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Abstract

Geodynamic simulations increasingly rely on simulations with a true free
surface to investigate questions of dynamic topography, tectonic deformation,
gravity perturbations, and global mantle convection. However, implementa-
tions of free surface boundary conditions have proven challenging from a stand-
point of accuracy, robustness, and stability. In particular, free surfaces tend to
suffer from sloshing instabilities, also known as the “drunken sailor” instabil-
ity, which severely limit time step sizes. Several schemes have been proposed
in the literature to deal with these instabilities.

Here we analyze the problem of creeping viscous flow with a free surface
and discuss the origin of these instabilities. We demonstrate their cause and
how existing stabilization schemes work to damp them out. We also propose
a new scheme for removing instabilities from free surface calculations. It does
not require modifications to the system matrix, nor additional variables, but
is instead an explicit scheme based on nonstandard finite differences. It relies
on a single stabilization parameter which may be identified with the smallest
relaxation timescale of the free surface.

Finally, we discuss the implementation of a free surface in the open source,
community based mantle convection software ASPECT.
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1 Introduction

Surface topography in simulations of mantle convection and other geodynamic pro-
cesses is an important observable, allowing insights into Earth’s internal density
structure, rheology, and geoid perturbations [e.g. 21, 11, 4]. Historically, most simu-
lations have been performed with free-slip boundary conditions at the surface, with
dynamic topography calculated as a postprocessing step [e.g. 26].

There have been several approaches to treating real free surfaces in geodynamic
simulations. Zhong et al. [25] introduced a pseudo-free-surface formulation, where the
free surface coordinate was treated as an extra variable that was integrated in time.
In this formulation, the free surface is approximated on the undeformed Eulerian grid
by applying pressure boundary conditions on the reference surface. The pressure is
determined by a first-order Taylor series approximation of the hydrostatic pressure
profile predicted by the surface topography.

A large number of studies have approximated free surfaces in the interior of the
domain by using the ‘sticky air’ approximation. In this approximation there is a
low-viscosity, low-density layer in the fluid (termed ‘air’, though its viscosity is much
higher) above the free surface, effectively decoupling it from the boundary. Typically
a free-slip boundary condition is used above the sticky air, though an open boundary
may be better [12].

Finally, one can use a true free surface, where a stress-free boundary condition
is applied on the boundary of the domain. In this case, there can be flow in and
out of the domain, so the boundary must move in time. A true free surface has
mathematical elegance in that the boundary condition of the domain more closely
matches the boundary conditions which one is trying to model, but it typically
requires a deformable domain with frequent remeshing to avoid ill-conditioned cells.

Recently, the nature of surface boundary conditions have been shown to be im-
portant for controlling the dynamics of subduction zone modeling. In a benchmark
study Schmeling et al. [22] performed extensive testing on the effect of a free surface
on the sinking of a slab. They found that the nature of the free surface had a large
effect on the dynamics of the slab, affecting both the shape and the timing of sinking.
Most of the participating codes in that benchmark used the sticky air approximation.
They found that the specific properties of the sticky air layer controlled the shape
and timing of the slab. Furthermore, the viscosity averaging scheme for areas of
transitional composition was extremely important, as the subducting slab entrained
significant amounts of the sticky air. Crameri et al. [5] conducted comparisons be-
tween sticky air and true free surface models, demonstrating a range of parameters
for sticky air which can mitigate some of the difficulties that it introduces. A study
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by Quinquis et al. [20] found that free surface boundary conditions have a large effect
on trench migration in a subduction zone, and Crameri et al. [6] found that a free
surface combined with a weak crust is important for producing one-sided subduction
zones.

All of the approaches to free surface simulations have been subject to an insta-
bility which has been variously termed a “sloshing,” or “drunken sailor” instability
[13, 8, 14]. This instability, arising from the large density contrast typical at a free
surface (compared with the much smaller internal density contrasts), severely limits
the maximum stable timestep for free surface computations. Frequently, the maxi-
mum stable timestep is several orders of magnitude smaller than that for an otherwise
equivalent model with free-slip boundary conditions.

Several studies have attempted to alleviate the timestepping requirements im-
posed by the sloshing instability. Since the most expensive part of geodynamic sim-
ulations is typically the Stokes solve, most free surface calculations have preferred to
use explicit time stepping methods for the free surface. Kaus et al. [13] proposed a
quasi-implicit scheme which modifies the discretized Stokes matrix, giving it better
stability properties. Kramer et al. [14] and Furuichi and May [10] explored methods
for solving the transport of the free surface implicitly.

The paper is organized as follows. After introducing the problem in Section 2, we
derive an approach to analyze free surface schemes based on the normal modes in Sec-
tion 3 and Section 4. In Section 5 we use this approach to look at the quasi-implicit
stabilization proposed in Kaus et al. [13]. Then, we propose a new time march-
ing scheme for free surface computations with good stability properties (Section 6).
Finally, we describe the implementation of a free surface in the mantle convection
software ASPECT in Section 7, before showing numerical results in Section 8.

2 Governing Equations

We begin with the incompressible momentum conservation equations for creeping
incompressible flow:

∇ ·T = ρg

∇ · u = 0
(1)

where u is the fluid velocity, ρ is the fluid density, and g is the force due to gravity.
T is the stress tensor for a Newtonian fluid, defined by

T = 2ηε(u)− pI (2)
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where η is the viscosity and ε(u) = 1
2
(∇u + (∇u)T ) is the strain-rate tensor. Sub-

stituting the stress tensor into Equation (1) gets the familiar form of the Stokes
equation:

∇ · (2ηε(u))−∇p = ρg (3)

For the purposes of this analysis it is useful to define a hydrostatic reference state
where the velocity u is zero:

−∇p0 = ρ0g (4)

where p0 is the reference hydrostatic pressure and ρ0 is a reference density profile
(which may vary with depth). The total pressure and density can then be decom-
posed into variations about their reference values: ρ = ρ0 + ρ′, p = p0 + p′.

Formally, this gives rise to the following time dependent, coupled system with
unknowns u(t) and p(t):

∇ · (2ηε(u))−∇p = ρg in Ω(t)

∇ · u = 0 in Ω(t)
(5)

defined on the bounded, moving domain Ω(t) ⊂ Rd with boundary ∂Ω = Γ0∪ΓF split
into a fixed (Dirichlet) and free surface part Γ0 and ΓF , respectively. For the sake
of economy we neglect inhomogeneous stress boundary conditions, though it would
be straightforward to include them. The domain at time t is defined by advecting a
reference configuration Ω0 by a mesh velocity umesh(t)

Ω(t) = Ω0 +

∫ t

t0

umesh(t) dt. (6)

The mesh velocity in normal direction is given by the velocity u(t) on the free surface

umesh(t) · n = u(t) · n on ΓF (7)

and set to zero on the rest of the boundary. We defer the discussion of the velocity
umesh in the interior of the domain to Section 7.1. Finally, we denote the displacement
at time t by ζ =

∫ t
t0

umesh(t) · n dt, leading to the evolution equation

dζ

dt
= u · n on ΓF . (8)
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3 Eigenvalue analysis

In order to better understand the time evolution of the system in (5) we will consider
the eigenvalues of a simplified homogeneous system. By setting ρ = ρ0, we obtain
the system

∇ · (2ηε(u))−∇p′ = 0

∇ · u = 0
(9)

We will proceed with this analysis within a finite element framework, though sim-
ilar arguments should work for other discrete methods. We transform the governing
equations into the weak form amenable to finite elements via standard operations
[e.g. 27] to get

−
∫

Ω(t)

2ηε(w) : ε(u) +

∫
Ω(t)

p′∇ ·w +

∫
ΓF (t)

w ·T · n = 0 (10)∫
Ω(t)

q∇ · u = 0 (11)

where w and q are suitably chosen test functions and the integrals over Ω(t) and
ΓF (t) are over the volume of the domain and the free surface, respectively. Note that
since the free surface can move, the shape of the domain is a function of time. It is
most convenient to integrate over the domain at the current timestep Ωn (where the
superscript indicates timestep number) instead of the at this point unknown Ωn+1.
This corresponds to an explicit scheme, which is not stable. However, as we will see,
the implicit scheme of integrating over the (unknown) domain at the correct time
Ωn+1 will give a stable scheme, at the cost of making the problem nonlinear [10].

The integral over the surface in Equation (10) accounts for boundary stresses,
which should be zero when evaluated on a true free surface. Rather than analyzing
finite deformation to the free surface (a nonlinear problem), we will make the ana-
lytically useful approximation of small deformations about the hydrostatic reference
surface and analyze their stability. We will therefore evaluate the integrals in Equa-
tion (10) over the hydrostatic reference surface and introduce a temporary auxilliary
variable ζ which represents the (small) topography of the free surface relative to
that reference surface. On the reference surface the gravity vector is opposite the
direction of the surface normal g = −gn. The stress on this reference surface can
be approximated by using the first order Taylor series expansion of the hydrostatic
pressure profile:

T ≈ ∂T

∂n
· nζ = ρ0gζI (12)
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Equation (10) then becomes

−
∫

Ω(t)

2ηε(w) : ε(u) +

∫
Ω(t)

p′∇ ·w +

∫
ΓF (t)

ρ0gζw · n = 0 (13)

We would like to analyze the time evolution of the normal modes of this system:
each mode is the relaxation of topography with a characteristic relaxation time. We
denote the normal modes by [ui, p

′
i, ζi]

T , with relaxation times τi, where the subscript
corresponds to the ith normal mode.

The equations decouple for the normal modes, and Equation (8) then becomes

d

dt
ζi(x, t) =

d

dt
ζi(x)e−t/τi = −ζi(x, t)

τi
= ui · n. (14)

This can then be used to eliminate ζ from the Stokes system:

−
∫

Ω(t)

2ηε(w) : ε(ui) +

∫
Ω(t)

p′i∇ ·w = τi

∫
ΓF (t)

ρ0g(ui · n)(w · n). (15)

When these equations are discretized [e.g. 15] we get[
A BT

B 0

] [
uni
pni

]
= τi

[
M 0
0 0

] [
uni
pni

]
(16)

where uni and pni are finite-dimensional representations of ui and p′i, and M is the
discretization of the bilinear form on the right-hand side of Equation (15).

Equation (16) is a generalized eigenvalue problem for the normal modes of the
system. It is rather more difficult to solve than a standard eigenvalue problem
because the matrix on the right-hand-side is not invertible. It may, however, be
transformed into a standard eigenvalue problem. Define

C =

[
A BT

B 0

]
D =

[
M 0
0 0

]
yi =

[
uni
pni

]
(17)

Then multiplying both sides by τ−1
i C−1 we get

(C−1D)yi = τ−1
i yi (18)

This eigenvalue equation can be solved for the normal modes and relaxation times
of the Stokes system with a free surface.
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4 Time integration of the free surface

Armed with the normal modes and relaxation times of the Stokes system, we can
write down the formal solution to Equation 8. Let the initial surface topography be
represented by a linear combination of its normal modes

ζ(x, t = 0) =
∑
i

aiζi(x) (19)

then the time evolution of the free surface is given by

ζ(x, t) =
∑
i

aiζi(x)e−t/τi . (20)

Of course, most finite element (or finite difference, or finite volume) geodynamic
simulations do not resolve the solution and surface topography into its normal modes
and integrate those separately. Indeed, analytical solutions for the normal modes
are only known for simple geometries and rheologies. Instead, they obtain a velocity
solution and simply advect the free surface with the local velocity. The normal mode
solution is instructive, however. Each mode has the form of a decay equation with
characteristic decay time τi. The decay equation is the archetypical example of a
stiff ordinary differential equation. If we were to numerically integrate this in time
with a forward Euler method, we would find the time-step criterion for stability [e.g.
16] to be

∆t ≤ 2τmin. (21)

The maximum allowable timestep is limited by the minimum relaxation timescale.
If a larger timestep than this is taken then those modes will go unstable. The modes
with the smallest relaxation times are usually those with the largest lengthscales [23],
and so it will be those which go unstable first, a phenomenon which has been called
a “sloshing”, or “drunken sailor” instability [13].

5 Analysis of quasi-implicit stabilization

The relaxation timescales for surface topography tend to be considerably shorter
than those for convection or tectonic deformation, so the stability requirements for
a forward Euler scheme are quite onerous. On the other hand, an implicit time
marching scheme requires solving a nonlinear system for the new surface position, or
assembling a larger system with surface topography unknowns [e.g. 14].
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Kaus et al. [13] proposed a scheme whereby the body forces on the domain are
evaluated on a prediction of the shape of the domain at a later time. The weak form
of the right-hand-side body forces in the finite element discretization is then

fbody =

∫
Ωn+∆Ω

ρw · g (22)

where the superscript n on Ω indicates the shape at the nth timestep. The shape
prediction can be approximated by integration of the velocity:

∆Ω ≈ θ∆tu (23)

where θ is a free parameter that corresponds to the magnitude of the correction,
where zero is no stabilization and one is fully (quasi) implicit.

One can approximately expand the integral in Equation (22) using Reynold’s
transport theorem to find∫

Ωn+∆Ω

ρw · g ≈
∫

Ωn

ρw · g + θ∆t

∫
Γn
F

ρ(w · g)(u · n) (24)

The volume integral is the same as that of the unstabilized problem, but now we
obtained an additional surface integral. It has the form of a velocity-dependent
surface stress pushing down on the domain, and can be thought of as an artificial
viscous damping of the surface. Since the term depends on the velocity, it enters the
system matrix as a stabilization term. Empirically it has been found to be successful
at damping instabilities [13, 20, 8].

Indeed, using the formalism in Section 3 we can see the effect of this stabilization
term. On the reference surface we note that g = −gn, which allows us to write the
stabilization term as

− θ∆t
∫

Γn
F

ρg(w · n)(u · n) (25)

The integral here is precisely the same as that on the right hand side of Equation (15),
which was discretized as the matrix M .

If we discretize the Stokes system with the quasi-implicit stabilization term, we
find a new generalized eigenvalue problem:[

A+ θ∆tM BT

B 0

] [
uni
pni

]
= τSi

[
M 0
0 0

] [
uni
pni

]
(26)

where τSi indicate the eigenvalues of the stabilized system. This system may be
rearranged: [

A BT

B 0

] [
uni
pni

]
=
(
τSi − θ∆t

) [M 0
0 0

] [
uni
pni

]
. (27)
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This is precisely the same generalized eigenvalue problem as Equation (16), so
its eigenvalues must be the same. This allows us to write the eigenvalues of the
stabilized problem in terms of those of the unstabilized problem:

τSi = τi + θ∆t (28)

Essentially, the stabilization term lengthens every relaxation time for the system
by an amount θ∆t. This correspondingly lengthens the maximum stable timestep
for the forward Euler method:

∆t ≤ 2

1− θτmin. (29)

Note that as θ goes to one this scheme should become unconditionally stable, but
nonlinear effects and discretization errors due to finite deformation of the surface
could prevent that stability.

The lengthening of relaxation times due to the quasi-implicit stabilization has an
unequal effect on the modes. They are all lengthened by the same amount, which
is a much bigger fraction of the total relaxation time for the shorter-time modes
than the longer-time ones. Therefore the shorter-time modes are effectively damped
more. This can be seen as an attractive feature of the scheme, since those are the
least stable modes, though it can result in less accurate time-marching of the longest
wavelengths of the system.

6 A novel time-integration scheme

One downside of the quasi-implicit scheme is that it requires a modification of the
system matrix. A naive implementation of the scheme results in a slightly asym-
metric matrix, which can be more difficult to solve, requiring either changes to the
solver/preconditioner, or symmetrization of the stabilization term [13]. An alterna-
tive would be to construct a time-integration scheme with better stability properties.
The reason that forward Euler integration performs so badly with the decay of to-
pography is that at larger timesteps it overshoots its equilibrium position. This
overshoot causes it to lurch back to the other side of equilibrium, overshooting even
more. We would like to construct an explicit scheme that accounts for following
properties which we know the system has:

• In the absence of forcing, topography always decreases.

• Relaxation of small amplitude topography takes the form of exponential decay.

• The decay mode with the shortest relaxation time is the least stable.
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6.1 Nonstandard finite-differences

A general expression for the evolution of a free surface from time tn to time tn+1 is

x(tn+1) = x(tn) +

∫ tn+1

tn
u(t) dt (30)

where x is the location of the free surface. If we approximate u(t) ≈ u(tn), we
of course recover the forward Euler scheme. However, we can make another choice
based on our knowledge of the system behavior. We can approximate u(t) as

u(t) = u(tn)e−(t−tn)/τ∗ (31)

where τ ∗ is some as-yet undetermined positive constant. This form of u automatically
decays in time, and as we shall see, has much better stability properties than forward
Euler integration. Using Equation (31) in Equation (30) and integrating, we find

x(tn+1) = x(tn) + u(tn)τ ∗
(
1− e−∆t/τ∗

)
(32)

The quantity τ ∗(1 − e−∆t/τ∗) acts as a pseudo-timestep for advecting the free-
surface. Equation (32) is what is known as a nonstandard finite-difference model,
based on constructing unusual discrete models for differential equation integration.
The theory has been developed in, among others, a series of papers by Mickens
[17, 18, 19].

6.2 Stability of the scheme

The parameter τ ∗ sets how quickly u decays in Equation (31), and a good choice is
crucial for accuracy and stability. A shorter decay time corresponds to more stabi-
lization, but if it becomes too short, the surface velocity will become overdamped. In
general, we will want to choose τ ∗ so that it is as close as possible to the relaxation
time of the least stable mode, or τmin.

To investigate the stability of this scheme we consider a velocity solution com-
prised of a single normal mode of the system u = aiui. This will decay exponentially
with relaxation time τi, or

dai
dt

= −ai
τi
. (33)

Applying the nonstandard finite difference scheme, we find

ani = an+1
i

[
1− τ ∗

τi

(
1− e−∆t/τ∗

)]
. (34)
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In order for the scheme to be stable, the quantity in brackets must not blow up as it
is repeatedly multiplied by itself, or∣∣∣∣1− τ ∗

τi

(
1− e−∆t/τ∗

)∣∣∣∣ ≤ 1. (35)

The stability of this scheme is determined by the choice of τ ∗. It has a region of
unconditional stability, where

τ ∗ ≤ 2τi. (36)

Otherwise, the scheme is conditionally stable, with the timestep limited by

∆t ≤ −τ ∗ log
(

1− 2
τi
τ ∗

)
. (37)

The stability region is plotted in Figure 1.

6.3 Accuracy and asymptotics of the scheme

It is important to note that even though we derived the nonstandard finite difference
scheme assuming a decaying exponential for u, it is formally a first-order accurate
scheme. As such, it is capable of capturing arbitrary motions of the free surface, but
with better stability properties than forward Euler schemes.

Again we may take one of the normal modes as an example and inspect the dif-
ference between the nonstandard finite-difference scheme and the analytical solution
after one time step:

ai(∆t)− a1
i = ai(0)e−∆t/τi − ai(0)

[
1− τ ∗

τi

(
1− e−∆t/τ∗

)]
= ai(0)

[
e−∆t/τi − 1 +

τ ∗

τi

(
1− e−∆t/τ∗

)]
.

(38)

Note that when τi = τ ∗ the nonstandard finite difference scheme is exact. The
exponentials may be expanded to find

ai(∆t)− a1
i = ai(0)

(
∆t

τi

)2 (
1− τi

τ ∗

)
+O(∆t3). (39)

Summing this error over many timesteps results in a factor of ∆t−1, demonstrating
the first-order accuracy [16, e.g.]. The choice of τ ∗ controls the size of the coeffi-
cient on the truncation error for the scheme. The error for a given mode becomes
considerably smaller when τ ∗ is close to its natural relaxation times.
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Figure 1: (a) Stability region for the nonstandard finite difference scheme (green).
On the x-axis is the value of the stabilization time, in units of the minimum re-
laxation time τmin. On the y-axis is the value of the timestep, also in units of the
minimum relaxation time. For τ ∗ ≤ 2τmin the nonstandard finite difference scheme
is unconditionally stable. (b) Stability region for the quasi-implicit scheme (green).
Again, the y axis is in units of the minumum relaxation time. The x-axis shows the
value of the stabilization parameter θ. For θ = 1 the quasi-implicit scheme is uncon-
ditionally stable. In both cases the stability region for the forward Euler scheme is
also shown in blue.
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It is helpful to take a closer look at the pseudo-timestep introduced in Equa-
tion (32): τ ∗(1 − e−∆t/τ∗). As the timestep ∆t goes to zero, the pseudo timestep
approaches ∆t, recovering the forward Euler scheme. However, as ∆t gets larger, the
pseudo-timestep does not increase as quickly, reflecting the decaying nature of the
normal modes. Likewise, as the stabilization timescale τ ∗ goes to infinity, we also re-
cover the forward Euler scheme, in what is essentially the unstabilized problem. But
as τ ∗ goes to zero, the pseudo-timestep also goes to zero. This corresponds to over-
stabilizing the problem. With too short of a stabilization timescale the free surface
is never advected at all (which is a very stable situation, if not very accurate!).

6.4 Choice of τ ∗

As discussed above, a full geodynamic simulation will have a spectrum of relaxation
times. For complete stability, the parameter τ ∗ should be chosen such that every
mode is stable. In practice, this means that a good choice is

τ ∗ ≈ τmin. (40)

Unfortunately, for many models the minimum relaxation time will not be known
beforehand. In order to use the nonstandard finite difference scheme, the value of
τ ∗ would need to be calculated or estimated first. There are several possible ways to
determine this value:

• Direct solution of Equation (16). This can be expensive, although only the
minimun relaxation time is required. For certain geometries a simple power
iteration on the standard eigenvalue problem (18) could be enough.

• Analytical formulae. Several geometry and viscosity model combinations have
analytical solutions for relaxation spectra. Even if the user’s model is not
precisely the same (e.g., has some lateral viscosty variations), an analytical
approximation may be sufficient.

• Scaling. In general, we expect the relaxation times to scale with τ ∼ η
ρgL

, where
the density, gravity, viscosity, and lengthscale are all representative values. A
small amount of experimentation near this value of τ can find an appropriate
relaxation time.

• Observation of instabilities. The mere act of observing a sloshing instability in
an unstabilized problem can furnish an estimate of its relaxation time.
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7 Implementation in ASPECT

We have implemented the ability to run free surface simulations in the mantle con-
vection software ASPECT [3, 15]. ASPECT, based on the open source, finite element
library deal.II [2], is designed to be highly flexible and modular, with the ability for
user-defined rheologies, geometries, and gravity models. The implementation of the
free surface, therefore, needs to be general enough to work for many combinations of
these models, including those which may not have been written yet. In particular,
it cannot rely on assumptions regarding the shape of the domain.

Furthermore, ASPECT allows for computations in both 2D and 3D, so the imple-
mentation must be sufficiently dimension independent to work in both cases. We
implement the free surface within an arbitrary Lagrangian-Eulerian (ALE) formula-
tion [e.g 9, 7].

ASPECT is a parallelized, distributed memory code with adaptive mesh refinement
(see [1] for details). The free surface implementation works with these features. We
store the mesh vertex positions in a fully distributed vector. This vector is continually
updated and redistributed across processes upon mesh adaptation (which is handled
by the adaptive octree library p4est). We also provide adaptive refinement indicators
based on being near to the free surface or when the free surface slope is steep to allow
for accurate interface tracking.

7.1 Remeshing

In ALE calculations the internal mesh velocity is undetermined. In general, one
wants to smoothly deform the mesh so as to preserve its regularity, avoiding inverted
or otherwise poorly conditioned cells. The mesh deformation can be calcluated in
many different ways, including algebraic [e.g. 24] and PDE based approaches.

We choose to implement remeshing based on solving Laplace’s equation for the
mesh velocity. We solve the equation

∇2umesh = 0 (41)

subject to the boundary conditions

umesh = 0 on Γ0.

umesh = (u · n) n on ΓF ,

umesh · n = 0 on ΓFS,

(42)

where ΓFS is the part of the boundary with free slip boundary conditions u · n = 0.
This scheme has the advantage of working for many different domain geometries and
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combinations of boundary conditions. For moderate mesh deformation, the mesh
stays smooth and well conditioned, though it breaks down for large deformations or
on non-convex domains.

7.2 Surface advection

With a deformable domain there is the danger that small errors in free surface motion
can result in poor overall mass conservation in time. In some scenarios, the total
volume of the mesh can fluctuate significantly over hundreds or thousands of time
steps. Consistency with the Stokes solution requires

umesh · n = u · n. (43)

Unfortunately the normal vectors are not well defined on the mesh vertices, which
is where the mesh velocity is defined. One could instead advect the mesh in the
direction of the local vertical, or in some weighted average of the cell normals adjacent
to a given vertex, but we have found that these schemes do not necessarily have good
mass conservation properties.

A better approach is to perform a finite element projection of the Stokes velocity
solution onto the mesh velocity vector. Multiplying the boundary conditions (42) by
a test function w and integrating over the free surface part of the boundary, we find∫

ΓF

w · umesh =

∫
ΓF

(w · n) (u · n) . (44)

When discretized, this forms a linear system which can be solved for the mesh velocity
umesh at the free surface. Of course, a new system to solve is not ideal, but this
system, being nonzero over only the free surface, is relatively small and easy to
solve.

This weak solution to the boundary conditions (42) is able to borrow the accuracy
of the Stokes solve for Equation (11), and we have found it to conserve mass more
accurately than algebraic techniques for evaluating the mesh-normal velocity. Similar
results were found by Fullsack [9].

8 Numerical Results

We demonstrate the convergence of the nonstandard finite difference model by com-
parison with an analytical solution. Following Kramer et al. [14] we model the
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relaxation of sinusoidal surface topography in a two-dimensional Cartesian box with
an isoviscous fluid. The setup is shown in Figure 2.

The initial topography is given by

ζ(x, 0) = ζ0 cos (kx) (45)

where k = 2π/L.
The time evolution of this topography is then

ζ(x, t) = ζ(x, 0)e−t/τ (46)

where the relaxation time τ is given by

τ =
Dk + sinh(Dk) cosh(Dk)

sinh2(Dk)

2kη

ρg
(47)

where D is the layer depth, η is the viscosity, ρ is the density, and g is the force of
gravity.

This solution is only valid for infinitesimal topography. However, for small initial
topography ζ0 it seems to be sufficiently accurate to test convergence orders up to
quadratic [14, 10]. We evaluate error by time-integrating the L2 difference between
the numerical and analytical solutions at the center of the domain:

Error =
1

4τ

∫ 4τ

0

‖ζnumeric(L/2, t)− ζanalytic(L/2, t)‖2 dt. (48)

Figure 3a shows the convergence of the nonstandard finite difference scheme with
respect to timestep size. The scheme is first order in time, with improving accuracy as
the value of τ ∗ approaches the relaxation time of the relevant mode τi. Interestingly,
if τ ∗ = τi the advection scheme becomes exact [18]. At this point the magnitude of
the error plummets and is no longer a strong function of the timestep. The remaining
error is likely due to error in the linear approxmation for the analytical solution, the
spatial discretization, or the linear solver tolerance.

Figure 3b shows the convergence of the quasi-implicit scheme with timestep.
When θ = 0, it corresponds to the unstabilized forward Euler scheme, and is first
order in time. When θ = 1 it is also first order in time, but allows for a much
larger timestep. When θ = 0.5 the quasi-implicit guess for the body force is good
enough that it actually seems to achieve the second-order convergence of a trapezoidal
scheme, though it is not clear whether this extends to more complicated models.

Figure 4 shows in more detail the effects of the choice of τ ∗. In a narrow region
close to the true value of τmin the error becomes very small, but in a broader region
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Figure 2: Setup for the free surface relaxation benchmark. A 2D box with an isovis-
cous fluid has sinusoidal initial topography, with amplitude ζ0. The box has depth
D and length L. For our tests ρ = η = g = D = L = 1, and ζ0 = 0.005.
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Figure 3: Convergence tests for the benchmark shown in Figure 2. (a) Convergence
test with timestep size for the nonstandard finite difference scheme. Comparison
with the slope-one line confirms that it is first-order in time. In the case that the
stabilization relaxation time τ ∗ is equal to the analytic relaxation time the error
becomes very small, as the time integration scheme becomes exact [18]. (b) Conver-
gence test with timestep size for the quasi-implicit scheme. For θ = 1 and θ = 0 the
scheme is first-order accurate (though the latter is just an unstabilized forward-Euler
scheme). For θ = 0.5 the scheme appears second order accurate on this benchmark.

nearby the errors are larger. The excellent accuracy when the stabilization timescale
τ ∗ is close to one of the natural relaxation timescales allows for tuning of the scheme
to track specific long-wavelength modes, such as those due to rotational or tidal
deformation.

We also investigate the advantages of combining adaptive mesh refinement with
free surface computations. Crameri et al. [5] performed a community benchmark
of a setup for which there is no analytic solution. In this benchmark, a buoyant
blob rises beneath a viscous lid with a free surface, deflecting the boundary upwards
(for the full setup, see Crameri et al. [5]). Figure 5 shows the convergence of the
maximum topography at 3 Myr to its value in a high resolution simulation, both
with and without adaptive mesh refinement. For the uniform refinement cases each
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Figure 4: Sensitivity of the nonstandard finite difference scheme to τ ∗. As the
relaxation parameter τ ∗ approaches the relaxation time of the benchmark case the
error reduces. The sharp cusp at τ ∗ = τmin corresponds to the almost spectral
accuracy of the time marching scheme for that case.
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point is generated by running the benchmark with a different global refinement level.
For the adaptive case each point is generated by allowing the mesh to be refined,
where the maximum refinement level is limited to the same refinement level of the
corresponding global refinement simulation. We refine every ten timesteps according
to gradients in the density and compositional fields.

The convergence with and without adaptive mesh refinement have essentially the
same behavior, but the adaptive case requires fewer degrees of freedom by a factor of
approximately an order of magnitude. More complex models will have more detail
and so we may be less able to aggressively coarsen them, but we still expect that
adaptive mesh refinement will result in significant computational savings.

9 Conclusion

We have analyzed stability of free surface boundary conditions in geodynamic sim-
ulations and demonstrated the cause of sloshing instabilities using a normal mode
analysis. This perspective on the problem allowed us to construct an explicit finite
difference scheme which is first order accurate in time and is unconditionally sta-
ble. The nonstandard finite difference scheme is extremely simple to implement, and
requires no modifications to the system matrix.

The normal mode perspective on the problem also provides insights into the
effect of the quasi-implicit stabilization scheme proposed by Kaus et al. [13]. The
relaxation time of each mode is lengthened by an amount θ∆t, and the maximum
allowable timestep is correspondingly lengthened.

It is not clear that the non-standard finite difference scheme is superior to the
quasi-implicit scheme. For θ = 0.5 the quasi-implicit scheme is more accurate, but
is only conditionally stable. For θ = 1 the two schemes are comparably accurate in
the tests we ran.

Finally, we have described the implementation of free surface boundary condi-
tions in the open source mantle convection software ASPECT. Both the quasi-implicit
scheme and the nonstandard finite difference scheme are available. The implementa-
tion is sufficiently general to accommodate many different geometies, rheologies, and
gravity models. Furthermore, it runs in parallel and with adaptive mesh refinement.
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