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Abstract: This paper provides an overview of the new features of the finite element library
deal.II version 8.4.0.

1 Overview

deal.II version 8.4.0 was released March 15, 2016. This paper provides an overview of the
new features of this release and serves as a citable reference for the deal.II software library
version 8.4.0. deal.II is an object-oriented finite element library used around the world in the
development of finite element solvers. It is available for free under the GNU Lesser General
Public License (LGPL) from the deal.II homepage at http://www.dealii.org/.

The major changes of this release are:

– Parallel triangulations can now be partitioned in ways that allow weighting cells differently.

– Improved support for mixed-type arithmetic throughout the library.

– A new triangulation type that supports parallel computations but ensures that the entire
mesh is available on every processor.

– An implementation of the Rannacher-Turek element, as well as an element that extends the
usual Q(p) elements by bubble functions.

– Second and third derivatives of finite element fields are now computed exactly.

– The various Concepts, or requirements on template parameters in the library, are now con-
sistently labeled and documented as such.

http://www.dealii.org/
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– The interface between finite elements, quadrature, mapping, and the FEValues class has
been rewritten. It is now much better documented.

– Initial support for compiling with Visual C++ 2013 and 2015 under Microsoft Windows has
been added.

– More than 140 other features and bugfixes.

The more important ones of these will be detailed in the following section. Information on how
to cite deal.II is provided in Section 3.

2 Significant changes to the library

This release of deal.II contains a number of large and significant changes that will be discussed
in the following sections. It of course also contains a vast number of smaller changes and added
functionality; the details of these can be found in the file that lists all changes for this release and
that is linked to from the web site of each release as well as the release announcement.

2.1 Parallel triangulations can now be partitioned with weights

Previously, partitioning a parallel mesh (represented by objects of classparallel::distributed::-
Triangulation) between processors assumed that every cell should be weighted equally. On
the other hand, the p4est library which manages the partitioning process, allows for attaching
weights to each cell and thereby enables ways in which not the number of cells per MPI process
is equilibrated, but the sum of weights on the cells managed by each process. deal.II now also
supports this feature.

The implementation of this mechanism is based on a callback mechanism, in the form of the signal-
slot design pattern. User codes can register functions that will be called upon mesh refinement
and coarsening, returning a weight for each cell. These weights will be added up over all slots
(i.e., callback functions) connected to the signal.

The mechanism chosen has the advantage that all parties that use a triangulation, for example
multiple DoFHandler objects or a scheme that tracks particles that are advected along with a flow
field and stores them per-cell, can indicate their computational needs for each cell. In particular,
there is no central place in a user code (other than the triangulation itself) that has to collect these
needs and forward this information.

2.2 Improved support for mixed-type arithmetic throughout the library

When evaluating finite element fields or their derivatives at a points xq, one typically has to do
an operation of the form

uh(xq) =
∑

j

U jϕ j(xq),

∇uh(xq) =
∑

j

U j∇ϕ j(xq).

The value or derivatives of shape functions, ϕ j(xq) or ∇ϕ j(xq) are internally evaluated by classes
derived from the FiniteElement and Mapping, and are computed as scalars or tensors of type
double. On the other hand, the expansion coefficients of the field, U j are stored in vectors over
scalar types chosen by the user; their underlying representation could be double, but also float,
long double, PetscScalar, or std::complex<float>. It could also be an autodifferentiation
type.

https://www.dealii.org/8.4.0/doxygen/deal.II/changes_between_8_3_0_and_8_4.html
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To facilitate the correct typing of the computed quantity, deal.II now contains mechanisms by
which one can evaluate the type of the product of two values, and this type is now consistently
used throughout the library in expressions such as those above. Thus, as an example, if the
user stores the expansion coefficients in a Vector<long double>, then the gradients ∇uh(xq) will
be computed as objects of type Tensor<1,dim,long double>. Likewise, if a user uses a PETSc
vector, and PETSc was configured with complex scalar types, then the second derivatives of the
solution field will be computed as SymmetricTensor<2,dim,PetscScalar>, which should equal
SymmetricTensor<2,dim,std::complex<double> >.

These improvements make type-correct computations possible in many places. In particular, this
enables the use of complex-valued solution vectors in many more places than before. On the
other hand, many but not all places have learned what actually to do with complex numbers.
This is, in particular, true for the DataOut class that generates an intermediate data format that
can then be written to graphical output files for visualization. Since no format we are aware of
supports complex numbers, future versions still need to learn how to separate real and imaginary
parts of complex numbers, and output them as two components.

2.3 A new “shared” triangulation type for parallel computations

deal.II already has two types of triangulations: the Triangulation<dim,spacedim> class works
entirely locally, whereas parallel::distributed::Triangulation<dim,spacedim> builds on
the former, but only stores the local partition that corresponds to a globally distributed trian-
gulation managed across an MPI network. One could, however, use the former also for parallel
computations in situations where one needs access to all cells, not just the subset of cells that
correspond to the partition owned by the current processor. This required building the same
triangulation on all processors, then manually partitioning it (e.g., via METIS), calculating and
storing index sets of locally owned and locally relevant degrees of freedom (DoFs), querying the
subdomain_id of a cell during assembly, etc.

In order to simplify this usage of the Triangulation class with MPI and to make its be-
havior in this context consistent with parallel::distributed::Triangulation, a new class
parallel::shared::Triangulation has been introduced. It extends the Triangulation class
to automatically partition the triangulation when run with MPI. Shared functionality between
the shared and distributed triangulation classes (e.g., locally owned and relevant DoFs, MPI
communicators, etc) is now grouped in a common parent class parallel::Triangulation. The
main difference between the two classes is that in the case of parallel::shared::Triangulation
each process stores all cells of the triangulation. Consequently, by default there are no artificial
cells. That is, cells which are attributed to the current processor are marked as locally owned
(cell->is_locally_owned() returns true) and the rest are ghost cells. This behavior can be
altered via an additional boolean flag provided to the constructor of the class. In this case, the
set of ghost cells will consist of a halo layer of cells around locally owned cells. Cells which are
neither ghost nor locally owned are marked as artificial. This is consistent with the behavior
of parallel::distributed::Triangulation, although in the latter case the size of the set of
artificial cells will be much smaller.

The introduction of the parallel::shared::Triangulation class together with the optional
artificial cells and parent parallel::Triangulation class facilitates writing algorithms that are
indifferent to the way a triangulation is stored in the MPI context. For example, the function
DoFTools::locally_active_dofs() will return the appropriate subset of all DoF indices for
both triangulations. Assmebly routines can use predicates such as cell->is_locally_owned()
for both triangulations.

Based on the new triangulation class, the (non-hp) DoFHandler manages degrees of freedom
in the same way as it has already done for a long time for sequential and parallel distributed
triangulations.
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2.4 Second and third derivatives of finite element fields are now computed exactly

Second derivatives of solution fields, i.e.,

∇
2uh(xq) =

∑
j

U j∇
2ϕ j(xq)

were previously computed by finite differencing of first derivatives. The reason for this approach
is that in order to compute the second derivatives of shape functions, ∇2ϕ j(xq) one needs (at least)
derivatives of the inverse of the Jacobian of the mapping. This is easy to see because, for the
usual Qp Lagrange elements, one has that ∇ϕ j(xq) = J−1

∇̂ϕ̂ j(x̂q), where quantities with a hat refer
to coordinates and functions on the reference cell, and J is the Jacobian of the mapping from
reference to real cell. Thus, the second derivatives satisfy

∇
2ϕ j(xq) = J−1

∇̂

[
J−1
∇̂ϕ̂ j(x̂q)

]
= J−1 J−1

∇̂
2ϕ̂ j(x̂q) + J−1

(
∇̂[J−1]

)
∇̂ϕ̂ j(x̂q),

where in the last expression, matrices and tensors of rank 1 and 3 have to be appropriately
contracted. Here, the difficulty lies in computing the derivative ∇̂[J−1]: for the usual mappings
on quadrilaterals and hexahedra, J is in general a polynomial in the reference coordinates x̂, so J−1

is a rational function. It is possible to compute the derivatives of this object, but they are difficult
and cumbersome to evaluate, especially for higher order mappings.

The key to computing second (and higher) derivatives of shape functions is to recognize that
∇̂[J−1] can be expressed more conveniently by observing that

0 = ∇̂I

= ∇̂(JJ−1)

= J(∇̂[J−1]) + (∇̂J)J−1,

and consequently ∇̂[J−1] = −J−1(∇̂J)J−1. Here, J−1 is a matrix that is already available from
computing first derivatives, and ∇̂J is an easily computed rank-3 tensor with polynomial entries.
Using this approach, we have

∇
2ϕ j(xq) = J−1 J−1

∇̂
2ϕ̂ j(x̂q) − J−1 J−1(∇̂J)J−1

∇̂ϕ̂ j(x̂q),

again with an appropriate set of contractions over the indices of the objects on the right.

This, and corresponding extensions to compute third derivatives, have now been implemented
in several of the finite element and mapping classes by Maien Hamed, and are available through
the FEValues interface to shape functions and their derivatives.

2.5 Visual C++ support

The library can now be compiled under Windows with Visual C++ 2013 and 2015. The support
is still experimental for the following reasons: First, we currently only support static linking.
This will slow down linking of application code immensly. Second, only a minimal testsuite is
working, which is mainly because static linking of thousands of test executables is not viable.
Therefore, we can not exclude the possibility of subtle bugs in the library. Finally, there is of
course limited support for external packages.
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2.6 Incompatible changes

2.6.1 Revision of the interface between finite elements, quadratures, and mappings Fi-
nite element classes describe shape functions as continuous (as opposed to discrete) objects on
the reference cell. On the other hand, in actual practice, one only needs information about shape
functions at finitely many quadrature points, and these are typically the same on every cell in a
loop over all cells. Furthermore, the evaluation of shape functions at quadrature points then also
needs to be mapped to the real cell, typically using a polynomial mapping.

To facilitate this complex interplay, deal.II has three class hierarchies rooted in the base classes
FiniteElement (for the description of shape functions on the reference cell), Quadrature (for the
locations and weights of quadrature points on the reference cell), and Mapping (for the description
of mappings from the reference to the real cell). In almost all cases, users create an object of a
derived class for each of these categories, but they never access any of the members of these
classes and instead leave this task to the FEValues class (and FEFaceValues, FESubfaceValues)
that presents all one typically needs: the mapped values, gradients, and higher order derivatives
of shape functions at the quadrature points of the real cell.

The interplay between these classes in the FEValues interface is one of the oldest parts of the
library. It was, at the time, not designed based on specifications we explicitly or implicitly knew
this class had to satisfy, but instead organically grew to its current state. These interfaces have
now been fundamentally rewritten: some functions have been replaced; several others had their
argument lists shuffled, sorted, and made more uniform; and everything has generally been far
better documented.

None of the changes in this arena is visible to the average user. The only user codes that are
affected in an incompatible way are those that implement finite element or mapping classes.

2.6.2 Other incompatible changes The file that lists all changes for this release lists another
18 incompatible changes, but none of these should in fact be visible in typical user codes. Some
remove previously deprecated classes and functions, and the majority change internal interfaces
that are not typically used in user codes.

3 How to cite deal.II

In order to justify the work the developers of deal.II put into this software, we ask that papers
using the library reference one of the deal.II papers. This helps us justify the effort we put into
it.

There are various ways to reference deal.II. To acknowledge the use of a particular version of
the library, reference the present document. For up to date information and bibtex snippets for
this document see:

https://www.dealii.org/publications.html

The original deal.II paper containing an overview of its architecture is [7]. If you rely on specific
features of the library, please consider citing any of the following:

– For geometric multigrid: [22, 21];

– For distributed parallel computing: [6];

– For hp adaptivity: [13];

– For matrix-free and fast assembly techniques: [24];

https://www.dealii.org/8.4.0/doxygen/deal.II/changes_between_8_3_0_and_8_4.html
https://www.dealii.org/publications.html
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– For computations on lower-dimensional manifolds: [16];

– For integration with CAD files and tools: [17];

– For LinearOperator and PackagedOperation facilities: [26].

– For uses of the WorkStream interface: [33].

deal.II can interface with many other libraries:

– ARPACK [25]

– BLAS, LAPACK

– HDF5 [32]

– METIS [23]

– MUMPS [1, 2, 3, 27]

– muparser [28]

– NetCDF [31]

– OpenCASCADE [29]

– p4est [14]

– PETSc [4, 5]

– SLEPc [18]

– Threading Building Blocks [30]

– Trilinos [19, 20]

– UMFPACK [15]

Please consider citing the appropriate references if you use interfaces to these libraries.

Older releases of deal.II can be cited as [9, 10, 11, 8].
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