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SUMMARY

Efficient preconditioning for Oseen-type problems is an active research topic. We present a novel approach
leveraging stabilization for inf-sup stable discretizations. The Grad-Div stabilization shares the algebraic
properties with an augmented Lagrangian-type term. Both simplify the approximation of the Schur
complement, especially in the convection dominated case. We exploit this for the construction of the
preconditioner. Solving the discretized Oseen problem with an iterative Krylov-type method shows that
the outer iteration numbers are retained independent of mesh size, viscosity, and finite element order. Thus,
the preconditioner is very competitive. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The simulation of incompressible flow problems plays a vital role in various scientific areas.

Incompressible flows are governed by the incompressible Navier-Stokes equations and are given

by the following set of equations: One has to find a velocity field u and pressure field p satisfying

∂u

∂t
−∇ · (ν∇u) + (u · ∇)u+∇p = f in (0, T ]× Ω,

∇ · u = 0 in [0, T ]× Ω.
(1)

Here, Ω ⊂ Rd, d = 2, 3, is a bounded polyhedral domain, ν = ν(x) > 0 is the scalar viscosity that

may depend on x ∈ Ω, and f ∈ [L2(Ω)]d is a given source term.

After time discretization and linearization one is left with solving a sequence of stationary Oseen

type problems
−∇ · (ν∇u) + (b · ∇)u+ cu+∇p = f in Ω

∇ · u = 0 in Ω

u = 0 on ∂Ω.

(2)

For the ease of presentation we assume homogeneous Dirichlet boundary conditions for the velocity.

b ∈ [L2(Ω) ∩W 1,∞(Ω)]d is a vector field describing the convection acting on the velocity and is
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2 TIMO HEISTER AND GERD RAPIN

typically given by the velocity stemming from a fixed-point linearization scheme or an extrapolation

from the last time step. The constant reaction coefficient c ≥ 0 enters the system due to the time

discretization and is proportional to the inverse of the time-step size. The case c = 0 appears after

linearizing stationary Navier-Stokes problems. For b = 0 and c = 0 the system reduces to a Stokes

problem.

In applications the viscosity ν(x) > 0 might vary in the computational domain. For example,

simulating turbulent flows requires a turbulence model which is mostly modeled as an artificial,

additional viscosity term (e.g. in VMS methods, see [1]). We will limit the remainder of this

presentation to constant viscosity. Extending our results to varying viscosity would be preferable but

this is a topic of further research. Note that the sum of physical and turbulent viscosity in turbulent

flows is small compared to the other terms. Therefore, the influence of the varying turbulence is

small from the preconditioner point of view and taking an average viscosity is possible.

Solving Oseen-type systems has a long history and there are dozens of different solution

approaches ranging from Uzawa type methods [2] to projection methods [3], special multi-grid

methods [4] or block saddle point preconditioners [5, 6, 7]. A good overview for solvers for saddle

point problems is given in [8].

Here, we consider an iterative Krylov method to solve the arising linear system with a block

saddle point preconditioner. Since the linear system is badly conditioned preconditioning is

mandatory. The biggest challenge is finding a preconditioner that performs equally well for different

mesh sizes h and different coefficient ranges of c, ν, and b. In the case of the Stokes problem (for

b = 0) the preconditioning is much simpler, cf. [9]. The most challenging configuration is ν ≪ 1,

c = 0, and b 6= 0, cf. [5, 6, 7].

Recently, it has been shown that augmented Lagrangian (AL) methods work quite promising in

this case. Augmented Lagrangian approaches are well known for many years (see [10]) and are

used in various applications, cf. [11] and references therein. In [12] Benzi and Olshanskii present

an augmented Lagrangian-based preconditioner for the Oseen problem that shows impressive

results for various h and ν. Due to difficulties in solving the augmented velocity block, a modified

augmented Lagrangian formulation is presented in [13] and analyzed further in [14]. In the original

approach [12] the velocity block is augmented with an algebraic term possessing a large kernel.

This gives rise to an efficient preconditioner for the Schur complement but complicates the solve of

the velocity block. Moreover, assembling the augmentation term is quite expensive, since a product

of sparse matrices has to be computed. The modified version in [13] simplifies the solution of the

velocity block by only applying the augmentation to the upper right blocks. Unfortunately at the

same time this spoils the quality of the Schur complement approximation and leads to larger number

of iterations.

In this paper we explain that one can consider Grad-Div stabilization as a different discretization

of the augmented Lagrangian term. This motivates the construction of a preconditioner where we

replace the augmented Lagrangian term with Grad-Div stabilization. This approach is preferable,

because this removes the difficulty of applying the augmentation. Moreover, the numerical

experiments in this paper show clearly that the number of iterations for the saddle point problem

stays independent of the problem.

One fundamental aspect in numerical discretization of partial differential equations like the Oseen

problem is stabilization. Solutions may contain spurious oscillations. This non physical behavior

appears for example for convection dominated flows, i.e. ν ≪ ‖b‖, and can completely spoil the

solution. Stabilization methods typically add additional terms to penalize these oscillations. These

terms have an impact on the algebraic properties of the discretized problem. Taking the effect of

stabilization on preconditioning into account is challenging and therefore often neglected. Some

exceptions are [13, 15, 16]. A typical excuse is the possibility to explicitly treat the stabilization

terms in order to remove them from the linear system. In contrast, we try to take advantage of

existing Grad-Div stabilization, cf. [17, 18], in the preconditioner.

We show that Grad-Div stabilization can be seen as a sum of an augmented Lagrangian term,

that can be used for preconditioning and does not influence the solution, and a projection-type

stabilization term. The similarity between augmentation and Grad-Div stabilization has already
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AUGMENTED LAGRANGIAN-TYPE PRECONDITIONING USING GRAD-DIV STABILIZATION 3

been described in [13], is used for Stokes problems in [18] in the context of Uzawa methods, and is

analyzed in [19] for Oseen problems.

We describe the underlying discretization and stabilization in Section 2, recall typical block-

triangular preconditioning for the linear system in Section 3, and present the new preconditioner in

Section 4. Based on the analysis of the augmented Lagrangian preconditioner in [12], we discuss

some advantages and disadvantages in Section 6. Numerical results in Section 5 show the efficiency

of the preconditioner.

2. DISCRETIZATION USING INF-SUP STABLE FINITE ELEMENTS AND GRAD-DIV

STABILIZATION

A traditional equal-order Galerkin finite element discretization of the Oseen problem (2) may suffer

from the violation of the discrete inf-sup (or Babuška-Brezzi) condition and results in spurious

oscillations in the solution. One remedy is to impose pressure stabilization, like Pressure Stabilized

Petrov Galerkin (PSPG) methods [20], or Local Projection Stabilization (LPS) [21]. Alternatively

one can switch to inf-sup stable elements. A common family of inf-sup stable elements are the

Taylor-Hood elements. We will concentrate on using those throughout this paper.

The weak formulation of (2) reads: Find (u, p) ∈ V ×Q := [H1
0 (Ω)]

d × L2
∗(Ω), with L2

∗(Ω) :=
{v ∈ L2(Ω) |

∫
Ω
v dx = 0}, such that

a(u,v) + b(v, p) = (f ,v) ∀v ∈ V (3)

b(u, q) = 0 ∀q ∈ Q (4)

with the bilinear forms

a(u,v) := (ν∇u,∇v) + ((b · ∇)u+ cu,v),

b(v, p) := −(∇ · v, p).

For the discretization we consider quadrilateral or hexahedral meshes Th = {K} in our numerical

examples. The finite element space Qk, k ∈ N, is given by

Qk := {v ∈ C(Ω) | v|K ◦ FK ∈ Qk, K ∈ Th}

where Qk is made of tensor-product polynomials up to order k on the reference cell K̂ and

FK : K̂ → K denotes the mapping from the reference cell to the cell K. We denote the discrete

spaces with V h = [Qk+1]
d ∩ V and Qh = Qk ∩Q. Note that using simplicial meshes is also

possible but not considered in this paper.

The chosen discrete Taylor-Hood pair V h ×Qh satisfies the discrete inf-sup condition

∃C > 0 | inf
q∈Qh\{0}

sup
vh∈V h\{0}

b(vh, qh)

‖vh‖V ‖qh‖Q
≥ C.

The proof and other stable pairs can be found in [22].

Additional stabilization is useful and often needed even for inf-sup stable elements. We consider

Grad-Div stabilization (see [23]), which results in a modified bilinear form

ã(u,v) := a(u,v) + (γ∇ · u,∇ · v).

Thus, we end up with the following discrete system: Find (uh, ph) ∈ V h ×Qh such that

ã(uh,vh) + b(vh, ph) = (f ,vh) ∀vh ∈ V h (5)

b(uh, qh) = 0 ∀qh ∈ Qh.

The parameter γ ≥ 0 is assumed to be constant per element or a global constant. The stabilization

improves the numerical accuracy of the solution and helps reducing spurious oscillations for

convection dominated flow.
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4 TIMO HEISTER AND GERD RAPIN

We refer to [23] for a detailed discussion of Grad-Div stabilization. There, the parameter choice

is discussed in detail. In general the optimal value for γ depends on the solution on the element K.

For sufficiently smooth solutions the following formula for inf-sup stable elements can be derived:

γK ∼ max

{
|p|Hk(K)

|u|Hk+1(K)

− ν, 0

}
. (6)

In practice, the unknown continuous solution (u, p) in (6) is replaced by their discrete counterpart

(uh, ph). Evaluating the norms of uh and ph is costly, since higher order derivatives are involved.

Therefore a common assumption is |p|Hk(K) ≈ |u|Hk+1(K) and ν ≪ 1, which results in a constant

γ ∼ 1. Unfortunately, this assumption is not valid in general. For example, in the case of a laminar

channel flow (also known as Poiseuille flow) |p|Hk(K) is proportional to ν|u|Hk+1(K) and therefore†

γK ∼ ν.

The solver and preconditioner concept in this paper works identically with additional, symmetric

stabilization terms for the velocity, like local projection stabilization, see [21, 24, 25] and references

therein. We omit the definition and the terms for clarity of presentation. The addition of non-

symmetric stabilization like Streamline Upwind/Petrov Galerkin (SUPG) methods (see the overview

in [26] and [20, 27, 28]) is non-trivial, as it spoils the saddle point structure of our problem. Here,

we recommend to shift the asymmetric terms to the right-hand side.

Assembling the discretized equations (5) results in a linear system of the form

Mx = G (7)

with unknowns x = (U,P )T , right-hand side G = (F, 0)T and block matrix

M =

(
A BT

B 0

)
.

U and P are the coefficient vectors that belong to the degrees of freedom of the velocity uh and

pressure ph. The blocks A and B correspond to the bilinear forms ã and b, respectively. The matrix

A is positive but non-symmetric for b 6= 0. The linear system is sparse as it is typical for linear

systems stemming from finite element discretizations. Typically, the sparsity pattern and the size of

the linear system require the application of iterative methods. Naturally, iterative Krylov methods,

like GMRES [29], are used. Because of the bad condition of (7) preconditioning is mandatory. We

describe a prominent way of dealing with the preconditioning in the next section.

3. BLOCK-TRIANGULAR PRECONDITIONING

Instead of solving the system Mx = G directly, we apply right preconditioning as described in [29]

with an operator P−1 and calculate the solution x = P−1y from the auxiliary variable y, which is

given as the solution of

MP−1y = G.

In general, P−1 is not given by a matrix, since building this inverse is typically not appropriate.

Here, we define P−1 as an implicitly defined operator given in a block-triangular way (see [8]):

P−1 :=

(
Ã BT

0 S̃

)−1

=

(
Ã−1 0
0 I

)(
I BT

0 −I

)(
I 0

0 S̃−1

)
, (8)

where S̃ is an approximation of the Schur complement

S = −BA−1BT (9)

†We assume the proportionality constant to be different than one.
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and Ã of the velocity block A, respectively. Thus, applying the preconditioner involves one solve

for Ã, one solve for S̃, and one matrix-vector multiplication with BT .

Now the goal is to define good and computationally cheap approximations for Ã and S̃.

Exact solves would result in at most two outer GMRES iterations, see [8]. Our construction of

approximations of the Schur complement is based on [9]. The idea is to separately look at the main

building blocks of A. The matrix A can be written as

A = νLu + cMu +Nu +Ru,

where Lu represents the diffusion term and Mu is the mass matrix of the velocity space. Nu

represents the convective term and Ru the Grad-Div term.

Assuming that the diffusion part is dominant the Schur complement can be approximated by

S−1 ≈ −
[
B(νLu)

−1BT
]−1

≈ −νM−1
p , (10)

where Mp is the mass matrix in the pressure space. The approximation can be motivated by

assuming that the continuous operators commute, see [30] for details. Note, that we assume ν to

be constant. Similarly, for a dominating reaction the Schur complement can be approximated by

S−1 ≈ −
[
B(cMu)

−1BT
]−1

≈ −cL−1
p , (11)

where Lp is the stiffness matrix of the pressure Poisson problem with Neumann boundary

conditions. It is not known, how to treat the convective term in a similar way. With (10) and (11) one

has good preconditioners for the Schur complement in case of dominating diffusion and reaction,

respectively. To automatically switch between these two preconditioners,

S̃−1 = −νM−1
p − cL−1

p , (12)

is suggested in [30, 9], which works remarkably well as long the problem is not convection

dominated.

We will compare our results with the well-known pressure-convection-diffusion preconditioner

(short: PCD) for the Schur complement, see [7]. Here, the Schur complement is approximated by:

S−1
PCD = −M−1

p FpL
−1
p ,

where Mp and Lp are defined as before and Fp is a convection-diffusion operator defined on the

pressure space (that can also contain a reaction term if the original system did).

4. A PRECONDITIONER UTILIZING GRAD-DIV STABILIZATION

Similar to approximations for diffusion and reaction in the last section, we will look at the term in

the A block which stems from the Grad-Div stabilization. We enhance (12) to account for Grad-Div

stabilization in A. The resulting Schur complement approximation is given as

S−1
GD = −(ν + γ)M−1

p − cL−1
p . (13)

We call applying the block-triangular preconditioner (8) together with this Schur complement

approximation the Grad-Div preconditioner (or short: GD). Note that the matrix A contains the

Grad-Div stabilization with coefficient γ > 0. For γ = 0, the method reduces to the one described

in Section 3.

We now proceed to motivate and analyze the choice in (13). Let π : Q→ Qh be the orthogonal

L2-projector, i.e.

(p− πp, q) = 0 ∀q ∈ Qh.
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6 TIMO HEISTER AND GERD RAPIN

For uh,vh ∈ V h the Grad-Div term can be split into the following sum:

(∇ · uh,∇ · vh) = (π(∇ · uh),∇ · vh) + ((I − π)(∇ · uh),∇ · vh). (14)

Using the fluctuation operator κ := I − π and the projection property of π we obtain

(∇ · uh,∇ · vh) = (π(∇ · uh), π(∇ · vh)) + (κ(∇ · uh), κ(∇ · vh)). (15)

We call the first part algebraic term and the second part stabilizing term. The following lemma

shows that the algebraic term can be written as a product of known matrices.

Lemma 1

The discretized algebraic term of the Grad-Div stabilization is given by

(π(∇ · φj), π(∇ · φi)) = (BTM−1
p B)ij ∀i, j ∈ {1, . . . , n}

using basis {φi}
n
i=1 of V h and {ψj}

m
j=1 of Qh. The matrices B and Mp are defined by (B)ij :=

(ψi,∇ · φj) and (Mp)ij := (ψi, ψj).

Proof: We first define a matrix representation P of the projection π with

π(∇ · φj) =

m∑

i=1

Pijψi ∀j = 1, . . . , n.

Plugging in the definition of π and P into B gives after some rearrangement:

(B)ij = (ψi,∇ · φj) = (π(∇ · φj), ψi) = (

m∑

k=1

Pkjψk, ψi)

=

m∑

k=1

Pkj(ψk, ψi) =

m∑

k=1

(ψi, ψk)Pkj = (MpP )ij .

The augmentation term BTM−1
p B can now be written as

(BTM−1
p B)ij = (BTM−1

p MpP )ij = (BTP )ij =

m∑

k=1

(BT )ikPkj =

m∑

k=1

(Pkj(ψk,∇ · φi))

=

(
m∑

k=1

Pkjψk,∇ · φi

)
= (π(∇ · φj),∇ · φi) = (π(∇ · φj), π(∇ · φi)),

which shows the proposition. 2

Adding the term BTM−1
p B to the system block A is known as the augmented Lagrangian

approach, see [12], and does not change the solution due to BTM−1
p BU = 0 for a solution (U,P )

of the linear system (7). Nevertheless, it modifies the algebraic properties of the velocity-velocity

block.

The second term (κ(∇ · uh), κ(∇ · vh)) contains the stabilization for which Grad-Div is used.

The difference between discretized Grad-Div stabilization (Ru) and augmentation BTM−1
p B can

be written as

(Ru −BTM−1
p B)ij = (κ(∇ · φj), κ(∇ · φi)).

The stabilizing term in the Grad-Div stabilization vanishes for h→ 0 and thus in the limit only

the algebraic augmentation remains:

Lemma 2

Let (uh, ph) ∈ V h ×Qh be a solution of the stabilized linear system (5) with corresponding degrees

of freedom (U,P ). Then, we obtain for Taylor-Hood elements Qk+1/Qk, k ≥ 1, and a sufficiently
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AUGMENTED LAGRANGIAN-TYPE PRECONDITIONING USING GRAD-DIV STABILIZATION 7

smooth solution (u, p) of the continuous Oseen problem (4), i.e. u ∈ [Hk+1(Ω)]d and p ∈ Hk(Ω),

‖
(
Ru −BTM−1

p B
)
U‖

Rn
≤ Chk+(d−2)/2

(
‖u‖

2
k+1 + ‖p‖

2
k

)1/2
.

Proof:

Assume uh,vh ∈ V h. Let ‖ · ‖Rn denote the Euclidean and ‖ · ‖0 the L2 norm. Using the basis

representations

uh =

n∑

i=1

Uiφi, vh =

n∑

i=1

Viφi

for uh,vh ∈ V h, we obtain the assertion

‖
(
Ru −BTM−1

p B
)
U‖

Rn

= sup
‖V ‖

Rn
=1

V T
(
Ru −BTM−1

p B
)
U = sup

‖V ‖
Rn

=1

(κ(∇ · vh), κ(∇ · uh))

≤ sup
‖V ‖

Rn
=1

‖κ(∇ · vh)‖0‖κ(∇ · uh)‖0

≤ ‖κ‖
2

sup
‖V ‖

Rn
=1

‖∇ · vh‖0‖∇ · (uh − u)‖0

≤ ‖κ‖
2

︸︷︷︸
=:T1

sup
‖V ‖

Rn
=1

‖∇ · vh‖0

︸ ︷︷ ︸
=:T2

‖∇ · (uh − u)‖0︸ ︷︷ ︸
=:T3

.

We have T1 ≤ C1, because the fluctuation operator κ is continuous. The inverse inequality gives

T2 = sup
vh

‖∇ · vh‖0
‖V ‖

Rn

≤ C ′ sup
vh

h−1‖vh‖0
‖V ‖

Rn

and [31], Theorem 3.43 gives

‖V ‖
Rn ≥ Ch−d/2‖vh‖0

with C > 0 independent of h. From this it follows (because of d ≥ 2):

T2 ≤
C ′

C
sup
vh

h−1+d/2 ‖vh‖0
‖vh‖0

= C2h
−1+d/2.

The a priori error estimation for the Grad-Div stabilized Oseen problem in [32] (Corollary 3.3) gives

for sufficiently smooth solutions u, p:

T 2
3 = ‖∇ · (uh − u)‖

2
0 ≤ C3h

2k‖u‖
2
k+1 + C4h

2k‖p‖
2
k.

Putting the terms together finally gives

‖
(
R−BTM−1

p B
)
U‖

Rn
≤ Chk+(d−2)/2

(
‖u‖

2
k+1 + ‖p‖

2
k

)1/2
→ 0 for h→ 0.

2

The lemma explains why the preconditioner works and behaves very similar to the augmented

Lagrangian approach. The results in [13], which show h and ν independent iteration numbers, can

therefore expected to be achieved here, too. This is confirmed in Section 5.

One can interpret the stabilizing effect of Grad-Div as adding a penalty term for the fluctuations of

the divergence given by the projection π. The term closely resembles projection based stabilization,

though it is not a local projection and thus can not be assembled easily.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (0000)
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The Schur complement for the augmented matrix A with the algebraic term BTM−1
p B can be

simplified to

[
B(A+ γBTM−1

p B)−1BT
]−1

=
(
BA−1BT

)−1
+ γM−1

p . (16)

Therefore, in [12] the authors propose to approximate the Schur complement by

S̃−1 = −(ν + γ)M−1
p .

Note, that in contrast to the approximation for the diffusion term, (16) is exact if B is assumed to

have full rank. This only accounts for the algebraic component in the Grad-Div stabilization.

We propose an extension for instationary problems, which is motivated as already explained in

Section 3. It is not strictly necessary for c 6= 0 but accelerates the solution process especially for

large c. With this we arrive at (13). One can decide on a case by case basis to not implement the last

part. Obviously, the coefficient c in there automatically reduces the influence of that term for large

time steps and stationary problems.

In short we can use the same approximation for the Schur complement as in the AL approach, but

we do not need to add the augmentation to the A block. This gives a huge advantage over the AL

approach, since the solution of the augmented

Aγ = A+ γBTM−1
p B

is very costly. On the one hand assembling Aγ is extremely expensive. In [13] the authors

present various tricks like lumping the mass matrix and moving to a cheaper approximated AL

formulation where only part of the augmentation is applied. The problem is that the product BTB
possesses much more non-zero entries than A itself. Building a product of sparse matrices is also

computationally expensive as one can not easily generate a correct sparsity pattern beforehand. Of

course, one can avoid the assembling of Aγ and only supply it as an operator. But then one can

not apply preconditioners like algebraic multi-grid or ILU decompositions. On the other hand the

iterative solution of Aγ becomes difficult due to the large kernel of BTM−1
p B.

All these problems are not present in our case. The matrix A which already contains the

augmentation through Grad-Div stabilization is easy to assemble. One can directly use various

kind of solvers. This still leaves us with the fact, that solving the velocity block A with Grad-

Div stabilization is more expensive than solving it without. As an approximation needs to be done

for every outer iteration step, this can be expensive. Nevertheless, it reduces the number of outer

iterations drastically, as can be seen in the next Section.

Replacing the augmentation in Ãγ by Grad-Div stabilization was proposed and tested in [19] and

is also suggested in a comment in [13].

5. NUMERICAL RESULTS

For the numerical tests we have used the finite element library deal.II, see [33, 34]. The

computations have been performed on unstructured quadrilateral meshes, see Figure 1 for an

example. We construct a series of those meshes for the parameter studies. Unstructured meshes

are more realistic and naturally arise when dealing with complex geometries. Moreover, super

convergence effects are avoided and more realistic error bounds are achieved.

For the outer iteration a flexible GMRES method (see [35, 29]) is used. Standard Krylov

methods can not be applied, since we use iterative solvers within the preconditioner. Therefore,

the preconditioner can not be considered as constant during the outer iterations. The outer iteration

loop is stopped when the residual is dropped by a factor of 10−10 relative to the starting residual.

This stopping criterion is more strict compared to other papers analyzing preconditioners and leads

to higher iteration numbers. We have chosen this convergence criterion, since it allows us to see

trends easier due to the higher number of iterations. Moreover, a softer criterion can be misleading,

since the errors of the solution are very often dominated by the iterative process and not by the
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AUGMENTED LAGRANGIAN-TYPE PRECONDITIONING USING GRAD-DIV STABILIZATION 9

Figure 1. Example for an unstructured mesh (left). A series of those meshes is used for the computations to
avoid super convergence effects. The solution of Problem 1 is shown on the right-hand side.

approximation properties of the mesh and the finite element space. This is especially true for higher

order elements.

The inner blocks are solved using the direct solver UMFPACK, see [36]. If we use a Krylov

method for the inner solve, it is stated.

5.1. The Oseen problem

Problem 1 is defined in the domain Ω = (0, 1)2, see [37], example 1. The right-hand side f is

calculated from the smooth reference solution

u = (sin(πx),−πy cos(πx))
T
,

p = sin(πx) cos(πy)

with convection vector b = u or b = 0, see Figure 1 for an illustration of the solution. Note that

ν and c can be chosen arbitrarily. Thus, we can test coefficient choices including the Stokes

problem. The numerical error can be calculated as the difference between the discrete solution

and the reference solution. The case b = u is more complicated than examples often chosen for

Oseen problems and resembles a linearization step in a Navier-Stokes problem. The smooth solution

enables higher order elements to achieve better convergence rates.

Problem 2 is a modified Green-Taylor vortex for a fixed time step and without an exponential

decaying term:

u = (− cos(ωπx) sin(ωπy), sin(ωπx) cos(ωπy))
T
,

p = −
1

4
cos(2ωπx)−

1

4
cos(2ωπy).

Considering Ω = (0, 1)2 the constant ω determines the number of vortices in x- and y-direction

and is set to ω = 4. b and the right-hand side f are defined in the same way as in Problem 1.

This results in a more complex structure compared to Problem 1. Care needs to be taken to not get

over-stabilization as can be seen from plots in Figure 2.

Figure 2 shows the influence of the stabilization on the quality of the solution and the number of

iteration steps of the solver. We consider Problem 1 and Problem 2 with b = u. A similar value for

the optimization of both would be desirable. The four plots in Figure 2 show different configurations.

For large viscosities (upper left) stabilization does not improve the solution. Only for γ > 1 we see

a slight influence. For smaller viscosity ν = 10−3 there is a clear minimum around γ = 0.3 for

problem 1. We can observe this behavior with and without reaction term (upper right and lower

right). The fine structures in Problem 2 on the other hand are already damped too much with a γ of

that size as can be seen in the lower left. The optimum moves to γ = 0.03 there.
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Figure 2. Analysis of solver performance and influence of the stabilization on the error with respect to the
parameter choice γ. The outer iterations are given by the number of needed iterations for the preconditioned
block system. The inner iterations show the total number of iterations for the A block summed up over all
outer iterations. Note, that the number of inner iterations is heavily dependent on the preconditioner chosen
for A (here, ILU(0)) and the result should only be considered quantitatively (Problem 1 and Problem 2 with

b = u, unstructured mesh). The error is given in the H1 semi-norm of the difference between the reference
solution and calculated finite element solution.

The number of outer iterations drops for larger γ. The number of outer iterations needed for the

optimal γ from the stabilization point of view is around 10 to 30. When using an iterative solver the

difficulty of solving forA increases with larger γ. The solution time does not depend on γ for a direct

solver of the A block. For an iterative solver it depends heavily on the iterative algorithm used for

the A block. For an estimate of the total cost we also plot the number of total inner iterations needed

to solve the whole system. In our applications the A block is solved using the GMRES method with

ILU(0) preconditioning and diagonal strengthening. While the number of inner iterations increases

for larger γ, the number of outer iterations decreases. Fortunately, the optimal choices of γ lie close

to the optimal choices with respect to the stabilization. Choosing a worse preconditioner for A, like

SOR, the optimum would shift to the right. Thus, the results for the sum of the inner iterations has

to be taken with cautiousness as it depends on the preconditioner used. We still include the total

number of inner iterations, because it shows, that it is possible to choose γ in such a way that the

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (0000)
Prepared using fldauth.cls DOI: 10.1002/fld



AUGMENTED LAGRANGIAN-TYPE PRECONDITIONING USING GRAD-DIV STABILIZATION 11

γ=1.0 γ=0.31 γ=0.1

h: ν= 10−1 10−3 10−5 10−1 10−3 10−5 10−1 10−3 10−5

Q2Q1 1/16 13 13 13 19 19 20 28 38 38
1/32 13 12 12 19 19 19 28 38 38
1/64 13 12 12 18 19 19 27 37 37

Q3Q2 1/16 13 13 13 19 20 20 29 38 38
1/32 13 12 13 19 19 19 27 37 38
1/64 13 12 12 18 19 19 27 36 37

Q4Q3 1/16 13 13 13 19 20 20 28 37 38
1/32 13 12 13 19 19 19 27 37 37
1/64 13 12 13 18 19 19 27 36 36

Table I. Number of outer FGMRES iterations for different problem sizes with different order of finite

element spaces (Problem 1, regular mesh, stopping criterion: relative residual of 10−10). The number of
iterations is clearly independent of mesh size h and element order. Independence of the viscosity is achieved

for γ = 1 and the optimal value γ = 0.31.

#{Mij 6= 0} #{|Mij | > 10−15}

Galerkin 50884 15642
with Grad-Div 72250 27966
with augmentation 231704 47755

Table II. Number of non-zero elements in the system matrix M (Problem 1, structured mesh, h=1/16, Q2-
Q1, 2178+289=2467 unknowns). The second column represents the number of elements in the matrix with

an absolute value bigger than 10−15. The rows represent the base matrix without stabilization, the matrix
with Grad-Div stabilization, and the matrix with the augmented Lagrangian term.

γ = 1 γ = 0.1 γ = 0 PCD (γ = 0)
ν it factor/s solv/s it factor/s solv/s it factor/s solv/s it factor/s solv/s

10−1 5 4.4 2.9 13 4.4 7.0 21 2.5 6.8 20 2.8 7.2

10−2 5 4.4 2.9 21 4.4 10.7 229 2.5 80.9 33 2.8 11.6

10−3 5 4.4 2.6 23 4.5 10.2 - - - 390 3.0 138.8

10−5 5 4.5 2.7 23 4.4 11.1 - - - - - -

Table III. Timings for Problem 1 on an irregular mesh with 19280 cells (stopping criterion: relative residual

of 10−6, sub-problems are solved with a direct solver). The number of iterations (it) and the seconds to setup
(factor) and solve (solv) the system are given for different γ and different viscosities. For comparison the

computational times using PCD are also given. A dash denotes no convergence in 500 iterations.

number of iterations and the error of the solution are small at the same time. All in all the number of

outer iterations does not crucially depend on the choice of γ. It is reasonable to calculate solutions

without the optimal parameter at hand.

Table I shows that the number of outer iterations does not depend on the element order or the mesh

size. For sufficiently large γ the number of outer iterations is also independent of ν. The optimal

value of γ = 0.31 results in a slightly larger number of iterations. For smaller γ there is a slight

dependency on ν. This is (not surprisingly) comparable to the augmented Lagrangian approach.

In Table II one can see statistics about the number of non-zero elements comparing the Galerkin

system matrix, the system with added Grad-Div stabilization, and the augmented Lagrangian

formulation. The augmentation decreases the sparsity of the system by a huge margin. Note that

the Grad-Div stabilization only adds new entries, where the components of the velocity couple. If

we consider for example a diffusion term given by the symmetric deformation tensor D, Grad-Div

stabilization would add no additional entries.
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h
ν c ‖b‖ γ solver 1/8 1/32 1/128

Stokes 10−2 0 0 0 PCD 16 18 17
1 GD 6 5 5
0 GD 16 18 17

Stokes+reaction 10−2 1 0 0 PCD 31 29 28
1 GD 7 7 6
0 GD 58 94 88

Oseen 10−2 0 > 0 0 PCD 14 14 13
1 GD 6 5 5
0 GD 14 14 13

Oseen+reaction 10−2 1 > 0 0 PCD 25 24 22
1 GD 7 7 6
0 GD 45 52 48

reaction dom. 10−2 100 > 0 0 PCD 8 10 10
1 GD 6 6 5
0 GD 9 10 11

Table IV. Number of iterations for different parameter choices and different mesh sizes (Problem 3, regular

mesh) with a relative residual of 10−8. The Grad-Div preconditioner with γ = 1 is compared to PCD and
the basic preconditioner (γ = 0) explained in Section 3.

In Table III we measure the runtime‡ for Problem 1 on a irregular mesh with 19280 cells using

Q2/Q1 elements withour a reaction term. The table is set up to give comparable values to Table

III in [13]. We use the direct solver UMFPACK for the inner problems. Although the mesh is 10%

finer and not regular, our timings are very competitive compared to the augmented Lagrangian

preconditioner. Of course, the setup time to assemble the matrices is independent of ν and γ.

For comparison we include the timings and iterations numbers for the PCD preconditioner. There,

factorization of the matrix is cheaper as the A-block only contains the Galerkin terms (see also

Table II). The PCD performance deteriorates for small viscosities because the number of necessary

iterations increases.

So far we have only looked at the Oseen problem. In Table IV we consider different prototypes

of equations. Problem 3 is given by the polynomial solution§

u = (4(2y − 1)(1− x)x,−4(2x− 1)(1− y)y)
T
,

p = x2 + y2 − 2/3.

We compare the number of iterations with the same block preconditioner for γ = 1 and γ = 0. The

last choice coincides with the traditional way of preconditioning for example the Stokes problem

(see [9]). The choice γ = 1 improves the quality of the solution in all cases. Surprisingly the Grad-

Div preconditioner also helps for the pure Stokes problem. This is most likely due to the fact that

the approximation of the diffusion in the Schur complement is worse than the exact approximation

for the Grad-Div term. Since the splitting of the Schur complement in diffusion and algebraic

term is exact (see (16)), no additional error is introduced there. The new preconditioner shows

its main advantage in the convection dominated case. The original preconditioner does barely work

there. The reaction term helps especially in the reaction dominated case (which represents a time

dependent problem with small time step sizes).

‡All problems were run on an Intel core 2 duo Laptop with 2.5ghz on one core. The code is neither optimized, nor
implemented to take advantage of multiple cores.
§We chose a solution without in- or outflow, to avoid difficulties with the PCD preconditioner that we use for comparison.
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Figure 3. Lid driven cavity flow with Re=5000. Left: selected streamlines. Right: Error in minimum of
the stream function (see [38]) dependent on the Grad-Div stabilization γ for two different meshes. Grad-
Div stabilization decreases the error by more than one order of magnitude, which is better than a regular

refinement.

5.2. Application to Driven Cavity Flow

Let us now consider a more involved application: the two dimensional lid-driven cavity flow.

We consider Reynolds numbers up to Re = 5000, which still results in stationary solutions. The

non-linear system is solved on the unit-square with right-hand side f = 0 and typical boundary

conditions on ∂Ω:

u(x, y) = (u(x, y), v(x, y)) =

{
(1, 0) for y = 0, and 0 < x < 1

(0, 0) else,

i.e. we describe a force to the right at the top border. See [38] for a discussion for the problem with

extensive numerical reference data. A plot of a few selected streamlines is given in Figure 3 (left).

We solve the non-linear Navier-Stokes problem with a damped fixed point iteration with a simple

backtracking algorithm. All calculations are done on uniform and coarse meshes, which means

the boundary layers are not resolved (especially for Re 5000). This is done for two reasons: First,

not being able to resolve boundary layers is realistic in most applications and results in increased

difficulty for the linear solvers. Second, fully resolved flow does not require stabilization and will

therefore not benefit from Grad-Div stabilization. In each iteration step one has to solve a Oseen

type problem where the convection vector is given by the last iterate of the velocity.

An important quantity of interest is the minimum of the stream function, see [38] for reference

values. For meshes with h = 1/128 we could reproduce the results for Re 5000 without stabilization

but the quality of the minimum of the stream function and the cuts of the velocity increases

significantly with Grad-Div stabilization for coarser meshes. Figure 3, right shows the error of the

minimum of the stream function in percent depending on the mesh size and Grad-Div parameter.

The optimal γ is at 10−1 and is slightly mesh size dependent and tends to zero for finer meshes. The

advantage of using Grad-Div stabilization for h = 1/32 is fairly obvious and one can gain one order

of magnitude in the quality, which is more than a regular refinement. For smaller Reynolds numbers

the importance of Grad-Div decreases. While it is still an half an order of magnitude for Re=1000

(optimal value at γ = 0.1), the effect vanishes for For Re=100. The velocity profiles also improve,

which can be seen in Figure 4. We plot the second component of the velocity on a horizontal cut in

the middle through the domain.

The non-linear iteration is done until the residual is smaller than 10−9 and each linear problem is

solved with a relative residual of 10−2 with respect to the starting residual (which is the same as the

non-linear residual). We compare the average number iterations for different choices of Grad-Div

stabilization in Table V. For comparison we also included the numbers for the PCD preconditioner,
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Figure 4. v-component of the velocity on a horizontal cut in the middle of the cavity with Re=5000 on a
regular mesh with h = 1/32 and different values for Grad-Div stabilization in comparison with reference
values from [38] and a comparison on a finer mesh with h = 1/64 and no Grad-Div stabilization. Right:

zoom of left picture.

h = 1/32 h = 1/64
viscosity Grad-Div PCD GD #nonlinear PCD GD #nonlinear

ν = 10−2 γ = 0 13 18 15 13 18 15
γ = 0.1 17 4 15 16 5 15

ν = 10−3 γ = 0 44 342 34 42 511 29
γ = 0.1 91 6 31 109 8 29

ν = 2 · 10−4 γ = 0 4822 - 104 1031 - 49
γ = 0.1 1064 7 40 1249 8 43

Table V. Number of non-linear iterations and average number of linear iterations per non-linear step for
the PCD and the Grad-Div preconditioner in comparison for the cavity with Re = 100, Re = 1000 and

Re = 5000 on a regular mesh. The optimal γ from the error point of view is selected.

see [7]. The two methods are comparable for small Reynolds numbers, where the Grad-Div based

preconditioner also works without Grad-Div stabilization. We again see the excellent scaling with

the viscosity as in the earlier tests. This is in contrast to the PCD preconditioner, which fails for

small viscosities. One can find similar behavior in e.g. [12].

6. REVIEW OF THE PRECONDITIONER

We now discuss the advantages and disadvantages of the Grad-Div preconditioner.

Let us start with the advantages: The number of iteration steps in the solver is independent of h
and ν and gives small iteration counts comparable to the augmented Lagrangian approach, see the

results in Section 5. This is an excellent behavior compared to other preconditioners.

The usage of Grad-Div stabilization improves the accuracy of the discretization scheme, cf. [23].

The preconditioner has a wide range of applicability. It can be used for Stokes, Oseen or Navier-

Stokes problems, in transient and stationary cases and in different ranges of viscosity. See Table IV

for an example.

Additionally, the Grad-Div preconditioner is easy to apply. Assembling the linear system

is straight-forward. There are no complicated, additional matrices to be assembled for the

preconditioner. In contrast, the matrix Aγ in the augmented Lagrangian is much harder to handle,

since it is not immediately available as a matrix. One can either implement it as an operator, which
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restricts the choice of the preconditioner (which is a huge disadvantage, but some work to remedy

exists in [13]) or one has to simplify the mass matrix Mp in the term BTM−1
p B by lumping for

example. Multiplying two sparse matrices is an expensive process and the resulting matrix is more

dense than the Grad-Div preconditioned matrix, which only contains additional couplings between

the velocity components. In many finite element packages the integration of augmented Lagrangian-

type preconditioners is not simple. Often the degrees of freedom on the boundary are treated in the

same way as inner degrees of freedom and they get eliminated before or after writing them to the

global matrix. This can result in either loosing the symmetry in the B, BT blocks or in non-zero

entries in the second block of the right-hand side. Implementing the Grad-Div preconditioner does

not pose any of these difficulties.

Our proposed approach also possesses some disadvantages. The Grad-Div stabilization is needed

for the Grad-Div preconditioner even when stabilization is not necessary. This adds additional

coupling to the A block and slows down the assembly process. Fortunately, most of the real life

problems need additional stabilization, see [23]. If the traditional Laplacian in the Navier-Stokes

problem is replaced by symmetrized deformation tensors D, as it is regularly done in turbulent flow

simulations, the Grad-Div stabilization does not produce additional non-zero entries in the A-block.

Even though assembly of the Grad-Div stabilization is simple, approximating the velocity block in

the block preconditioner becomes more expensive. As already known from [12], increasing γ can

be seen as a parameter to shift the difficulty from the outer problem to the inner velocity block.

Choosing the stabilization coefficient can not be solely done from the stabilization point of view.

The preconditioner performance has to be taken into account, too. Different choices of γ influence

the quality of the solution. As for most of the preconditioning techniques preconditioning and

stabilization can not be treated independently. As with most stabilization methods, the optimal Grad-

Div parameter from the stabilization point of view is problem dependent. From the preconditioner

side, parameters around 0.1 seem to be optimal in most cases and the performance seems to be

robust regarding the parameter choice.

A general problem of the proposed class of preconditioners is the assembling of new matrices,

which are not part of the primal problem. For the approximate Schur complement S̃, defined in (13),

one has to assemble and store the matrices Mp and Lp.

Summarized, we think that the advantages clearly outbalance the disadvantages.

7. CONCLUSIONS AND OUTLOOK

We presented a new preconditioner that shows to be competitive to state of the art solution strategies.

It is especially useful in the case where Grad-Div stabilization is already employed. It is helpful to

use Grad-Div stabilization in all kind of problems with different parameters and the preconditioner

helps in any of those cases.

The preconditioner gives h, ν, and element order independent iteration numbers, as long as

the Grad-Div parameter is in a sensible range. It is possible to satisfy good accuracy and fast

performance of the solver, because the parameter is not crucially sensitive and is in the same order

of magnitude. Especially the ν independence can not be found in the typical preconditioners used

today.

Some things will be very interesting to look at but do not fit into the scope of this paper. Adapting

the preconditioner to variable viscosity and varying Grad-Div parameter γ should be possible. It

simply results in modifications in the Schur complement approximation. The diffusive part no longer

reads

−(ν + γ)M−1
p ,

because ν + γ is no longer a constant. Small variations in ν (for example with turbulence models) do

not make a difference for the preconditioner, because ν is still quite small compared to the reaction

term for example. Choosing an average for ν + γ is a practical solution. When dealing with large

jumps from one cell to another one has to include it this in the Schur complement. In [39] the

different ways of how to do that are explained. The best was is to move the coefficients into the
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assembly of a modified mass matrix:

(Mν,γ
p )ij =

∫

Ω

(ν(x) + γ(x))−1φiφj dΩ.

Alternatively one can scale the mass matrix with an approximation for each degree of freedom.

Another interesting aspect is to combine the augmented Lagrangian approach with the Grad-Div

stabilization. This is straight-forward and could help in the case where the Grad-Div parameter

has to be chosen very small for accuracy reasons. Let γ be the Grad-Div parameter. One can then

additionally augment the system with γ′BTM−1
p B. The diffusive part of the Schur complement is

then chosen as

−(ν + γ + γ′)M−1
p ,

and one can change γ′, so that γ + γ′ is optimal for preconditioning.
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