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Abstract

Computations have helped elucidate the dynamics of Earth’s
mantle for several decades already. The numerical methods
that underlie these simulations have greatly evolved within
this time span, and today include dynamically changing and
adaptively refined meshes, sophisticated and efficient solvers,
and parallelization to large clusters of computers. At the
same time, many of these methods – discussed in detail in
a previous paper in this series [Kronbichler et al.(2012)] –
were developed and tested primarily using model problems
that lack many of the complexities that are common to the
realistic models our community wants to solve today.

With several years of experience solving complex and re-
alistic models, we here revisit some of the algorithm designs
of the earlier paper and discuss the incorporation of more
complex physics. In particular, we re-consider time stepping
and mesh refinement algorithms, evaluate approaches to in-
corporate compressibility, and discuss dealing with strongly
varying material coefficients, latent heat, and how to track
chemical compositions and heterogeneities. Taken together
and implemented in a high-performance, massively parallel
code, the techniques discussed in this paper then allow for
high resolution, 3d, compressible, global mantle convection
simulations with phase transitions, strongly temperature de-
pendent viscosity and realistic material properties based on
mineral physics data.

Keywords: Mantle convection, numerical methods, adap-
tive mesh refinement, finite element method, compressibility,
preconditioners

1 Introduction

Computer simulations are at the heart of most attempts at
understanding the dynamics of the Earth’s mantle as well
as the interiors of other celestial bodies. As such, there is
a long tradition in the investigation of numerical methods
that help us solve the equations that describe mantle con-
vection, dating back many decades (e.g. [Torrance & Tur-
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cotte(1971),Richter(1973),McKenzie et al.(1974),Baumgard-
ner(1985), Tackley et al.(1993)], see also [May et al.(2013)]
and references therein). Many of these articles parallel the
general development of computational science methods, and
have moved from simple, low-order, uniform 2d mesh dis-
cretizations with fixed-point linear solvers, to using adaptively
refined, dynamically changing 3d meshes with higher order el-
ements and complicated linear and nonlinear solvers [Stadler
et al.(2010),Alisic et al.(2010),Davies et al.(2011),Burstedde
et al.(2013), Gerya et al.(2013), Rudi et al.(2015)]. Indeed,
the first part of this paper [Kronbichler et al.(2012)] was de-
voted to the description of current, state-of-the-art methods
for mantle convection simulations.

At the same time, most of these methods – including the
ones in our earlier paper – were developed, tested, and eval-
uated using relatively simple model problems (e.g. [Blanken-
bach et al.(1989), Busse et al.(1993), van Keken et al.(1997),
Tackley & King(2003), Schmeling et al.(2008), van Keken
et al.(2008), Zhong et al.(2008), King et al.(2010), Crameri
et al.(2012), Tosi et al.(2015)]). Yet, this no longer matches
what our community wants to do today: We want to solve
more realistic problems that use compressible formulations
with coefficients that jump discontinuously, for example. We
also want to use more complex geometries, possibly varying
with time. And we may want to include other physical ef-
fects such as latent heat, the transport of chemical inhomo-
geneities or tracking of tensor quantities like finite strain. For
these kinds of applications, we have found that the numerical
methods we have often perform worse than for the traditional
model problems and benchmarks.

The purpose of this paper is therefore to revisit the tra-
ditional choices of numerical methods for mantle convection
in light of complex applications. Specifically, we will consider
how time stepping, mesh refinement, formulations for com-
pressible materials, and other aspects of computational codes
are affected when they are applied to complex problems. In
some cases, previous methods perform poorly and need to be
adapted; in others, previous methods were simply unsuitable,
and we are faced with a variety of choices that allow us to
design algorithms that are both well suited to the problem as
well as allow for accurate and fast solutions.

We base our discussions on the five years of experience
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we have with the Aspect code1 since we described many
of these methods in [Kronbichler et al.(2012)]. In this time,
we and others have applied Aspect to more complex and re-
alistic problems [Austermann et al.(2015), Tosi et al.(2015),
Rose et al.(2017), Gassmöller et al.(2016), Dannberg & Heis-
ter(2016), Zhang & O’Neill(2016), He et al.(2016)], and the
discussions in the remainder of this paper reflect the chal-
lenges encountered in this process. On the other hand, the
discussions herein are not specific to Aspect: They are about
the general design of numerical methods for the problems at
hand, and apply equally to any other code that wants to solve
them.

We intend this contribution to be of interest to those de-
signing their own numerical methods for mantle convection,
but also for those interested in understanding more about
how modern mantle convection codes work. Finally, some of
the sections below outline open problems that call for more
methodological or mathematical research; the paper should
therefore also be of interest to the numerical methods and
numerical analysis community as it outlines areas requiring
better methods.

The remainder of this paper is structured as follows: Sec-
tion 2 first lays out the general mathematical formulation of
the problem we want to consider. Section 3 then discusses how
time stepping methods need to be adjusted to more complex
problems (Section 3.1); how approaches can be designed to
deal with compressibility (Section 3.2), averaging discontin-
uous coefficients (Section 3.3), and latent heat (Section 3.4);
how mesh refinement can be made to deal with realistic ap-
plications (Section 3.5); and approaches to advecting along
additional quantities (Section 3.6). We show results for a
large and complex application in Section 4, and conclude in
Section 5.

2 Formulation of the problem

Within this paper, let us consider a model for the flow of
a compressible, anelastic fluid, such as generally assumed for
convection in the Earth’s mantle (e.g. [Schubert et al.(2001)]).
Flow is driven by buoyancy due to thermal or compositional
gradients, and the model includes the effects of friction and
adiabatic heating, radiogenic heat production and latent heat
on the energy balance. However, the model ignores inertial
and elastic effects as we are concerned with very low velocities
and long time scales. Specifically, let us consider the following
set of equations:

−∇ · τ(u) +∇p = ρg, (1)

∇ · (ρu) = 0, (2)

ρCp

(
∂T

∂t
+ u · ∇T

)
−∇ · (k∇T ) = ρH + τ(u) : ε(u)

+ αT (u · ∇p) (3)

+ ρT
DS

Dt

1The “Advanced Solver for Problems in Earth ConvecTion”, an open
source project to provide a modern, parallel, extensible code to simulate
mantle convection. Aspect’s development is supported by the Com-
putational Infrastructure for Geodynamics initiative, as well as by the
National Science Foundation. See http://aspect.dealii.org.

In this equation, u denotes the fluid velocity, p the pres-
sure, and T the temperature. For the stress we have
τ(u) = 2η

(
ε(u)− 1

3 (∇ · u)I
)

with the rate-of-deformation

tensor ε(u) = 1
2

(
∇u + (∇u)T

)
.

In the equations above, η, ρ and Cp are the viscosity, den-
sity, and specific heat capacity of the material. k,H, α, g, and
S are the thermal conductivity, intrinsic specific heat produc-
tion, thermal expansion coefficient, gravity vector, and en-
tropy, respectively. DS

Dt = ∂S
∂t +u·∇S is the material derivative

of the entropy of a volume of material, and will be discussed
in Section 3.4. We will in the following assume that all of
these parameters with the exception of gravity can depend on
the current temperature and pressure; furthermore, we allow
that η can depend on the strain rate ε(u) and that all param-
eters may also depend on the location x to facilitate material
parametrisations that are not derived from realistic material
models but incorporate a priori modelling assumptions. In
other words, we will henceforth consider η = η(p, T, ε(u),x),
ρ = ρ(p, T,x), κ = κ(p, T,x), H = H(p, T,x), α = α(p, T,x),
g = g(x).

In the remainder of this paper, we will make no assump-
tions that coefficient are continuous. In fact, we explicitly
allow parameters to jump discontinuously as commonly hap-
pens when using thermodynamically consistent models that
incorporate phase changes. Indeed, it is these kinds of diffi-
culties that set apart the model problems often considered,
from the kind of problems that are the object of this paper.

There are numerous approximations to equations (1)–(3)
that have been widely used in the literature, such as the
anelastic liquid approximation (ALA), truncated anelastic
liquid approximation (TALA) and Boussinesq approxima-
tion (BA), see for example [Bercovici et al.(1992), Schubert
et al.(2001), King et al.(2010), Tan & Gurnis(2007)]. These
can all be derived by assuming that density variations are
small compared to the hydrostatic density increase. We will
discuss differences between these approximations and (1)–
(3) in Section 3.2, but these differences are not fundamen-
tal for the purposes of this paper: Any numerical issues that
may arise from describing the complex phenomena we aim to
model would arise using any of the above formulations; con-
sequently, the solution strategies we derive are useful for all
those cases.

3 Numerical methods

As discussed in the introduction, the goal of this section is
to outline areas where the numerical methods commonly em-
ployed for model or simplified problems run into difficulties
when applied to more complex formulations and problems.
The methods we compare against are Taylor-Hood finite ele-
ments to discretize the Stokes equations, along with a block-
preconditioned GMRES solver for the resulting linear equa-
tions. The temperature equation is also discretized using the
finite element method; the advection is stabilized via the ad-
dition of a nonlinear entropy viscosity. The entire set of equa-
tion is discretized on adaptively refined, dynamically chang-
ing meshes in 2d or 3d. All of these methods are described in
detail in a previous paper [Kronbichler et al.(2012)]. We con-
sider them state-of-the-art within the computational mantle
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convection community.
The focus of the following subsections is, then, on the mod-

ifications necessary as one moves from simpler, model prob-
lems to the more realistic description of convective transport
in the Earth’s mantle provided in the previous section. Specif-
ically, we will discuss time stepping; dealing with compress-
ibility; averaging of discontinuous coefficients; incorporating
latent heat; mesh adaptation; and advection schemes for ad-
ditional quantities.

All computations in this section are done using the
open source mantle convection code Aspect [Kronbichler
et al.(2012), Bangerth et al.(2016a)], which builds on deal.II
[Bangerth et al.(2016b)], p4est [Burstedde et al.(2011)], and
Trilinos [Heroux et al.(2005)]; our test setups areavailable in
the source repository at https://github.com/geodynamics/
aspect.

3.1 Time stepping for the temperature
equation revisited: explicit, semi-
implicit, implicit

In [Kronbichler et al.(2012)], we have advocated for a semi-
implicit method for the time discretization of the temperature
equation (3). In this approach, one treats the thermal diffu-
sion term implicitly, but the advection term explicitly. This
choice guarantees that only the advection term implies a sta-
bility limit for the size of the time step ∆t. In particular,
the corresponding Courant-Friedrichs-Lewy (CFL) condition
states that the time discretized problem is only stable if we
choose ∆t ≤ minK C

hK
pT ‖u‖L∞(K)

, where hK is a measure of

the (one-dimensional) size of cell K, pT the polynomial degree
of the finite element used to discretize the temperature field,
and ‖u‖L∞(K) is the maximal velocity on cell K. C is a con-
stant related to the time stepping method; it always satisfies
C ≤ 1 if some terms of the equation are treated explicitly, and
generally becomes smaller with increasing convergence order
of the chosen time stepping method.

In pursuing this strategy, we were motivated by two ob-
servations. First, the matrix that needs to be inverted in
solving the temperature equation with this choice of terms
treated implicitly yields a symmetric and positive definite ma-
trix for which efficient solution methods are readily available,
in particular the Conjugate Gradient and multigrid precon-
ditioners. Second, while fully implicit methods may choose
time steps much larger than minK

hK
pT ‖u‖L∞(K)

and still re-

main stable, we typically want to choose the time step around
minK

hK
pT ‖u‖L∞(K)

anyway for accuracy reasons because this

guarantees that information is not transported across more
than one cell per time step. This is of increasing importance
when using adaptive mesh refinement.

However, in applying this approach to more realistic prob-
lems, one encounters two difficulties:

• How exactly should hK be defined?

• How large or small does one have to choose C?

These questions are relatively easy to answer on uniform
meshes for rectangular or box-shaped meshes. There, all pos-
sible definitions of hK – either (i) the diameter of cell K, (ii)

the shortest edge of K, (iii) the minimal distance between any
two vertices, (iv) the square or cube root of the volume of the
cell in 2d and 3d, respectively – are all equivalent up to a
fixed constant and any choice is valid as long as the constant
C is appropriately adjusted. After choosing any of these def-
initions, we can determine a safe value for C experimentally.

On the other hand we desire to solve problems on complex
domains that will include cells of varying shapes; examples
are meshes that discretize models on shell segments, but also
may have a free top boundary and/or describe real topology.
In such meshes, the various ways of defining what hK is, are
no longer equivalent up to a fixed constant, and it is not clear
what definition is the most appropriate to allow for the largest
choice of time steps.

Secondly, it may require long computations to determine
whether a particular choice of C leads to a stable scheme
because a solution may only “blow up” once steep features of
the solution happen to pass a particularly poorly shaped cell,
rather than such a steep feature simply existing.

The consequence of all of this is that in practice, one needs
to choose C rather small to guarantee stability in all circum-
stances. As stated in [Kronbichler et al.(2012)], we needed
to choose C = 1

5.9 in 2d and C = 1
43.6 in 3d. For any larger

value, we could find geometries and problem setups for which
the temperature eventually became instable, even though the
resulting time steps are almost certainly smaller than neces-
sary for most other cases.

Such small time steps are impractical in practice. While
the resulting solution is stable, it is not significantly more ac-
curate than if we had chosen ∆t = minK

hK
pT ‖u‖L∞(K)

with an

implicit method. It is also vastly more expensive: we need 1
C

as many time steps for the semi-implicit method, each includ-
ing solving both the Stokes and the temperature equation.

For these reasons, we have come to believe that the better
choice for the time stepping scheme is a fully implicit time
discretization – for example a BDF-2 scheme to discretize the
term ∂T

∂t – in which we choose C = 1 and hK to be the minimal
distance between any two vertices of cell K. Because this
choice treats advection implicitly, it results in a system matrix
that is no longer symmetric and positive definite. This implies
more costly solvers and preconditioners, for example GMRES
instead of CG. On the other hand, this effort is vastly over-
compensated by the fact that we have reduced the number
of time steps by a factor of more than 5 (in 2d) or 40 (in
3d). Furthermore, the temperature solver requires less than
10% of the overall run time in realistic simulations; in other
words, having to choose a less efficient linear solver due to the
addition of a non-symmetric term does not really affect the
overall computational cost of our simulations in a significant
way: What determines the overall computational cost is how
many times we have to solve the Stokes system, as that is the
expensive component of mantle convection solvers.

3.2 Compressibility

Incorporating compressibility into existing codes is likely the
most difficult issue when moving from model problems to re-
alistic descriptions of Earth. This is because compressibil-
ity makes the mass conservation equation (2) nonlinear, or
adds additional terms when using the ALA or TALA approx-
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imation. Furthermore, the divergence term is no longer ad-
joint to the gradient of the pressure, and depending on how
it is treated numerically, the matrix resulting from the Stokes
equation after discretization may no longer be symmetric. As
a consequence, how exactly one deals with the compressibil-
ity has significant implications for how nonlinear and linear
solvers need to be written and will perform. On the other
hand, there are significant opportunities for algorithm design
whereby one can choose different re-formulations based on
which of these allows for efficient and accurate implemen-
tations. The next sub-section (Section 3.2.1) will therefore
be about the various trade-offs involved, before we comment
on considerations of the symmetry of resulting solvers (Sec-
tion 3.2.3), making the right hand sides of linear systems
compatible (Section 3.2.2), and finally show numerical results
illustrating several of the points previously discussed (Sec-
tions 3.2.4 and 3.2.5).

Various forms of compressibility have been incorporated
into mantle convection codes for several decades already,
though often only for particular formulations such as the
ALA or TALA in which the density in the mass conserva-
tion equation is explicitly prescribed as a function of depth.
We refer to [Baumgardner(1985), Tan & Gurnis(2007), Leng
& Zhong(2008), Tackley(2008), King et al.(2010)] for details
on how other codes deal with these issues.

3.2.1 Reformulating the compressible Stokes equa-
tions

Solving compressible models numerically poses a number of
challenges. First, the mass conservation equation ∇·(ρu) = 0
given in (2), is nonlinear if ρ depends on the solution variables
and has to be linearised. Secondly, any linearised version re-
sults in an operator that is no longer adjoint to the term∇p in
the force balance equation, resulting in a non-symmetric ma-
trix with consequences for the construction of efficient solvers
and preconditioners for the linear system. This second issue
also arises for any approximation of equations (1)–(2) that
includes a non-constant density in the mass balance equa-
tion, for example the (truncated) anelastic liquid approxima-
tion (T)ALA [King et al.(2010)]. Because of this universal
importance, we will discuss the difficulties that result from
compressible models in some detail in the following.

There are a number of possible avenues for linearisation of
(2). For example, one could instead use the equation

∇ · (ρ∗u) = 0,

where ρ∗ is a known approximation of the density that is com-
puted from the previous time step’s temperature and pressure,
or from a temperature and pressure that has been extrapo-
lated from previous time steps to the current time, and might
be updated during a nonlinear iteration. Alternatively, in the
case of the (T)ALA, ρ∗ = ρ∗(z) simply is a prescribed density
profile that does not change over time. In all those cases, ρ∗

may still be spatially variable, but it no longer depends on the
quantities u, p that we are currently solving for. While this
resolves the nonlinearity, the operator −∇·(ρ∗•) is not adjoint
to the gradient operator acting on the pressure in the force
balance equation; direct discretizations of this term therefore
do not lead to a symmetric system matrix.

In addition, the term is not computable in practice because
the product ρ∗u is not a finite element function (or other
polynomial) of which we can compute derivatives during as-
sembly. One way to make it computable is to multiply out
the divergence. In order to make the equation look similar
to the one we have in the incompressible case, we also divide
by the density. Two choices that result from this are then to
consider either2

∇ · u +
1

ρ∗
∇ρ∗ · u = 0, (4)

or

∇ · u = − 1

ρ∗
∇ρ∗ · u∗, (5)

In the last equation, we have also frozen the velocity in the
right hand side term to a fixed value obtained from previous
time steps. If ρ depends on the pressure, either of these ap-
proaches then require a nonlinear iteration to converge to the
desired solution.

These two formulations are also not without difficulty.
First, the replacement ∇ · (ρu) = ∇ρ · u + ρ∇ · u strictly
only makes sense if the density is continuous. If it isn’t, for
example when taking into account phase changes, then ρu is a
continuous function of which we can take derivatives, whereas
we can not of its components ρ and u.3 While the traditional
approach to dealing with undesirable derivatives is to mul-
tiply with test functions and integrate by parts, this is not
possible here because the pressure test functions with which
this equation is multiplied are only in L2 and consequently
not sufficiently smooth to allow for integration by parts.

Second, there are also difficulties from the perspective of fi-
nite element approximations when using a density ρ = ρ(p, T )
that depends on the primary variables pressure and tempera-
ture (and possibly other variables such as the chemical compo-
sition) in equation (4) or (5). In this case, ∇ρ(p, T ) = ∂ρ

∂p∇p+
∂ρ
∂T∇T, and likewise, for the finite element approximation (in-

dicated by the index h), ∇ρ(ph, Th) = ∂ρ
∂p∇ph + ∂ρ

∂T∇Th. On
the other hand, the theory of the Stokes equations yields that
in general, the pressure is only a function in L2, see for exam-
ple [Ern & Guermond(2004)]. In practice, this means that one
does not usually get a better approximation than ‖p−ph‖L2

=
O(h) for the finite element approximation ph of the pressure,
unless the solution happens to be smooth. Indeed, if the vis-
cosity is discontinuous or has large gradients, one often gets an
even lower convergence order; for example, the SolCx test case
yields a convergence order ‖p − ph‖L2

= O(h1/2) (see [Kro-
nbichler et al.(2012)]). This implies that, assuming we use a
continuous finite element space to approximate the pressure,
we can at best hope that ∇ph converges to ∇p as h → 0 in
some average sense, but that we can not expect this to happen
with any particular order; in other words, the best one might
hope for is a statement of the form ‖∇p − ∇ph‖L2

= o(1),
but the approximation will likely be very poor and probably
not converge in a pointwise sense. (Indeed, we demonstrate

2Both of these methods are also implemented in the widely used code
CitcomS [Zhong et al.(2008)], though we are not aware of a systematic
discussion of the two options, nor of comprehensive tests of their differ-
ences as we provide below.

3This is, however, a theoretical consideration since the finite element
spaces we use will not allow us to represent discontinuous velocities any-
way.
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this experimentally in Section 3.3.) Pointwise convergence
can obviously not be expected at all if one uses discontinuous
finite element spaces for the approximation of the pressure.
Consequently, any practical scheme that replaces ∇ρ(ph, Th)
by terms that include ∇ph will likely yield a rather poorly
approximated density gradient, resulting in degradation in
convergence of the velocity and temperature. We therefore
would like to avoid the occurrence of ∇ph in our scheme.

To this end, we replace ∇p ≈ ρg. This is motivated by the
observation that for the hydrostatic pressure ps that domi-
nates the total pressure in the Earth mantle, by definition we
have ∇ps = ρadig with the adiabatic reference density ρadi;
indeed, in the (T)ALA approximations, one chooses ρ∗ = ρadi.
We can then approximate ∇ρ(p, T ) ≈ ∂ρ

∂pρg + ∂ρ
∂T∇T . Using

this allows us to re-state the equations above as

∇ · u +

(
∂ρ

∂p
g +

1

ρ∗
∂ρ

∂T
∇T ∗

)
· u = 0, (6)

or

∇ · u = −
(
∂ρ

∂p
g +

1

ρ∗
∂ρ

∂T
∇T ∗

)
· u∗. (7)

In the following, we will call these two options the implicit
and explicit approximation, because they either include the
velocity implicitly or explicitly in the term that contains the
gradient of the pressure.

Both of these approximations introduce errors that depend
on (i) how accurately ρ∗ = ρ(p∗, T ∗) approximates ρ(p, T ),
which can be controlled by small time steps and accurate
extrapolations from previous time steps; and (ii) how good
the approximation for ∇p ≈ ρg is, which is related to how
small the velocity is, and consequently how appropriate the
choice of the equations (1)–(2) was to begin with. The more
relevant question is therefore which of these approximations
one wants to use for practical considerations.

To understand this, it is instructive to recall that discretiza-
tions of the force balance equation (1) together with the ap-
proximations (6), and (7) lead to system matrices with the
following structure:(

A BT

B + C 0

)
,

(
A BT

B 0

)
.

Which one we choose has consequences for available choices
of linear solvers and preconditioners that are important since
in most realistic simulations, 70% or more of the overall run
time is spent in solving the discretized velocity-pressure sys-
tem. Furthermore, since we linearise the equation we really
want to solve, we will have to iterate out the nonlinearity,
and the two choices will require different numbers of outer,
nonlinear iterations. Predictably, the choice that keeps the
velocity entirely implicit, (6), and can therefore be expected
to converge more quickly in the nonlinear iteration, will also
lead to more difficult-to-solve linear systems due to the lack
of symmetry. Consequently, the choice between (6) and (7) is
not a priori clear.

3.2.2 Correcting the right hand side

When using the explicit approximation (7), we end up with
an equation that is rank deficient if the fluid flow is enclosed
in a domain where the normal component b = n·u of the fluid

velocity is prescribed on all parts of the boundary (a typical
example being either no-slip or tangential flow). In those
cases, integrating over the domain and using the divergence
theorem yields∫

∂Ω

b = −
∫

Ω

(
∂ρ

∂p
g +

1

ρ∗
∂ρ

∂T
∇T ∗

)
· u∗.

The left hand side of this equation is fixed and known based
on the given boundary conditions. On the other hand, the
right hand side may be whatever it is, based on our choice
of approximations T ∗,u∗ as well as the choice of quadrature
formula and geometric approximation of the domain. Thus,
it may or may not equal the fixed value on the left, and if it
does not, then (7) will not allow for a solution. On the other
hand, it is clear that the difference between the two sides
will be small if T ∗,u∗ are well chosen and if the assumptions
that went into (7) are valid. Thus, we can make the system
solvable again by replacing (7) by the equation

∇ · u = −
(
∂ρ

∂p
g +

1

ρ∗
∂ρ

∂T
∇T ∗

)
· u∗ − δ, (8)

where δ is chosen so that the invariant is always satisfied:

δ = − 1

|Ω|

∫
∂Ω

b− 1

|Ω|

∫
Ω

(
∂ρ

∂p
g +

1

ρ∗
∂ρ

∂T
∇T ∗

)
· u∗.

This correction δ is easily computed before assembling the
linear system that results from the linearisation of the Stokes
equation, and amounts to slightly correcting the compress-
ibility everywhere to ensure global mass conservation.

We note that in the case of an incompressible material,
we have ∂ρ

∂p = ∂ρ
∂T = 0, and mass conservation of course im-

plies that the sum of influxes and outfluxes has to balance,
i.e.,

∫
∂Ω
b = 0. Consequently, for incompressible materials,

δ always evaluates to zero; no correction is necessary in this
case. (However, for inhomogeneous boundary conditions one
has to be more careful, see [Heister et al.(2016)].) Likewise,
if the material is compressible but the setup of the problem
has a part of the boundary where only a normal stress of the
fluid is prescribed, then fluid velocity and pressure can adjust
independently to allow any right hand side to the mass conser-
vation equation, and the correction above is neither necessary
nor desirable.

3.2.3 Cost evaluation of the two formulations

It is not a priori clear which of the two formulations, (6) or (8),
is preferable from a practical perspective: The first is “more
implicit” and consequently likely requires fewer nonlinear it-
erations; the second yields a symmetric system matrix and
consequently likely requires fewer linear GMRES iterations
because we can formulate a better preconditioner.4 To re-
solve the question, we have performed a number of numerical
experiments.

4A discussion of the preconditioner we use can be found in [Kro-
nbichler et al.(2012)]. Specifically, for linear systems of the form(

A BT

B + C 0

)
, we use the preconditioner proposed by Silvester and

Wathen for the symmetric Stokes system (see [Silvester & Wathen(1994),

Elman et al.(2005)] for a derivation): P−1 =

(
Ã−1 Ã−1BTS̃−1

0 −S̃−1

)
,

where a tilde indicates an approximation and S = BTA−1B is the Schur
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Figure 1: Density profiles used in the comparison between
implicit and explicit formulations.

Specifically, our test problem consists of a unit box, uses
the truncated anelastic liquid approximation (TALA), and a
spatially variable adiabatic density of the form

ρ̄(z) = 1.6 + arctan (c(z − 0.5)) ,

where we will vary the coefficient that describes the devia-
tion from a constant density in the set c ∈ {0, 1, 10, 30} (see
Fig. 1). The density’s derivative has a peak at z = 0.5 with
dρ
dz (0.5) = c. We use the non-dimensional Rayleigh number
Ra = 104 and dissipation number Di = 0.1, and prescribe
constant inflow at the top boundary, u = (0,−1), free slip at
left and right boundaries, and open outflow at the bottom.

We show a comparison of the number of GMRES iterations
in Table 1. The numbers there show that indeed a single im-
plicit solve (using (6)) is more expensive in terms of GMRES
iterations than a single explicit solve (using (8)) for all choices
c > 0 of the compressibility parameter. In fact, iterations for
a single solve of the explicit formulation are independent of c.
On the other hand, the explicit formulation requires a Picard
iteration to iterate the nonlinearity, and the number of linear
GMRES iterations accumulated over these Picard iterations
is significantly larger than for the implicit formulation.

The result of these experiments is that for stationary com-
putations, the implicit formulation is both computationally
cheaper and, likely, more stable. On the other hand, for time
dependent problems the explicit formulation may be cheaper
since one will already have a good approximation for u∗ and
one may only need a single nonlinear iteration.

3.2.4 Benchmark for the compressible Stokes flow
solver

We have verified our implementations of the compressible
Stokes and temperature formulations (Section 3.2.1) using a
number of benchmarks. In particular, we have reproduced
the results from the community benchmark described in [King

complement of the symmetric part. This preconditioner does not include
the matrix C and can therefore be expected to deteriorate if the com-
pressibility in the implicit formulation becomes large.

We have spent a significant amount of time testing preconditioners
that include C in some way, but have not been able to find ones that
improve on the one shown above.

implicit
Mesh DoFs c = 0 c = 1 c = 10 c = 30

32× 32 9539 43 43 52 64
64× 64 37507 46 48 62 75

128× 128 148739 50 52 65 72
256× 256 592387 56 62 79 114

explicit
Mesh DoFs c = 0 c = 1 c = 10 c = 30

32× 32 9539 43 125 257 334
64× 64 37507 46 133 289 388

128× 128 148739 50 132 267 328
256× 256 592387 56 140 303 407

explicit (first nonlinear iteration)
Mesh DoFs c = 0 c = 1 c = 10 c = 30

32× 32 9539 43 43 43 43
64× 64 37507 46 46 46 46

128× 128 148739 50 50 50 50
256× 256 592387 56 56 56 56

Table 1: Total linear GMRES solver iterations for implicit
and explicit formulations. The explicit formulation requires
an outer fixed-point iteration; the second set of numbers de-
notes the sum of linear iterations over all nonlinear iterations,
whereas the third set of numbers denotes the number of linear
iterations for the first nonlinear solver iteration.

et al.(2010)] (see Section 3.2.5). We have also reproduced the
benchmark given in the Appendix of [Tan & Gurnis(2007)]
and will describe our results in the following. This latter
benchmark consists of an analytical solution for an instanta-
neous compressible Stokes flow problem (with a given tem-
perature). Using Fourier decomposition, the problem can be
reduced to a boundary value ordinary differential equation
that can be solved numerically up to machine precision.

The test case in [Tan & Gurnis(2007)] is defined in terms
of the non-dimensional Rayleigh and dissipation numbers,

Di =
αgL

Cp
, Ra =

α∆Tρ2
0gL

3Cp
ηk

,

where L a characteristic length scale, ∆T a characteristic tem-
perature difference, ρ0 a reference density, and all other pa-
rameters as introduced in Section 2. We then use the bench-
mark in the form discussed in [Tan & Gurnis(2007)], but with
equation (B4) corrected to read

Di

Ra
σ : ε =

Di

Ra
η

(
4k2U2

x +
10

9
β2U2

z − 4βkUxUz

)
cos2(kx)

+
Di

Ra

1

η
(Σxz)

2 sin2(kx).

We implement the benchmark in the setting of equations
(1)–(3) by fixing all of the above material constants to 1, ex-
cept for α = Di and η = Di/Ra. We then test both the Boussi-
nesq approximation (BA) and the truncated anelastic liquid
approximation (TALA), and compute the L2 error of the ve-
locity, and errors of the integrals of shear (W = τ(u) : ε(u))
and adiabatic heating (φ = αρT (u · g)). The problem is in-
stantaneous, so we perform a nonlinear iteration with the ex-
plicit formulation of the compressibility for a single timestep.
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1/h ‖u− u∗‖0 rate |W −W ∗| |φ− φ∗|
Boussinesq approximation (BA)

8 9.0721e-06 -
16 1.1103e-06 3.03
32 1.3806e-07 3.01
64 1.7242e-08 3.00

Truncated anelastic liquid approximation (TALA), a = 0
8 1.2109e-05 - 4.5439e-07 2.2179e-07

16 1.4840e-06 3.03 2.9067e-08 1.4130e-08
32 1.8459e-07 3.01 1.6974e-09 5.5979e-10
64 2.3056e-08 3.00 6.2599e-11 2.9021e-10

Truncated anelastic liquid approximation (TALA), a = 2
8 8.7973e-06 - 2.1267e-07 1.4399e-07

16 1.1207e-06 2.97 1.3707e-08 9.3239e-09
32 1.4078e-07 2.99 8.0734e-10 4.9389e-10
64 1.7638e-08 3.00 2.6633e-12 6.6108e-11

Table 2: Convergence of velocity and heating terms for the
benchmark problem defined in [Tan & Gurnis(2007)]. The
exact values u∗,W ∗, φ∗ are known from the exact solution of
the problem.

Alternatively, one can use the implicit formulation and per-
form a single Stokes solve, which gives very similar results.

The results are shown in Table 2 and show optimal third
order convergence for the L2 error of the velocity. Both heat-
ing terms show less regular, but equally dramatic convergence
to the exact values, with the total shear heating converging
at an even higher order than the velocity.

3.2.5 Benchmark for 2d Cartesian compressible con-
vection

In order to verify that our approaches to solving compressible
problems also work for more complex applications, we also
evaluate the correctness and accuracy of the re-formulations of
the equations introduced in Section 3.2.1 using the community
benchmark defined in [King et al.(2010)]. The model domain
for this benchmark is a 2-D square box cooled from the top
and heated from the bottom. This setup corresponds to the
benchmark given in [Blankenbach et al.(1989)], except that
the material is no longer assumed to be incompressible and
instead different approximations for the compressible mass
conservation equation are tested. All material properties are
approximated as constants, with the exception of the density,
which varies around a reference state

ρ̄ = ρ0 exp

(
z

Di

γ

)
. (9)

A constant temperature is prescribed at the top (z = 0) and
bottom (z = L) of the domain, with

Ttop =
Tsurf

∆T
, Tbot =

Tsurf + ∆T

∆T

and no flux conditions at the side walls. This temperature
increase across the model domain includes both the contribu-
tion of the adiabatic temperature profile,

T̄ = Ttop e
zDi, (10)

Expression Value
∆T temperature change across the domain 3000 K
Tsurf surface temperature 273 K
γ Grueneisen parameter 1
L width and height of the box 1 m
g gravitational acceleration in negative z direction 1 m s-2

α thermal expansivity Di
cp specific heat 1 J kg-1 K-1

ρ0 surface density 1 kg m-3

η viscosity Di/Ra
k thermal conductivity 1 W m-1 K-1

Table 3: Parameters for the benchmark defined in [King
et al.(2010)].

and the nonadiabatic temperature variations across the
boundary layers. The initial temperature is a linear profile
that matches these boundary conditions, plus a small pertur-
bation:

Tt=0 =
z

L
+ 0.01 cos

(πx
L

)
sin
(πz
L

)
+ Ttop.

We then let the model evolve until steady state is reached.
Analogous to the procedure described in Section 3.2.4, we

reproduce the non-dimensional formulation of the benchmark
by setting all material constants to 1, except for α = Di and
η = Di/Ra. In the different benchmark cases, Di is varied
between 0.25 and 1, and Ra is chosen as 104 and 105. All
parameters are given in Table 3.

We have tested both the anelastic liquid approximation
(ALA) and the truncated anelastic liquid approximation
(TALA) using our reference implementation of our algorithms
in the Aspect code [Kronbichler et al.(2012)]. Because we
are only interested in the steady-state limit, rather than ac-
curate intermediate values, we report results for the explicit
formulation (7) with the modification in (8), without actually
iterating out the nonlinearity in every time step. (However,
we have also verified that the implicit formulation, (6), yields
essentially the same results.) Table 4 provides an excerpt
of results for the ALA, with full results for both ALA and
TALA given in Tables 6 and 7. Specifically, we compare the
Nusselt number Nu, root mean square velocity Vrms, aver-
age temperature 〈T 〉, the total shear heating φ and adiabatic
heating W to the results given in [King et al.(2010)]. As can
be seen from the table, there is excellent agreement between
our results and those previously reported. In other words,
the re-formulations in Section 3.2.1 do not only allow us to
efficiently solve compressible problems, but also accurately.

3.3 Averaging of material properties

Geophysical models are often characterized by abrupt and
large jumps in material properties, in particular in the vis-
cosity. An example is a subducting, cold slab surrounded
by the hot mantle: Here, the strong temperature-dependence
of the viscosity will lead to a sudden jump in the viscosity
between mantle and slab. Another example are phase transi-
tions, where the density and viscosity of rocks change abruptly
between the stability field of different minerals. The length
scale over which this happens will be a few or a few tens of
kilometres. Such length scales cannot be adequately resolved
in three-dimensional computations with typical meshes for
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Di Ra Nu Vrms 〈T 〉 φ W

0.25 104 Aspect 4.4145 39.9568 0.5149 0.8496 0.849
King UM 4.406 39.952 0.515 0.847 0.849
King VT 4.4144 40.0951 0.5146 0.849 0.849
King CU 4.41 40 0.5148 0.8494 0.8501

1 104 Aspect 2.446 24.6809 0.5114 1.3427 1.354
King UM 2.438 24.663 0.512 1.343 1.349
King VT 2.4716 25.0157 0.51 1.3622 1.3621
King CU 2.47 24.9 0.5103 1.3627 1.3638

0.25 105 Aspect 9.2334 178.0746 0.5322 2.0525 2.0517
King UM 9.196 178.229 0.532 2.041 2.051
King VT 9.2428 179.7523 0.5318 2.0518 2.0519
King CU 9.21 178.2 0.5319 2.0503 2.054

1 105 Aspect 3.8698 84.3653 0.5298 2.7518 2.7691
King UM 3.857 84.587 0.53 2.742 2.765
King VT 3.878 85.5803 0.5294 2.761 2.7614
King CU 3.88 84.6 0.5294 2.7652 2.7742

Table 4: Excerpt of benchmark results for ALA as defined in [King et al.(2010)]. The Aspect computations are highlighted
in gray and were obtained using extrapolation from a 1/128 mesh. Acronyms for the different codes used in [King et al.(2010)]
are UM – University of Michigan (Sepran); VT – Virginia Tech (ConMan); CU – University of Colorado at Boulder (Citcom).
See the appendix for the full results.

global computations. In other words, the viscosity field is,
for all practical purposes, discontinuous, with jumps of pos-
sibly several orders of magnitude from quadrature point to
quadrature point.

Having large viscosity variations in models poses a vari-
ety of problems to numerical computations. First, they lead
to very long compute times because solvers and/or precon-
ditioners break down (see [Rudi et al.(2015)] for a proposed
preconditioner for large viscosity variations). This may be
acceptable if it would at least lead to accurate solutions, but
large viscosity variations also lead to large pressure gradients,
and this in turn leads to over- and undershoots in the nu-
merical approximation of the gradient. We will demonstrate
both of these issues experimentally in Section 3.3.2 and 3.3.3
below.

One can mitigate some of these effects by somehow av-
eraging material properties on each cell (see, for example,
[Schmeling et al.(2008), Deubelbeiss & Kaus(2008), Duretz
et al.(2011),Thieulot(2015),Thielmann et al.(2014)]). At the
same time, replacing the correct viscosity at each quadrature
point by an averaged one implies solving a different problem,
and one would expect this to affect the accuracy of the solu-
tion. In cases where the viscosity (and consequently the solu-
tion) is smooth, averaging could be assumed to be harmful to
the overall accuracy. On the other hand, if the solution has
essentially discontinuous gradients and kinks in the velocity
field, then at least at these locations we cannot expect a par-
ticularly high convergence order anyway, and the averaging
will likely not hurt very much either. This section therefore
explores these issues and shows numerical results.

3.3.1 Implementation

In implementations, averaging first evaluates the material
model at every quadrature point of a cell, given the tem-
perature, pressure, strain rate, and other quantities at these

points, and then either (i) uses these values as is in the as-
sembly of contributions to the system matrix and right hand
side, or (ii) replaces the values by their arithmetic average

x̄ = 1
N

∑N
i=1 xi, harmonic average x̄ =

(
1
N

∑N
i=1

1
xi

)−1

, ge-

ometric average x̄ =
(∏N

i=1
1
xi

)−1/N

, or largest value over

all quadrature points on this cell. Alternatively, one may
project the values from the quadrature points to a bi- (in
2d) or trilinear (in 3d) Q1 finite element space on every cell,
and then evaluate this finite element representation again at
the quadrature points; in this case, one may also limit the
computed values at quadrature points by the minimum and
maximum value of the coefficient before averaging. These op-
erations are applied to all quantities that the material model
computes, i.e., in particular, the viscosity, the density, the
compressibility, and the various thermal and thermodynamic
properties.

A priori, we know of little guidance from the literature on
the analysis of numerical discretizations of partial differen-
tial equations regarding the question which of these averag-
ing options is best. Indeed, it is also not quite clear what the
appropriate metric would be to determine “best” – for exam-
ple, one could consider various norms of the errors, run time
of solvers, or other metrics. Consequently, in the following
sections we will consider a simple test case and evaluate the
options above with regard to discretization error and the time
necessary to solve the linear system associated with each.

3.3.2 Influence of averaging on numerical accuracy

We experimentally evaluate the question which of the intro-
duced averaging operations may in fact be best by consider-
ing the “sinker” benchmark. This benchmark is defined by a
high-viscosity, heavy disk at the center of a two-dimensional
box. Both density and viscosity are therefore discontinuous
along the interface of the disk, and in particular not aligned
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[−45.2, 45.2] [−2.67, 2.67] [−3.58, 3.58]

[−44.5, 44.5] [−5.18, 5.18] [−5.09, 5.09]

Figure 2: Visualization of the pressure field for the “sinker”
problem. Left to right: No averaging, arithmetic averaging,
harmonic averaging. Top: On a mesh with 128 × 128 cells.
Bottom: On a mesh with 256 × 256 cells. The minimal and
maximal pressure values are indicated below every picture.
This range is symmetric because we enforce that the average
of the pressure equals zero. The color scale is adjusted to only
show values between p = −3 and p = 3. (Geometric aver-
aging, choosing the largest value on each cell, and projecting
the coefficient to a Q1 space yields similar pictures, with pres-
sure ranges [−3.57, 3.57], [−1.80, 1.80], and [−3.58, 3.58] for
the coarser of the two meshes, and [−5.18, 5.18], [−5.20, 5.20],
and [−7.99, 7.99] for the finer one.)

with the mesh. We use ρ = 1, η = 1 outside the disk, and
ρ = 10, η = 106 inside the disk to simulate a realistic viscos-
ity contrast; the contrast in the density is immaterial as it is
only a (global) scaling factor for the solution.

For three of the averaging options introduced above, and
for different levels of mesh refinement, Fig. 2 shows pressure
plots that illustrate the problem with oscillations of the dis-
crete pressure, without and with averaging. The important
part of these plots is not that the solution looks discontinuous
– in fact, the exact solution is discontinuous at the edge of the
circle – but the spikes that go far above and below the “cliff”
in the pressure along the edge of the circle. Without averag-
ing, these spikes are far larger than the actual jump height.
Importantly, the spikes also do not disappear under mesh re-
finement nor averaging; in other words, the discrete pressure
does not converge in the L∞ norm to the exact pressure. (Fur-
ther investigations also show that the maximal and minimal
pressures continue to grow with mesh refinement, although
slowly, with or without averaging.) On the other hand, the
pressure spikes become far less pronounced with averaging.

The results shown in the figure do not allow to draw
definitive conclusions as to which averaging approach is the
best. This is in line with previous discussions of this ques-
tion, for example in [Schmeling et al.(2008), Deubelbeiss &
Kaus(2008),Duretz et al.(2011),Thielmann et al.(2014)]). On
the other hand, we can investigate this by evaluating the error
in the solution for the closely related “Pure shear/Inclusion”
benchmark (see [Duretz et al.(2011)]) for which we know the
exact solution. To this end, Fig. 3 shows the L2 errors in
velocity and pressure for a variety of averaging options and

Figure 3: L2 errors in velocity (left) and pressure (right) with
a variety of averaging schemes as a function of the number of
unknowns in the discretization. The figures shown here use
the usual Taylor-Hood Qd2 ×Q1 element.

Figure 4: Visualization of the pressure field for the “sinker”
problem. Like Fig. 2 but using the Stokes element with dis-
continuous pressures.

as meshes are refined. The figures clearly show that all av-
eraging schemes improve the pressure approximation, though
some deteriorate the velocity approximation. In light of Fig-
ures 2 and 3, using harmonic averaging appears to be a rea-
sonable compromise. This is again in agreement with previous
statements in the literature, although they were generally of
a more qualitative nature.

One may follow the problem with discontinuous pressures
in a different direction and suggest that the pressure could be
better approximated by using a discontinuous pressure space.
This is in fact possible for the Stokes equations, by choos-
ing a discontinuous Pk pressure space instead of the common
continuous Qk space of the Taylor-Hood pair, without los-
ing the inf-sup stability of the discrete problem [Kronbichler
et al.(2012)]. Disappointingly, however, this makes no real
difference: the pressure oscillations are no better (in fact,
they are worse) than for the standard Stokes element (Fig. 4)
and the L2 errors are generally worse for both velocity and
pressure (Fig. 5).

3.3.3 Influence of averaging on solver speed

A very pleasant side effect of averaging is that solutions are
not only better behaved, but are also cheaper to compute.
For example, the total run time for the sinker testcase of the
previous section (see Fig. 2), using a 256× 256 mesh and the
Taylor-Hood element, is reduced from 5870s without averag-
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Figure 5: L2 errors in velocity (left) and pressure (right) with
a variety of averaging schemes as a function of the number
of unknowns in the discretization. Compared to Fig. 3, the
graphs shown here use a Stokes element with a discontinuous
pressure Qd2 × P−1.

ing to 240s for harmonic averaging – a speed-up of a factor of
around 25!

Such improvements carry over to more complex and realis-
tic models. For example, in a simulation with large viscosity
heterogeneities using approximately 17 million unknowns and
run on 64 processors, the wall-clock run time is reduced from
145 hours to 17 hours and the computed solutions do not
differ in any significant way.

We attempt to quantify this effect in Table 5 by looking at
the number of outer GMRES iterations necessary to solve
the variable viscosity Stokes system. We use a precondi-
tioner equations that involves an inner solver with an alge-
braic multigrid preconditioner for the elliptic top-left block of
the matrix (corresponding to the “expensive” option discussed
in [Kronbichler et al.(2012)]). Using this scheme, the number
of GMRES iterations rises steeply with mesh refinement with-
out averaging, see Table 5. On the other hand, with (any kind
of) averaging, the number of iterations remains much lower.
The effect is even more dramatic when using the discontinu-
ous pressure element mentioned in the previous section: there,
without averaging, the number of iterations grows from 389
on a 16 × 16 mesh to 1174 on a 256 × 256 mesh, while the
number of iterations with averaging are very similar to those
shown in Table 5.

We can also quantify how many fewer outer GMRES iter-
ations one needs with averaging for the complex model men-
tioned above: There, the number of iterations is reduced from
169 to 77.

However, the number of outer GMRES iterations is only
part of the problem. Depending on the exact choice of pre-
conditioner for the Stokes system, one has to also iteratively
invert the elliptic top-left block of the Stokes matrix, and/or
a pressure mass matrix. These “inner” solves also become
vastly cheaper with averaging, requiring 2 to 5 times fewer
Conjugate Gradient iterations than without averaging per
preconditioner application. Together with the reduction in
outer iterations, overall run time for the Stokes solver is re-
duced by the factors discussed at the beginning of the subsec-
tion.

Mesh size No averaging Arithmetic Harmonic
averaging averaging

16× 16 60 25 20
32× 32 89 24 22
64× 64 129 24 24

128× 128 138 26 24
256× 256 277 25 25

Table 5: Number of outer GMRES iterations to solve the
Stokes equations with continuous pressure on a sequence of
globally refined meshes and for different material averaging
operations. Geometric averaging, picking the largest viscos-
ity value on each cell, and projecting the viscosity field to a
piecewise Q1 space yields very similar numbers as the other
two averaging options. For an interpretation of the data see
the main text.

3.4 Latent heat

When incorporating phase transitions into realistic mantle
convection models we are not only faced with abrupt changes
of material properties across these transitions as discussed in
Section 3.3, but also with a relatively sudden change in in-
ternal energy of the material. This means that latent heat
is consumed or released over a sharp interface as material
crosses a particular phase boundary. In the energy balance
(3), this is expressed as a heating term describing the changes
of the entropy S in terms of its material derivative. As the
entropy of a given material depends only on temperature and
pressure (assuming a constant chemical composition), we can
rewrite the corresponding heating term in (3) as

ρT
DS

Dt
= ρT

(
∂S

∂T

DT

Dt
+
∂S

∂p

Dp

Dt

)
= ρT

(
∂S

∂T

(
∂T

∂t
+ u · ∇T

)
+
∂S

∂p

(
∂p

∂t
+ u · ∇p

))
Together with the approximation that the fluid is anelastic
(see Section 2) – that is, assuming ∂p

∂t = 0 – and when moving
all advection terms involving the temperature to the left-hand
side, the energy balance (3) can be rewritten in the following
form:(

ρCp − ρT
∂S

∂T

)(
∂T

∂t
+ u · ∇T

)
−∇ · k∇T

= ρH + τ(u) : ε(u) +

(
α+ ρ

∂S

∂p

)
T (u · ∇p) .

(11)

3.4.1 Implementation

Different approaches for how to implement this equation have
been suggested in the literature:

1. One may describe a number of prominent phase tran-
sitions using the Clapeyron slope γ, density change ∆ρ
and an analytic phase function X, such as a hyperbolic
tangent, that describes the stability field of each phase
and varies between 0 and 1,

∂S

∂T
= ∆S

∂X

∂T
= γ

∆ρ

ρ2

∂X

∂T
,

see for example [Christensen & Yuen(1985)].
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2. One may use a thermodynamic calculation package,
such as Perple X [Connolly(2009)] or BurnMan [Cottaar
et al.(2014)] to compute p-T tables of material proper-
ties, including the enthalpy H (or its pressure and tem-
perature derivatives), which describes the energy changes
associated with phase transitions. Between data points
of these tables, one may then interpolate continuously
(yielding a smoothed out approximation of the true p-
T diagram) and compute derivatives ∂S/∂T and ∂S/∂p
based on this interpolation.

3. One may use a modified version of (ii) that involves using
the pressure and temperature derivatives of the enthalpy
to compute an “effective” thermal expansivity

αeff =
1

T

[
1− ρ

(
∂H

∂p

)
T

]
and specific heat

Cp,eff =

(
∂H

∂T

)
p

,

respectively, which are then used in the energy conserva-
tion equation in place of the original quantities and ac-
count for latent heat effects (see for example [Nakagawa
et al.(2009)]).

All of these methods have in common that they introduce
relatively narrow regions where latent heat is consumed or
released. Even though phase changes generally occur over
a range of pressures and temperatures, and are also not in-
stantaneous, their width is often below the grid resolution of
geodynamic computations. Hence, strategies have to be de-
signed for smoothing out sharp transitions so that they can
be treated numerically, but still yield a high accuracy. In
addition, narrow zones of latent heat release lead to strong
temperature gradients with consequent difficulties for numer-
ical schemes that have to be addressed by stabilization as
discussed in [Kronbichler et al.(2012)].

3.4.2 Numerical results

We numerically evaluate the reformulation of latent heat pro-
cesses in (11) by using the benchmark described in [Schubert
et al.(2001), part 1, p. 194]. It provides an analytical solution
for the latent heat that is released or consumed when material
undergoes a phase transition. An important consideration in
practice is to assess by how much the temperature can de-
viate from the correct solution if the phase transition is not
properly resolved. Our experiments are therefore targeted at
estimating how many mesh cells across a phase transition are
required to accurately model the temperature change.

The basic setup is a pipe with prescribed material inflow
at constant velocity and temperature at the top, outflow at
the bottom, and a univariant phase transition (occurring at
a single value of temperature and pressure) approximately
in the center of the domain (Fig. 6). As initial condition,
the model uses a uniform temperature field; however, when
material crosses the phase transition, latent heat is released.
In the steady state limit, this leads to a temperature pro-
file with a higher temperature in the bottom half of the do-
main, which can be calculated by solving the energy equation

Phase 1, X = 0

vz=  5 · 1012 m/s, vx = 0, 
T = T1 = 1000 K 

no
 fl

ux
, f

re
e 

sl
ip

 

ΔS = 1 J/(kg K) 

Phase 2, X = 1

Cp = 10 J/(kg K)
κ = 10-6 W/(m K)

vz = 5 · 1012 m/s, vx = 0, 
T = T1 = 1111.1 K 

Temperature 
profile

T = T1 = 1000 K 

T = T2 = 1111.1 K 

z z = ztr

Figure 6: Setup of the latent heat benchmark together with
the expected temperature profile across the phase transition.
Material flows in with a prescribed temperature and velocity
at the top, crosses the phase transition in the center and flows
out at the bottom.

(equation (11), using approach (i) above) for one-dimensional
downward flow with (constant) vertical velocity vz:

ρCpvz
∂T

∂z
= ρT∆Svz

∂X

∂z
+ ρCpκ

∂2T

∂z2
.

Here, ρCpκ = k with k the thermal conductivity and κ the
thermal diffusivity. The latent heat generation is the prod-
uct of the temperature T , the entropy change ∆S across the
phase transition divided by the specific heat capacity and the
derivative of the phase function X, which indicates the frac-
tion of material transitioned from phase 1 to phase 2. If the
velocity is smaller than a critical value (see also [Schubert
et al.(2001)] part 1, pp. 193–195), this latent heat term will
be zero everywhere except for the one depth ztr where the
phase transition occurs discontinuously.

This means that there are two one-phase regions, one above
ztr with only phase 1, and one below ztr with only phase
2, where the equation above (using the boundary conditions
T = T1 for z → −∞ and T = T2 for z →∞) can be solved as

T (z) =

{
T1 + (T2 − T1)e

vz(z−ztr)
κ , z < ztr,

T2, z > ztr.

As we consider only the steady state, and the solution given
above tells us that for z > ztr (the region downward of the
phase transition) the temperature is constant (see also the
temperature profile in Fig. 6), there is no net downward trans-
port of heat from the phase change interface. In other words,
the amount of heat generated at the phase transition is the
same as the heat conducted upwards from the transition:

ρvzT∆S|z=ztr− =
κ

ρCp

∂T

∂z

∣∣∣∣
z=ztr−

= ρCpvz(T2 − T1).
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Rearranging this equation and using T (ztr) = T2 gives

T2 =
T1

1− ∆S
Cp

.

In the numerical model, we can not exactly reproduce the
behaviour of a Dirac delta function as would result from tak-
ing the derivative ∂X

∂z of the discontinuous phase function
X(z) that is considered in the benchmark. Rather, we use a
hyperbolic tangent with a (small) finite width to model X(z).
This leads to a deviation of the numerical from the analyti-
cal solution that is dependent on how well the mesh resolves
the transition zone and how large one chooses the transition
zone width to be. Both the mesh size and the width of the
transition zone can be chosen independently for numerical
purposes.

Fig. 7 shows numerical results that demonstrate this inter-
play: If the resolution is high enough to resolve the phase
boundary (which requires approximately 4 mesh cells across
the phase transition, using bi-quadratic finite elements, in our
experiments), the error is small and is dominated by the phase
transition width – the deviation of the approximate, smoothed
model from the exact one. On the other hand, while the mesh
is too coarse to resolve the transition zone, neither mesh re-
finement nor reducing the size of the transition zone have a
significant effect.

Hence, for modeling discontinuous phase transitions (or
phase transitions that are too narrow to be resolved in the nu-
merical model), to reach the highest accuracy the phase tran-
sition width should be chosen as approximately four times of
the smallest cell size. This corresponds to the first data point
after the kink of each line in Fig. 7, i.e. the area highlighted
in gray, thus demonstrating predictable convergence.

3.5 Mesh refinement

Many finite element codes supporting adaptive mesh refine-
ment use the “Kelly” refinement criterion [Gago et al.(1983)]
to refine and coarsen the mesh in response to the computed
solution (for an overview of other error indicators used in
computational geodynamics simulations, we refer to [May
et al.(2013), Burstedde et al.(2013), Davies et al.(2011)]). In
the case of time-dependent problems such as the one discussed
here, one would perform this adaptation every few time steps.
The “Kelly” criterion computes a numerical approximation to
the second derivative of a finite element function vh, times a
power of the mesh size, by evaluating for every cell K the
quantity

ηK =

(
hK

∫
∂K

|[n · ∇vh]|2 dx
)1/2

,

where [·] denotes the jump of the enclosed quantity across the
interface between cell K and its neighbours, n is the normal
vector to the boundary of cell K, and hK is the diameter of
K.

This criterion was originally developed as an error estima-
tor for the Laplace equation [Kelly et al.(1983)], but has been
found widely useful in adaptive meshing because it also es-
timates the polynomial interpolation error on every cell. It
has thus been used for many different equations to generate
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Figure 7: Results of the latent heat benchmark: Error of the
modeled temperature T2 at the bottom of the model domain
as a function of mesh resolution for different widths of the
phase transition. If the resolution is too low to resolve the
phase transition, errors are large (> 5 K) and do not vary in
a systematic way, as grid points lie on random points on the
phase transition (or even exclude the phase transition). If the
phase transition is at least 4 cells wide (the gray area indicates
models with exactly 4 cells across the phase transition width),
it is resolved properly and errors are much smaller (< 5 K). In
this case, the error mainly depends on the width of the phase
transition and converges for the width going to zero.
The “outlying” blue and purple data points with unexpectedly
small error result from models where the temperature change
across the phase transition was larger than the analytically
predicted one (instead of smaller, as for all the other models),
and hence are by chance closer to the analytical solution.

good meshes, even if no provably accurate error estimators
are available for these equations.

In the context of mantle convection, it therefore seems ap-
propriate to drive mesh refinement by applying this criterion
to either the temperature or velocity field. Indeed, we advo-
cated for this approach in [Kronbichler et al.(2012)] based on
the observation that this should help reduce the error in the
natural energy norms for these two solution variables.

On the other hand, in actual applications, one is often inter-
ested in a variety of quantities that are, at best, tangentially
related to the energy norm error and whose approximation is
not always improved by choosing a mesh based on an energy
error indicator. A typical example would be simulations that
investigate the importance of phase changes on the dynamics
of convection: While the coefficients in the equations (e.g.,
density, viscosity) and possibly other derived quantities such
as seismic velocities are discontinuous at these interfaces, the
solution fields (e.g., temperature and velocity) may vary in
ways that do not make such interfaces obvious. Consequently,
only refining based on velocity and temperature may not yield
meshes that reveal these phase boundaries in sufficient detail
to really capture their small-scale influences. Furthermore,
the meshes so generated would not allow to extract interfaces
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with sufficient resolution to account for the dynamic effects
of phase changes, latent heat transfer as discussed in Sec-
tion 3.4, or for comparison against observations like seismic
tomographic models.

3.5.1 A practical approach

Despite the fact that we have well over a decade of experience
with mesh adaptation algorithms, it is not clear to us how
one can devise methods that automatically take into account
what one may be interested in. Dual Weighted Residual meth-
ods such as those discussed in [Bangerth & Rannacher(2003)]
may be appropriate but are unwieldy to implement for time-
dependent problems. Instead, the best solution we can come
up with is a complex but flexible, two-tiered system for adap-
tive mesh refinement that is primarily driven by letting users
choose what information they think is most important for
their purposes. In a first step, we compute refinement indica-

tors η
(1)
K , . . . , η

(L)
K by choosing among a list of indicators that

include the following:

• The “Kelly” indicator applied to the velocity or temper-
ature.

• A weighted discrete approximation of the gradient,

ηK = h
1+d/2
K |∇hvh(xK)|.

Here, xK is the center of K, d the space dimension, and

the factor h
1+d/2
K is chosen so that indicators converge

to zero as the mesh size h → 0 even for discontinuous
discretizations vh of otherwise continuous exact solutions
v. This criterion is then applied to derived quantities vh
such as the density, the viscosity, or the thermal energy
density ρCpT .

The criteria η
(`)
K are then scaled or normalized to yield η̃

(`)
K ,

and the final refinement indicators are obtained by either com-

puting ηK = max1≤`≤L η̃
(`)
K or ηK =

∑
1≤`≤L η̃

(`)
K . Cells are

then marked for coarsening or refinement based on ηK .
There are also cases where refinement needs to be driven

algorithmically, rather than based on criteria derived from so-
lution or derived values. For example, we have found that it
is often useful to only refine in an region of particular interest,
even though the model is larger; in these cases, one can think
of the larger model (with a relatively coarse mesh) as provid-
ing self-consistent boundary values for the smaller region of
interest (with a finer mesh). Another example is to ensure a
minimal refinement level for all cells at the surface, or at a
particular depth.

This approach provides great flexibility in defining how and
where the mesh is refined, as necessary, and thereby provide
high accuracy where it is important for the particular question
one wants to investigate in a simulation. At the same time,
there is little theoretical underpinning that this approach is
“optimal” (however one may want to define this).

3.5.2 Mesh refinement in 2-D spherical convection

We demonstrate the flexibility provided by the mesh refine-
ment procedure using an example of 2D mantle convection

that includes phase transitions and the associated disconti-
nuities of density and viscosity. The geometry is a spheri-
cal shell, and the mantle is heated from the bottom, where
the temperature is fixed to 2600 K, and cooled from the top,
where the temperature is 273 K. No additional heating pro-
cesses (such as shear heating, adiabatic heating, or latent
heat) are included, and the initial temperature is constant
at 1600 K except for the two thermal boundary layers.

We model two phase transitions at depths of 410 km 660 km
(reflecting the olivine-spinel and spinel-perovskite transfor-
mations), where both viscosity and density change discontin-
uously. Specifically, we use a viscosity

η = η0e
−E T−Tref

Tref . (12)

where η0 = 1021 Pa s in the upper mantle, η0 = 1022 Pa s
between 410 km and 660 km depth, and η0 = 1023 Pa s in the
lower mantle; we choose the dimensionless activation energy
E = 15, and the reference temperature Tref = 1600 K.

Our density model satisfies

ρ =ρ0(1 + κp)(1− α(T − Tref)) (13)

+


0, depth < 410 km

∆ρ410, 410 km < depth < 660 km

∆ρ410 + ∆ρ660, depth > 660 km

.

with ρ0 = 3300 kg/m3, κ = 5.124 · 1012 Pa-1, α = 4 · 10−5 K-1,
and density increases of ∆ρ410 = 100 kg/m3 and ∆ρ660 =
200 kg/m3 at the 410 km and 660 km phase transitions. Veloc-
ities at the outer boundary are prescribed, using the present-
day plate velocities [Gurnis et al.(2012)].

Fig. 8 shows the temperature distribution in this model af-
ter 260 million years, together with the corresponding meshes
generated using different criteria for the adaptive refinement.
The figure illustrates how a refinement criterion based solely
on the temperature almost entirely misses the phase tran-
sitions in favour of resolving only the boundary layers and
plumes. It would therefore not yield sufficiently resolved fields
for comparisons with tomographic models of Earth. On the
other hand, refining based on weighted approximate gradients
of either the thermal energy density ρCpT or the viscosity η
allows the resolution of phase boundaries.

Which of these meshes yields the “best” solution cannot be
quantified without specifying what the “goal” of the simula-
tion is. It is possible that the meshes refined based on the
thermal energy density or the density have a larger energy
norm error in the velocity and/or temperature. On the other
hand, their accuracy in predicting tomographically visible in-
terfaces is certainly much higher.

3.6 Tracking chemical compositions and
other quantities

In many complex simulations of mantle convection, it is neces-
sary to track not only the flow of thermal energy (described by
equation (3)), but also how the chemical composition, trace or
radiogenic elements, isotope ratios, water content – or other
quantities such as grain sizes – are transported along with the
velocity.
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Figure 8: Temperature distribution and mesh in a 2D man-
tle convection model, using different refinement criteria: The
Kelly error estimator for the temperature field, an error in-
dicator based on the magnitude of the approximate gradient
of the thermal energy density ρCpT , and the approximate
gradient of the viscosity.

In mantle convection codes, this has traditionally
(and successfully) be done using tracer particles [Poli-
akov & Podladchikov(1992), Gerya & Yuen(2003), McNa-
mara & Zhong(2004), Popov & Sobolev(2008), Thielmann
et al.(2014)]. However, it is not trivial to implement tracers
efficiently and scalably in the context of large-scale parallel
codes with dynamically changing, adaptively refined meshes,
as opposed to globally refined, statically partitioned, fixed
meshes. A number of these challenges – and possible solutions
– are discussed in more details in [Gassmoeller et al.(2016)].

On the other hand, many of the applications that have tra-
ditionally motivated the use of particles can equally well be
done by using a field-based description of the quantities one
wants to advect along. The advantage in using this approach
is the well developed numerical infrastructure for solving ad-
vection equations, and the ease with which these can then
be evaluated at quadrature points when computing material
properties; highly efficient tools are also available in many of
the available finite element libraries to facilitate data move-
ment upon mesh refinement and repartitioning (see, for ex-
ample, [Bangerth et al.(2011)]).

Using field-based approaches then requires advecting any
number of “compositional fields” Ci along with the velocity
field, by solving the advection equations

∂Ci
∂t

+ u · ∇Ci = Qi for i = 1...n, (14)

where Qi are source terms that may depend on velocity, pres-
sure, temperature, and the compositional fields Ci themselves.
Through appropriate choices of these source terms, one can
also model reactions among fields, for example to describe
compositional changes upon partial melting or freezing of ma-
terial. On the other hand, entirely different reactions can
equally easily be modelled, and we will outline one example
in Section 3.6.2 below.

In practice, the compositional fields are easily evaluated at
quadrature points, and can therefore be used to affect the
description of material parameters such as the density and
viscosity.

3.6.1 Implementation

As stated, equation (14) does not contain any diffusion, in line
with the fact that chemical species do not diffuse at apprecia-
ble rates on length scales of the Earth mantle. Consequently,
the numerical solution of (14) presents challenges when mod-
elling sharp gradients – for example, when tracking chemical
heterogeneities, or when using the fields Ci to track where ma-
terial that originates from one particular area is transported
over time. To stabilize the numerical solution, one typically
employs one of many artificial viscosity schemes, such as the
SUPG formulation [Brooks(1981),Brooks & Hughes(1982)] or
schemes based on the residual of an entropy equation [Guer-
mond et al.(2011),Kronbichler et al.(2012)]. This is of course
also necessary for the temperature equation (3).

In practical applications, it has proven useful to allow de-
scriptions of the source terms Qi that may consist both of
finite but time dependent components, and of impulse func-
tions in time. An example for the use of impulse functions is
where the Ci describe the chemical composition of rocks; if
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these compositions change due to partial melting and melt ex-
traction that happen instantaneously (compared to the size
of a time step) as a rock moves through the p − T phase
diagram, the compositions Ci also need to change instanta-
neously, rather than continuously. Allowing both continu-
ous and impulse components can be achieved by providing
the functions that compute Qi with current values of strain
rate, temperature, pressure, compositions, and spatial loca-
tion, along with a time increment ∆t, and require them to

return
∫ t+∆t

t
Qi(ε(u), p, T, C,x, τ) dτ . If Qi contains impulse

components, then the functions’ return value will simply have
a contribution that is not proportional to ∆t.

3.6.2 Tracking finite strain

We demonstrate the flexibility of using compositional fields
using the example of a Cartesian convection model that tracks
the accumulated finite strain at every location of the domain.
For this purpose, we define Ci as the components of the de-
formation gradient (or deformation) tensor F , which repre-
sents the deformation accumulated over time by idealized lit-
tle grains of finite size. This is done in such a way that (in
2D) C1 = Fxx, C2 = Fxy, etc. The time derivative of F can
be computed as

∂F

∂t
= GF , (15)

where G = ∇uT is the velocity gradient tensor [McKenzie &
Jackson(1983), Dahlen & Tromp(1998), Becker et al.(2003)].
The initial deformation is F0 = I, with I being the identity
tensor.

This means that the Qi on the right-hand side of Equation
(14) can be computed as the product of the current veloc-
ity gradient G and the accumulated deformation F at the
previous time step.

A direct visualization of F is not intuitive, because it con-
tains rotational components that represent a rigid body rota-
tion without deformation. Following [Becker et al.(2003)] we
can polar-decompose the tensor into a positive-definite and
symmetric tensor L, and an orthogonal rotation tensor R, as
F = LR, therefore L2 = LLT = FF T . The left stretching
tensor L then describes the deformation we are interested in,
and its eigenvalues λi and eigenvectors ei describe the length
and orientation of the half-axes of the finite strain ellipsoid.
Moreover, we will represent the amount of relative stretch-
ing at every point by the ratio ln(λ1/λ2), called the natural
strain [Ribe(1992)].

The model we present here as an example for tracking of
finite strain features a box with an aspect ratio of three and
dimensions of 2900 × 8700 km. The mantle is cooled from
the top (where the temperature is 293 K) and heated from the
bottom (where the temperature is 2780 K) with no additional
heat sources in the form of internal heating or latent heat.
The density is modelled as

ρ = ρ0 (1− α(T − Tref)) , (16)

with ρ0 = 3400 kg m-3, α = 2 × 10−5 K-1 and the reference
temperature Tref = 1600 K. Thermal conductivity and gravity
are set to k = 4.7 W m-1 K-1 and g = 9.81 m s-2. We choose

T [K]

ln(λ1/λ2)

Figure 9: Temperature (top) and accumulated natural strain
(bottom) in a 2D Cartesian convection model at a time of
67.6 Ma. Black crosses represent the scaled eigenvectors of
the stretching tensor L, showing the direction of stretching
and compression the material has experienced.

the temperature-dependent viscosity as

η = η0e
−E T−Tref

Tref , (17)

with η0 = 5 × 1021 Pa s and E = 7. Hence, the bottom
thermal boundary layer, where viscosities are lower, becomes
unstable first, and plumes start to rise towards the surface,
see Fig. 9 (top). Material moves to the sides at the top of
the plume head, so that it is shortened in vertical direction
(short black vertical lines in Fig. 9, bottom) and stretched in
horizontal direction (long horizontal lines). The sides of the
plume head show the opposite effect. Shear occurs mostly
at the edges of the plume head, in the plume tail, and in
the bottom boundary layer (black areas in the natural strain
distribution).

4 Application to a complex problem

In order to present the methods discussed in the previous
sections in practice, we here show results of a global mantle
convection model that combines a compressible formulation
with earth-like material properties, a strongly temperature
dependent viscosity, chemical heterogeneities tracked by com-
positional fields, and prescribed surface velocities.

In particular, the model geometry resembles Earth’s man-
tle, and starts from an undisturbed, motionless state. A layer
of dense basaltic material with initially uniform thickness
of 150 km covers the core-mantle boundary, and the initial
temperature profile follows an adiabat of 1613 K computed
with the material properties that are provided by the Per-
ple X software [Connolly(2005)] based on a database of min-
eral properties [Stixrude & Lithgow-Bertelloni(2011)], overall
a method similar to [Nakagawa et al.(2009)]. This approach
yields realistic, earth-like material properties, but also en-
tails several challenges, such as discrete sampling in pressure–
temperature space, and quasi-discontinuous jumps due to
phase transitions. The viscosity is based on a published vis-
cosity model incorporating constraints from mineral physics,
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geoid deformation and seismic tomography [Steinberger &
Calderwood(2006)]. It is depth- and temperature dependent
and leads to viscosity variations of four orders of magni-
tude over a realistic temperature range, providing a challenge
for the linear Stokes solver. Surface velocities in the model
are prescribed using published plate reconstructions [Seton
et al.(2012)], and are prepared by the GPlates software [Boy-
den et al.(2011)] at discrete positions, and interpolated to the
adaptively refined mesh within Aspect. Boundary temper-
atures are prescribed to 273 K (at the surface) and 3700 K
(at the core-mantle boundary). The resolution of the finest
mesh cells is 23 km (large portions of the model are adaptively
coarsened), and the overall computation has about 100 mil-
lion degrees of freedom in each time step. The model requires
4,500 time steps, within which we iterate out the nonlinearity
with on average about 2 sub-iterations (for a total of 8,500
nonlinear iterations). The model required a total computing
time of 110 hours on 768 processes, i.e., 85,000 CPU hours.

The model results presented in Fig. 10 demonstrate the
complexities that arise in realistic mantle convection models
as discussed in this paper. The strongly temperature depen-
dent viscosity leads to narrow upwelling plumes (with diame-
ters around 100 km) that rise from the edges of the dense basal
piles and reach the surface close to observed hotspot locations
on Earth as observed in many other studies [Steinberger &
Torsvik(2012),Davies et al.(2012),Bower et al.(2013),Hassan
et al.(2015)]. Due to its low viscosity the plume material
moves with velocities larger than 10 cm/yr in the upper man-
tle thus limiting the timestep length of the model. The min-
eral physics based material properties contain sharp gradients
in density, thermal expansivity, and specific heat capacity;
these are particularly prominent in the mantle transition zone
and at the Bridgmanite-Postperovskite transition close to the
core-mantle boundary in the lower left panel of Fig. 10.

The more complex setup of our model compared to ear-
lier studies – including compressibility, highly temperature-
dependent viscosity, and more complex material parameters
– does not change the basic results of the computation. How-
ever, the setup focuses the plumes into narrower structures,
and the higher accuracy possible with our methods allows
additional use cases for the model results: Velocities, temper-
ature and compositions can be used as constraints for regional
high-resolution models investigating particular processes such
as the interaction between rising mantle plumes and mid-
ocean ridges [Gassmöller et al.(2016)], or the generation and
ascent of chemically zoned plumes that are thought to be re-
sponsible for the generation of zoned hotspot tracks [Weis
et al.(2011)]. Consistent temperature and pressure profiles
of compressible models also allow for a more straightforward
comparison between geodynamic and seismic models, for ex-
ample by converting the geodynamic model results to a syn-
thetic tomography model [Ritsema et al.(2007)], or by us-
ing the created seismic velocity field to forward-model seismic
wave propagation [Nissen-Meyer et al.(2014)].

5 Conclusions

Mantle convection codes have provided a great deal of in-
sight into the dynamics of the mantles of Earth and other
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Figure 10: Final state of a global mantle convection simula-
tion after 250 Ma of model time. Top panels: Isosurfaces of
-150 K (white to blue) and +300 K (rainbow colored) temper-
ature deviation from an adiabatic temperature profile for the
African hemisphere (left) and the Pacific hemisphere (right).
Colors visualize height above the core-mantle boundary, and
coastlines are shown in black outlines. Center and bottom
panels: Equatorial slices through the model showing temper-
ature deviation and finite-element mesh (center left), viscosity
(center right), thermal expansivity (bottom left), and velocity
(bottom right). In all slices the Greenwich meridian is “up”
and the view is directed from the North pole to the South
pole.
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rocky planets. Yet, to deepen their veracity requires both
increasing the complexity of the models they solve (e.g., in
dealing with highly variable coefficients and latent heat), as
well as the scale at which they can discretize these models for
a computational solution (e.g., in devising adaptively refined
meshes). Both of these challenges require going beyond the
ways in which most codes have so far operated.

In this contribution, we have summarized some of the
lessons we have learned over the past years in solving com-
plex mantle convection problems using state-of-the-art com-
putational methods. Specifically, we have discussed effective
ways for dealing with time stepping, compressibility, discon-
tinuous coefficients, latent heat, adaptively refining finite el-
ement meshes, and advecting additional quantities. None of
these techniques by themselves are sufficient to deal with the
most complex models we have encountered, but jointly, and in
concert with the methods previously discussed in [Kronbich-
ler et al.(2012)], they help solve some of the most complex
mantle convection models we know of on large-scale compute
clusters. We believe that they will also be useful in using even
more complicated models – for example with material models
that utilize grain size evolution, track finite strain, consider
diffusion and dislocation creep, plasticity effects, and other in-
puts – to accurately predict outputs that can be compared to
available data via seismic imaging, surface heat fluxes, plate
velocities, and other measurements.
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Gassmöller, R., Heister, T., et al., 2016a. ASPECT:
Advanced Solver for Problems in Earth’s ConvecTion,
Computational Infrastructure in Geodynamics.

[Bangerth et al.(2016b)] Bangerth, W., Davydov, D., Heis-
ter, T., Heltai, L., Kanschat, G., Kronbichler, M., Maier,
M., Turcksin, B., & Wells, D., 2016b. The deal.II li-
brary, version 8.4, Journal of Numerical Mathematics,
24.

[Baumgardner(1985)] Baumgardner, J. R., 1985. Three-
dimensional treatment of convective flow in the earth’s
mantle, Journal of Statistical Physics, 39(5-6), 501–511.

[Becker et al.(2003)] Becker, T. W., Kellogg, J. B., Ekström,
G., & O’Connell, R. J., 2003. Comparison of azimuthal
seismic anisotropy from surface waves and finite strain
from global mantle-circulation models, Geophysical Jour-
nal International , 155(2), 696–714.

[Bercovici et al.(1992)] Bercovici, D., Schubert, G., & Glatz-
maier, G. A., 1992. Three-dimensional convection of an
infinite-prandtl-number compressible fluid in a basally
heated spherical shell, Journal of Fluid Mechanics, 239,
683–719.

[Blankenbach et al.(1989)] Blankenbach, B., Busse, F.,
Christensen, U., Cserepes, L., Gunkel, D., Hansen, U.,
Harder, H., Jarvis, G., Koch, M., Marquart, G., Moore,
D., Olson, P., Schmeling, H., & Schnaubelt, T., 1989.
A benchmark comparison for mantle convection codes,
Geophys. J. Int., 98, 23–38.

[Bower et al.(2013)] Bower, D. J., Gurnis, M., & Seton, M.,
2013. Lower mantle structure from paleogeographically
constrained dynamic earth models, Geochemistry, Geo-
physics, Geosystems, 14(1), 44–63.

[Boyden et al.(2011)] Boyden, J. A., Müller, R., Gurnis, M.,
Torsvik, T. H., Clark, J. A., Turner, M., Ivey-Law, H.,
Watson, R. J., & Cannon, J., 2011. Next-generation
plate-tectonic reconstructions using GPlates, in Geoin-
formatics: Cyberinfrastructure for the Solid Earth Sci-
ences, pp. 95–114, eds Keller, G. & Baru, C., Cambridge
University Press.

17



[Brooks(1981)] Brooks, A. N., 1981. A Petrov-Galerkin fi-
nite element formulation for convection dominated flows,
Ph.D. thesis, California Institute of Technology.

[Brooks & Hughes(1982)] Brooks, A. N. & Hughes, T. J.,
1982. Streamline upwind/petrov-galerkin formulations
for convection dominated flows with particular emphasis
on the incompressible navier-stokes equations, Computer
methods in applied mechanics and engineering , 32(1),
199–259.

[Burstedde et al.(2011)] Burstedde, C., Wilcox, L. C., &
Ghattas, O., 2011. p4est: Scalable algorithms for paral-
lel adaptive mesh refinement on forests of octrees, SIAM
J. Sci. Comput., 33(3), 1103–1133.

[Burstedde et al.(2013)] Burstedde, C., Stadler, G., Alisic,
L., Wilcox, L. C., Tan, E., Gurnis, M., & Ghattas, O.,
2013. Large-scale adaptive mantle convection simulation,
Geophysical Journal International , 192(3), 889–906.

[Busse et al.(1993)] Busse, F., Christensen, U., Clever, R.,
Cserepes, L., Gable, C., Giannandrea, E., Guillou, L.,
Houseman, G., Nataf, H.-C., Ogawa, M., Parmentier, M.,
Sotin, C., & Travis, B., 1993. 3D convection at infinite
Prandtl numbers in cartesian geometry — a benchmark
comparison, Geophys. Astrophys. Fluid Dynamics, 75,
39–59.

[Christensen & Yuen(1985)] Christensen, U. R. & Yuen,
D. A., 1985. Layered convection induced by phase tran-
sitions, Journal of Geophysical Research: Solid Earth,
90(B12), 10291–10300.

[Connolly(2005)] Connolly, J., 2005. Computation of phase
equilibria by linear programming: A tool for geodynamic
modeling and its application to subduction zone decar-
bonation, Earth and Planetary Science Letters, 236(1-
2), 524–541.

[Connolly(2009)] Connolly, J., 2009. The geodynamic equa-
tion of state: what and how, Geochemistry, Geophysics,
Geosystems, 10(10).

[Cottaar et al.(2014)] Cottaar, S., Heister, T., Rose, I., & Un-
terborn, C., 2014. Burnman: A lower mantle mineral
physics toolkit, Geochemistry, Geophysics, Geosystems,
15(4), 1164–1179.

[Crameri et al.(2012)] Crameri, F., Schmeling, H., Golabek,
G., Duretz, T., Orendt, R., Buiter, S., May, D., Kaus,
B., Gerya, T., & Tackley, P., 2012. A comparison of nu-
merical surface topography calculations in geodynamic
modelling: an evaluation of the ’sticky air’ method, Geo-
physical Journal International , 189(1), 38–54.

[Dahlen & Tromp(1998)] Dahlen, F. & Tromp, J., 1998. The-
oretical global seismology , Princeton University Press.

[Dannberg & Heister(2016)] Dannberg, J. & Heister, T.,
2016. Compressible magma/mantle dynamics: 3-d, adap-
tive simulations in aspect, Geophysical Journal Interna-
tional , 207(3), 1343–1366.

[Davies et al.(2011)] Davies, D. R., Wilson, C. R., & Kramer,
S. C., 2011. Fluidity: A fully unstructured anisotropic
adaptive mesh computational modeling framework for
geodynamics, Geochemistry, Geophysics, Geosystems,
12(6).

[Davies et al.(2012)] Davies, D. R., Goes, S., Davies, J.,
Schuberth, B., Bunge, H.-P., & Ritsema, J., 2012. Recon-
ciling dynamic and seismic models of earth’s lower man-
tle: The dominant role of thermal heterogeneity, Earth
and Planetary Science Letters, 353, 253–269.

[Deubelbeiss & Kaus(2008)] Deubelbeiss, Y. & Kaus, B.
J. P., 2008. Comparison of eulerian and lagrangian nu-
merical techniques for the stokes equations in the pres-
ence of strongly varying viscosity, Physics of the Earth
and Planetary Interiors, 171, 92–111.

[Duretz et al.(2011)] Duretz, T., May, D. A., Gerya, T. V., &
Tackley, P. J., 2011. Discretization errors and free sur-
face stabilization in the finite difference and marker-in-
cell method for applied geodynamics: A numerical study,
Geoch. Geoph. Geosystems, 12, Q07004/1–26.

[Elman et al.(2005)] Elman, H., Silvester, D., & Wathen, A.,
2005. Finite Elements and Fast Iterative Solvers with
Applications in Incompressible Fluid Dynamics, Oxford
Science Publications, Oxford.

[Ern & Guermond(2004)] Ern, A. & Guermond, J., 2004.
Theory and practice of finite elements, Springer Verlag.

[Gago et al.(1983)] Gago, J. P. d. S. R., Kelly, D. W.,
Zienkiewicz, O. C., & Babuška, I., 1983. A posteriori
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A King results

Given how widely used the benchmark defined in [King
et al.(2010)] is, Tables 6 and 7 provide a full account of our
results for this benchmark using the strategy to solve com-
pressible equations discussed in Section 3.2. In particular,
the tables show convergence as the mesh size goes to zero,
and extrapolated values that can be compared against the
values that were reported in [King et al.(2010)].
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Di Ra 1/h Nu Vrms 〈T 〉 φ W
0.25 104 16 4.53819 40.02007 0.51514 0.85213 0.85157
0.25 104 32 4.45192 39.96357 0.51496 0.84984 0.84928
0.25 104 64 4.42482 39.95752 0.51494 0.84960 0.84903
0.25 104 128 4.41735 39.95684 0.51494 0.84957 0.84901

extrapolated 4.41450 39.95676 0.51494 0.84957 0.84900
0.25 104 King UM 4.406 39.952 0.515 0.847 0.849
0.25 104 King VT 4.4144 40.0951 0.5146 0.849 0.849
0.25 104 King CU 4.41 40 0.5148 0.8494 0.8501

0.5 104 16 3.91228 35.98789 0.52271 1.38719 1.38541
0.5 104 32 3.84891 35.94470 0.52245 1.38402 1.38225
0.5 104 64 3.82932 35.93997 0.52241 1.38368 1.38190
0.5 104 128 3.82399 35.93943 0.52241 1.38364 1.38186

extrapolated 3.82200 35.93936 0.52241 1.38363 1.38186
0.5 104 King UM 3.812 35.936 0.522 1.381 1.381
0.5 104 King VT 3.8218 36.0425 0.5214 1.3812 1.3812
0.5 104 King CU 3.82 35.9 0.5217 1.3818 1.383

1 104 16 2.47804 24.69538 0.51160 1.34460 1.35568
1 104 32 2.45507 24.68259 0.51145 1.34286 1.35415
1 104 64 2.44835 24.68113 0.51143 1.34270 1.35399
1 104 128 2.44659 24.68096 0.51142 1.34268 1.35398

extrapolated 2.44596 24.68094 0.51142 1.34268 1.35397
1 104 King UM 2.438 24.663 0.512 1.343 1.349
1 104 King VT 2.4716 25.0157 0.51 1.3622 1.3621
1 104 King CU 2.47 24.9 0.5103 1.3627 1.3638

0.25 105 16 9.83522 179.93650 0.53284 2.09314 2.09246
0.25 105 32 9.53887 178.40375 0.53247 2.05964 2.05880
0.25 105 64 9.33472 178.11199 0.53220 2.05331 2.05247
0.25 105 128 9.26702 178.07886 0.53216 2.05260 2.05176

extrapolated 9.23343 178.07461 0.53216 2.05251 2.05167
0.25 105 King UM 9.196 178.229 0.532 2.041 2.051
0.25 105 King VT 9.2428 179.7523 0.5318 2.0518 2.0519
0.25 105 King CU 9.21 178.2 0.5319 2.0503 2.054

0.5 105 16 8.02846 156.42662 0.54891 3.28923 3.28780
0.5 105 32 7.77804 155.33596 0.54847 3.24554 3.24386
0.5 105 64 7.63385 155.14374 0.54810 3.23781 3.23613
0.5 105 128 7.58835 155.12096 0.54805 3.23691 3.23523

extrapolated 7.56738 155.11790 0.54804 3.23679 3.23511
0.5 105 King UM 7.532 155.304 0.548 3.221 3.233
0.5 105 King VT 7.5719 156.5589 0.5472 3.2344 3.2346
0.5 105 King CU 7.55 155.1 0.5472 3.233 3.2392

1 105 16 4.01908 84.62211 0.53004 2.77354 2.78862
1 105 32 3.91951 84.38968 0.52998 2.75378 2.77104
1 105 64 3.88351 84.36924 0.52983 2.75204 2.76933
1 105 128 3.87359 84.36595 0.52981 2.75183 2.76912

extrapolated 3.86982 84.36532 0.52981 2.75180 2.76909
1 105 King UM 3.857 84.587 0.53 2.742 2.765
1 105 King VT 3.878 85.5803 0.5294 2.761 2.7614
1 105 King CU 3.88 84.6 0.5294 2.7652 2.7742

Table 6: Compressible results using the ALA formulation of convection corresponding to the benchmark defined in [King
et al.(2010)] (see Section 3.2.5). The ASPECT results were obtained by running the benchmark on increasingly finer meshes,
and extrapolating from the 1/128 mesh using Richardson extrapolation. Acronyms for the different codes are as in Table 4.
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Di Ra 1/h Nu Vrms 〈T 〉 φ W
0.25 104 16 4.54966 40.11121 0.51292 0.85535 0.85306
0.25 104 32 4.46241 40.05425 0.51276 0.85304 0.85075
0.25 104 64 4.43490 40.04816 0.51274 0.85279 0.85050
0.25 104 128 4.42730 40.04747 0.51273 0.85277 0.85048

extrapolated 4.42440 40.04738 0.51273 0.85276 0.85047
0.25 104 King UM 4.416 40.043 0.513 0.85 0.85
0.25 104 King VT 4.43 40.2 0.5127 0.8535 0.851
0.25 104 King CU 4.42 40.1 0.5129 0.8539 0.8521

0.5 104 16 3.95543 36.36149 0.51906 1.41082 1.39596
0.5 104 32 3.88987 36.31653 0.51882 1.40750 1.39267
0.5 104 64 3.86941 36.31161 0.51879 1.40714 1.39232
0.5 104 128 3.86383 36.31105 0.51879 1.40710 1.39228

extrapolated 3.86173 36.31098 0.51879 1.40710 1.39227
0.5 104 King UM 3.851 36.307 0.519 1.404 1.391
0.5 104 King VT 3.86 36.4 0.5188 1.41 1.393
0.5 104 King CU 3.86 36.3 0.5191 1.4103 1.3948

1 104 16 2.60286 26.04904 0.50879 1.46095 1.40373
1 104 32 2.57654 26.03180 0.50864 1.45907 1.40188
1 104 64 2.56869 26.02986 0.50862 1.45886 1.40168
1 104 128 2.56661 26.02963 0.50862 1.45883 1.40166

extrapolated 2.56586 26.02960 0.50862 1.45883 1.40165
1 104 King UM 2.556 26.007 0.509 1.459 1.396
1 104 King VT 2.57 26.1 0.5088 1.465 1.4
1 104 King CU 2.57 26 0.5092 1.4651 1.4019

0.25 105 16 9.85211 180.27625 0.53099 2.09904 2.09486
0.25 105 32 9.55792 178.73582 0.53064 2.06534 2.06106
0.25 105 64 9.35214 178.44224 0.53038 2.05898 2.05470
0.25 105 128 9.28366 178.40914 0.53035 2.05826 2.05399

extrapolated 9.24951 178.40493 0.53035 2.05817 2.05390
0.25 105 King UM 9.211 178.56 0.53 2.046 2.053
0.25 105 King VT 9.26 180.2 0.5303 2.06 2.055
0.25 105 King CU 9.23 178.6 0.5303 2.0597 2.0573

0.5 105 16 8.09115 157.65395 0.54628 3.32727 3.30146
0.5 105 32 7.84156 156.53898 0.54587 3.28255 3.25680
0.5 105 64 7.69384 156.34132 0.54551 3.27458 3.24889
0.5 105 128 7.64693 156.31798 0.54546 3.27366 3.24797

extrapolated 7.62511 156.31485 0.54546 3.27354 3.24785
0.5 105 King UM 7.588 156.503 0.545 3.258 3.245
0.5 105 King VT 7.63 157.93 0.5454 3.279 3.25
0.5 105 King CU 7.61 156.5 0.5455 3.2779 3.2552

1 105 16 4.07456 85.14148 0.52985 2.83063 2.77505
1 105 32 3.97234 84.89402 0.52980 2.81369 2.75800
1 105 64 3.93519 84.87226 0.52966 2.81190 2.75622
1 105 128 3.92495 84.86890 0.52964 2.81167 2.75600

extrapolated 3.92105 84.86829 0.52964 2.81164 2.75597
1 105 King UM 3.907 85.105 0.529 2.802 2.75
1 105 King VT 3.92 86.08 0.5297 2.821 2.757
1 105 King CU 3.92 85.1 0.5297 2.8278 2.7725

Table 7: Compressible results using the TALA formulation corresponding to the benchmark defined in [King et al.(2010)].
All other data as in Table 6.
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