that the
variables being added or removed are categorical in natfeeshow onlydropl here. To see what thadd1
function does in R, type ?add1 at the input cursor

The predicted values:

> predict(blackcherryl.fit,blackcherryl.dat,se.fit=T )
$fit

1 2 3 4 5 6
18.20203 20.11100 29.82670 42.04388 78.06641 97.81696

$se . fit

1 2 3 4 5 6
1.0041753 0.7772944 1.7471998 0.7039942 2.1687669 3.5557 485
$df
[1] 27

$residual.scale
[1] 2.624753



Exercise

1. Several authors, including Sprent (1982) have commaentigtiat the shape of a tree trunk is rather like
that of a cone. Consequently, it might be sensible to consimbelels of the form

V = khd*
Aitkinson (1987) suggests two such models

(@) (Volume)/3 on height and diameter.
(b) log(Volume) on log(height) and log(diameter)

Investigate both models.
Solution to Question 1

Question 1 arises from the discussion following the papektkinson(1982).You should locate this and read it.
Sprent in the same volume noted the following:

Is there not then a danger that this very computational stifyplmay make some users not
very discriminating in how they apply the approaches? Netrywuser of robust regression or
of diagnostic plots has the insight of an Andrews or an AtiimsFor example, do the users
of Andrews’ method always heed his warning about approps#drting values? Least squares
estimators can be disastrous for this. Is there not room fmerthought about specific models
when diagnostic plots suggest several that may be apptepri®erhaps | can illustrate my
point by reference to the tree data discussed in Section @réster or biologist will certainly
be attracted by the model of a tree as something very like a.c®his will be a very inexact
model; it may be distorted by the degree of branching of eaagh br by just how much of the
total superstructure is recorded as volume. Neverthelessdel that says volume, height,h
and base diameted, are related approximately by a formula

v = kd*h

where k is a constant seems a good starting point. Takingitbges immediately gives a linear
relationship and would seem to provide a good basis for pialtiegression exercises; but there
is still plenty of room for diagnostics, for goodness knowsaivsort of error structure we create
by taking logarithms, or even what it was before we took ldgars. Obviously some of Dr
Atkinson’s plots may help to sort this out as well as hightigh other difficulties. We would of
course also be worried about our model if the estimated cosdfis of logd and lodh differed
markedly from 2 and 1 respectively. Dr Atkinson does not tsliwhat his coefficients were
when he fitted this model. He does tell us though that his nusthiodicate that when the
explanatory variables are logged the transformation patanfor the response $=-00672
implying that something like logging the response variabkie right thing to do. | would have
been happy starting off with the logged cone type of modelrafiding it if need be in the light
of diagnostic checks even if this meant foregoing the excnrkeading to regressions such as
that ofv'/3 onh andd. Despite its dimensional correctness this appeals to nieangihysically
nor biologically. Perhaps when we get several models tlaakanost equally good statistically,
a choice might be aided by cross-validation techniques vthere are no biological, physical
or other grounds to aid a choiceproviding we have sufficietda.d

Below we give the summary and plots similar to those give iptesly for the model:

vol'/3 = Bo + Birdiameter 4+ Baheight + €



Call: Im(formula = (volume)™(1/3) ~ diameter + height, data =
blackcherry.dat)

Residuals:
Min 1Q Median 30 Max
-0.159602 -0.050200 -0.006827 0.069649 0.133981

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) -0.085388  0.184315 -0.463 0.647

diameter 0.151516  0.005639 26.871 < 2e-16 ok
height 0.014472  0.002777  5.211 1.56e-05 rkk
Signif. codes: 0 ° »*+ ' 0,001 ° +’001°' 005 01°"'"1

Residual standard error: 0.08283 on 28 degrees of freedom
Multiple R-Squared: 0.9777, Adjusted R-squared: 0.9761
F-statistic: 612.5 on 2 and 28 DF, p-value: 0
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Figure 10: Standardized residuals plotted against valuesptanatory variables model including model includ-
ing cube root effect on volume.

We further consider the model:

log(volume) = [y + Brlog(diameter) + Balog(height) + €
Call: Im(formula = log(volume) ~ log(diameter) + log(heigh t), data =
blackcherry.dat)
Residuals:
Min 10 Median 3Q Max

-0.168561 -0.048488 0.002431 0.063637 0.129223

Coefficients:
Estimate Std. Error t value Pr(>|t])
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Figure 11: Standardized residuals plotted against fittdwkegaof explanatory variables model including cube
root effect on volume.
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Figure 12: Normal plot of standardized residuals with seted confidence interval for model including cube
root effect on volume.

(Intercept)  -6.63162 0.79979 -8.292 5.06e-09 Hkk
log(diameter) 1.98265 0.07501 26.432 < 2e-16 *kk
log(height) 1.11712 0.20444  5.464 7.81e-06 Hkk
Signif. codes: 0 ° #* ' 0,001 ° =+’ 001 * 005 ‘01" 1

Residual standard error: 0.08139 on 28 degrees of freedom
Multiple R-Squared: 0.9777, Adjusted R-squared: 0.9761
F-statistic: 613.2 on 2 and 28 DF, p-value: 0
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Figure 13: Normal plot of standardized residuals with seted confidence interval for model including cube
root effect on volume.
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Figure 14: Normal plot of standardized residuals with seted confidence interval for model including cube
root effect on volume.

Finally, we consider all four of the models proposed.
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Figure 15: Standardized residuals plotted against valtiezpanatory variables model including log transfor-
mations on both the response, volume, and the predictonsetés and height.
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Figure 16: Standardized residuals plotted against fittddegaof explanatory variables model including log
transformations on both the response, volume, and thegboeslidiameter and height.
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Figure 17: Normal plot of standardized residuals with seied confidence interval for model including log
transformations on both the response, volume, and thegboeslidiameter and height.
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Figure 18: Normal plot of standardized residuals with seied confidence interval for model including log
transformations on both the response, volume, and thegboeslidiameter and height.
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Figure 19: Normal plot of standardized residuals with seied confidence interval for model including log
transformations on both the response, volume, and theqgtoeslidiameter and height.

Mode Estimate (Standard Errors) R? Significance
Bo = 57.9877(8.6382)
Model 1: v =3y+3:d + Boh + ¢ B1 = 4.7082(0.2643) 0.948 < 0.001
B2 = 0.3393(0.1302)

Bo = —9.92041(10.07911)
Sy = 2 B = —2.88508(1.30985)
Model 2: v =8y+61d +32d° + B3h + ¢ B = 0.26862(0.04590) 0.9771 < 0.001

By = 0.37639(0.08823)
Bo —0.85388(0.184315)

Model 3: /3 = Bo+5,d + Boh +¢ By 0.151516(0.005639)  0.9777 < 0.001
By = 0.014472(.002777)

Bo = —6.63162(0.79979)
Model 4: log(v) =6p+51log(d) +Balog(h) +e 51 = 1.98265(0.07501) 0.9777 < 0.001
By = 1.11712(0.20444)

Table 1: Four models considered for the Black Cherry Data
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Table 2: Black Cherry Tree Data
diameter height volume

8.3 70 10.3
8.6 65 10.3
8.8 63 10.2
10.5 72 16.4

10.7 81 18.8
10.8 83 19.7

11.0 66 15.6
11.0 75 18.2
111 80 22.6
11.2 75 19.9
11.3 79 24.2

11.4 76 21.0
11.4 76 21.4

11.7 69 213
12.0 75 19.1
12.9 74 22.2

12.9 85 33.8
13.3 86 27.4

13.7 71 25.7
13.8 64 24.9
14.0 78 34.5
14.2 80 31.7
14.5 74 36.3
16.0 72 38.3
16.3 77 42.6

17.3 81 55.4
175 82 55.7
17.9 80 58.3
18.0 80 51.5
18.0 80 51.0
20.6 87 77.0
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