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a b s t r a c t

We consider a generalized-Newtonian fluid with defective boundary conditions where only flow rates or
mean pressures are prescribed on parts of boundary. The defect boundary condition problem is formu-
lated as an optimal control problem in which a Neumann or Dirichlet boundary control is used for match-
ing given flow rates or mean pressures. For the constrained optimization problem an optimality system is
derived from which a solution of the problem is obtained. Computational algorithms are discussed and
numerical results are also presented.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Many flow problems in real applications are modeled in an
unbounded domain. Blood flows in the vascular system is one of
the important applicative fields relative to such a situation. In
simulating blood flow in a portion of vessel, an artificial boundary
is introduced for upstream and downstream sections and a Dirichlet
or Neumann type boundary condition is imposed on the boundary.
However, in practice, those boundary data are not usually avail-
able, and sometimes recirculation of flow can occur near or on a
boundary section. For this reason, in numerical simulation of such
flows, it is more realistic to implement measurable data on the
boundary such as pressure and flow rates.

Studies on flow problems with defective boundary conditions
have been reported in [8,9,15,19]. In [8] Formaggia et al. discussed
a defective boundary condition problem for the time dependent
Navier–Stokes equation, where flow rates are specified on inflow
and outflow boundaries. They introduced a Lagrange multiplier ap-
proach to enforce flow constraints at the inflow and outflow por-
tions of the boundary. In [15] Heywood et al. also investigated
the defective boundary condition problem for the time-dependent
Navier–Stokes equations. For the specified flow rate problem, they
considered construction of suitable flux-carrier vector functions.
We used the Lagrange multiplier method in [8] to study a quasi-
Newtonian flow problem with flow rate constraints in Sobolev
spaces [7]. We established existence and uniqueness of solution
for the continuous and discrete variational problems, and
presented an error analysis for the numerical approximation. We
could also observe that the flow field with flow rates boundary
conditions looks very similar to that with a standard boundary

condition; specified parabolic velocity inflow profiles and a ‘‘do
nothing’’ outflow boundary condition.

Another defective boundary condition applicable in flow simu-
lation is the mean pressure condition. In this case the mean pres-
sure is specified on the inflow and outflow boundaries. In [15]
the do-nothing approach was used to derive a particular weak for-
mulation of the Navier–Sotkes equation with the mean pressure
boundary condition. Similarly to a flow rate problem, the weak for-
mulation involves implicit Neumann type boundary condition and
chooses one particular solution from the set of all physical solu-
tions satisfying the differential equation system.

In [9] Formaggia et al. studied the Stokes equations and the
Navier–Stokes equations with defective boundary conditions in
the setting of optimal control problems, where flow rate matching
or mean pressure matching on boundaries is considered. A con-
stant normal stress on each inflow or outflow boundary was cho-
sen as a control for the matching. In the constraint equations the
control appears in a boundary integral, which is referred to a
boundary control [11].

The study of optimal control problems for Newtonian fluids has
been very active in the last few decades (see [11–13] and
references therein). In solving an optimal control problem with
constraints, we can apply a sensitivity-based optimization scheme
[3,14] or an adjoint-based optimization scheme [11,16]. For the
adjoint-based optimization approach, the Lagrange multiplier
method is used to derive an optimality system consisting of the
fluid equations and the adjoint equations, from which an optimal
solution is obtained. The sensitivity-based method requires solving
so called sensitivity equations, which are derived by taking the
Fréchet derivative of the operator associated with fluid equations
with respect to control variables.

Studies on optimization for quasi-Newtonian flow are found in
[1,5]. Du et al. [5] analyzed the optimal control problem for the
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Ladyzhenskaya model using the Lagrange multipliers technique in
the setting of Hilbert spaces. A shape optimization for blood flow
was numerically investigated using the modified Cross model in
[1].

The goal of this paper is to investigate finite element approxi-
mation of non-Newtonian flows with defective boundary condi-
tions based on optimal control techniques. We develop
numerical schemes applicable in physical and engineering prob-
lems such as blood flow system and polymer processing. We also
compare performance of Dirichlet and Neumann boundary con-
trols in the optimization problems. The approaches presented here
are easily extendable to other flow control problems such as veloc-
ity tracking and drag minimization problems governed by non-
Newtonian fluids.

This paper is organized as follows. In the remainder of this sec-
tion, we describe the model problem, introduce function spaces
and state an existence result. In Section 2 a flow rate boundary
problem is formulated as an control problem using a Neumann
control, and an optimality system is derived. We consider finite
element approximation of the optimality system and a computa-
tional algorithm in Section 3, and in Section 4, we show how a
Dirichlet control is implemented in variational formulation and
discuss a numerical algorithm for the Dirichlet control problem.
In Section 5, mean pressure boundary conditions are considered
and finally, numerical results are presented in Section 6.

Let X be a bounded domain in Rn for n = 2,3 with boundary oX.
Suppose the boundary consists of the wall boundary C, inflow and
outflow boundaries Si, i = 1,2, . . . ,m. As a model problem for quasi-
Newtonian flows consider the three-field Power law model

r ¼ m0jDðuÞjr�2DðuÞ in X; ð1:1Þ
� r � rþrp ¼ f in X; ð1:2Þ
div u ¼ 0 in X; ð1:3Þ
u ¼ 0 on C; ð1:4Þ

subject to the specified flow rates on

Si :

Z
Si

u � n dS ¼ Q i for i ¼ 1; . . . ;m;

where C = oXn[i=1,. . .,mSi and
Pm

i¼1Qi ¼ 0 for the incompressibility
condition. For problems of physical interest, 1 < r 6 2, e.g. for shear
thinning fluids. We denote its conjugate by r0, satisfying
r�1 + r

0�1 = 1. Note that r0 P 2 for 1 < r 6 2.
The constitutive equation of the fluid (1.1) can be rewritten as

the inverted form

DðuÞ ¼ m1�r0
0 jrjr

0�2r :¼ GðrÞ ð1:6Þ

and the inverse is continuous [7]. It follows from [4] that G(�)
satisfies

ðGðsÞ � GðtÞÞ : ðs� tÞP cjs� tjr
0
; 8 s; t 2 Rn�n; ð1:7Þ

jGðsÞ � GðtÞj 6 Mðjsj þ jtjÞr
0�2js� tj; 8 s; t 2 Rn�n: ð1:8Þ

Properties (1.7) and (1.8) imply that G(�) is strongly monotone, and
Lipschitz continuous for bounded arguments [4].

The numerical approximation of the shear thinning flows with
the homogeneous boundary condition has been previously studied
in several papers [2,6,10,17,18]. There, the existence of a solution, a
priori and a posteriori error estimates for the steady state problem
were discussed.

Used in the analysis below are the following function spaces
and norms.

R :¼ Lr0 ðXÞ
� �n�n

¼ s ¼ ðsijÞ; sij ¼ sji; sij 2 Lr0 ðXÞ; i; j ¼ 1; . . . ;n
n o

;

with norm kskR :¼ ð
R

X jsj
r0dXÞ1=r0 .

X :¼ fv 2 ðW1;rðXÞÞn : vjC ¼ 0g;

with Wk,p(X) denoting the usual Sobolev space notation. We take
for the norm on X, kvkX :¼ ð

R
X jDðvÞj

rdXÞ1=r .

P :¼ Lr0 ðXÞ;

with norm kqkP :¼
R

X jqj
r0dX

� �1=r0

. We use V to denote the subspace
of X defined by

V :¼ v 2 X :

Z
X

qr � v dX ¼ 0; 8 q 2 P
� �

:

We use : and � to denote the scalar quantities r : s :¼
Pn

i¼1

Pn
j¼1rijsij

and u � v ¼
Pn

i¼1uiv i.
If the flow rate defective boundary conditions (1.5) is replaced

by the well defined Neumann condition

ðr� pIÞ � n ¼ gi on Si; i ¼ 1;2; . . . ;m; ð1:9Þ

the variational formulation to the problem is given as: determine
(r,u,p) 2 R � X � P such that

m1�r0
0 ðjrjr

0�2r; sÞ � ðDðuÞ; sÞ ¼ 0; 8 s 2 R; ð1:10Þ

ðr;DðvÞÞ � ðp;r � vÞ ¼ ðf;vÞ þ
Xm

i¼1

ðgi;vÞSi
; 8 v 2 X; ð1:11Þ

ðq;r � uÞ ¼ 0; 8 q 2 P: ð1:12Þ

Note that the velocity, pressure and stress spaces satisfy the follow-
ing inf–sup conditions:

inf
q2P

sup
v2X

ðq;r � vÞ
kvkXkqkP

P CXP ; ð1:13Þ

inf
v2X

sup
s2R

ðs;DðvÞÞ
kskRkvkX

P CRX: ð1:14Þ

The existence of a unique solution of (1.10)–(1.12) is estab-
lished based on the inf–sup conditions (1.13) and (1.14) and the
monotonicity (1.7) [2]. The estimate

krkR þ kukX þ kpkP 6 CðkfkX0 þ kgkMÞ ð1:15Þ

can be also shown as in [2].

2. The optimal control problem

2.1. Formulation of the problem

The defective boundary condition problem (1.1)–(1.5) can be
formulated as an optimal control problem for flow rate matching.
Suppose we choose the normal component of total stress

g :¼ gi :¼ ðr� pIÞn on Si; i ¼ 1;2; . . . ;m ð2:16Þ

as a control and let S :¼ [m
i¼1Si. Due to the condition

Pm
i¼1Qi ¼ 0 (or,

equivalently Q1 ¼ �
Pm

i¼2Qi), we set g1 = (r � pI) � n = 0 on S1. For
the control space, define M :¼ ðLr0 ðSÞÞn. The control affects the flow
system through boundary integrals as shown in (1.11).

For the flow rate conditions (1.5), consider minimizing the
penalized functional

J ðu; p;r; gÞ :¼ 1
2

Xm

i¼1

Z
Si

u � n dSi � Q i

 !2

þ �
r0

Z
S
jgjr

0
dS; ð2:17Þ

where g is the Neumann boundary control chosen and � is a penalty
parameter. Then we formulate the optimal control problem in the
following terms:
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Findðu;p;r;gÞ 2 Uad such that the functionalð2:17Þ
is minimized subject toð1:10Þ—ð1:12Þ; ð2:18Þ

where the admissibility set Uad is defined as follows.

Uad :¼ fðu;p;r;gÞ 2 X� P � R�M : J ðu; p;r; gÞ <1g: ð2:19Þ

The penalty term in (2.17) was introduced for several purposes.
First, by the definition of the admissibility set (2.19), uniform
boundedness of g is obtained immediately. Having the penalty
term, we can implement various optimization schemes for compu-
tational algorithms, where the convergence rate is controllable by
the penalty parameter �. Also it was observed that the penalty term
can be used to avoid the spurious local minimum by getting rid of
unwanted oscillations [11].

2.2. Existence of an optimal control solution

The existence of an optimal solution of (2.18) is proven using
standard arguments in the following theorem.

Theorem 2.1. Given f 2 X0, there exists a solution (u, p,r,g) 2 X
� P � R �M of the optimal control problem (2.18).

Proof. We first note that the admissible set Uad is clearly not
empty, e.g., ðu; p;r;0Þ 2 Uad. Let gn be a minimizing sequence for
the optimal control problem and set un = u(gn), pn = p(gn),
rn = r(gn). Then ðun; pn;rn;gnÞ 2 Uad for all n and satisfies

lim
n!1
J ðun; pn;rn; gnÞ ¼ inf

ðu;p;r;gÞ2Uad

J ðu;p;r; gÞ:

By the definition of Uad, we have

m1�r0
0 ðjrnjr

0�2rn; sÞ � ðDðunÞ; sÞ ¼ 0; 8 s 2 R; ð2:20Þ

ðrn;DðvÞÞ � ðpn;r � vÞ ¼ ðf;vÞ þ ðgn;vÞS; 8 v 2 X; ð2:21Þ

ðq;r � unÞ ¼ 0; 8 q 2 P: ð2:22Þ

The sequence gn is uniformly bounded in M from (2.19) and the cor-
responding (un,pn,rn) is uniformly bounded in X � P � R from
(1.15). We may then extract subsequences, still denoted by
(un,pn,rn,gn), such that

gn * ~g in M;

pn * ~p in P;

un * ~u in X;
rn * ~r in R;

un ! ~u in ðLrðXÞÞn

for some ð~u; ~p; ~r; ~gÞ 2 X� P � R�M. The last convergence result
above follows from the compact embedding of (W1,r(X))n. We
may pass to the limit in (1.10)–(1.12) to determine that ð~u; ~p; ~r; ~gÞ
satisfies (1.10)–(1.12). The only trouble term when one passes to
the limit is the nonlinearity ðjrnjr

0�2rn; sÞ. However, since G(�) is a
monotone operator, G is sequential weak continuous [20], and
therefore,

lim
n!1
ðjrnjr

0�2rn; sÞ ¼ ðj~rjr
0�2 ~r; sÞ; 8 s 2 R:

We have shown that ð~u; ~p; ~r; ~gÞ indeed satisfies (1.10)–(1.12). Now,
by the weak lower semi-continuity of J ð�; �; �; �Þ, we conclude that
ð~u; ~p; ~r; ~gÞ is an optimal solution i.e.,

inf
ðu;p;r;gÞ2Uad

J ðu; p;r;gÞ ¼ lim
n!1
J ðun;pn;rn;gnÞ ¼ J ð~u; ~p; ~r; ~gÞ:

Thus, we have shown that an optimal solution belonging to Uad

exists. h

2.3. Adjoint system

A constrained optimal control problem is often solved by the
adjoint-based method using the Lagrange multiplier’s rule [11].
In this paper we use the method without considering analysis re-
lated to Lagrange multipliers such as existence and regularity of
adjoint variables.

For (u,r,p,g), define the Lagrangian

Lðu;r;p; g;w;g; nÞ ¼ J ðu; p;r;gÞ þ m1�r0
0 ðjrjr

0�2r;gÞ
� ðDðuÞ;gÞ þ ðr;DðwÞÞ � ðp;r �wÞ
� hf;wi � ðg;wÞS � ðn;r � uÞ: ð2:23Þ

Using the first order necessary conditions, @L
@r ¼ 0; @L

@u ¼ 0 and @L
@p ¼ 0,

the adjoint system is derived as

m1�r0
0 ðr0 � 2Þðjrjr

0�4ðr : gÞr; sÞ þ m1�r0
0 ðjrjr

0�2g; sÞ
þ ðDðwÞ; sÞ ¼ 0; 8 s 2 R; ð2:24Þ

ðg;DðvÞÞ þ ðn;r � vÞ ¼
Xm

i¼1

Z
Si

u � n dSi � Qi

 !

�
Z

Si

v � n dSi; 8 v 2 X; ð2:25Þ

ðq;r �wÞ ¼ 0; 8 q 2 P; ð2:26Þ

where w, n, g are the adjoint velocity, pressure and stress, respec-
tively. Also using @L

@g ¼ 0, we obtain the optimality conditionZ
S
jgjr

0�2g � h dS ¼ 1
�

Z
S

w � h dS; 8 h 2M; ð2:27Þ

which yields an explicit formula for the control g in terms of the ad-
joint variable w as

g ¼ 1
�r=r0 jwj

r�2w on S: ð2:28Þ

Therefore, the state governing Eqs. (1.10)–(1.12), the optimality
condition (2.28) and the adjoint Eqs. (2.24)–(2.26) form a coupled
optimality system:

m1�r0
0 ðjrjr

0�2r; sÞ � ðDðuÞ; sÞ ¼ 0; 8 s 2 R; ð2:29Þ

ðr;DðvÞÞ � ðp;r � vÞ ¼ ðf;vÞ þ 1
�r=r0 ðjwj

r�2w;vÞS; 8 v 2 X;

ð2:30Þ

ðq;r � uÞ ¼ 0; 8 q 2 P; ð2:31Þ

m1�r0
0 ðr0 � 2Þðjrjr

0�4ðr : gÞr; sÞ þ m1�r0
0 ðjrjr

0�2g; sÞ
þ ðDðwÞ; sÞ ¼ 0; 8 s 2 R; ð2:32Þ

ðg;DðvÞÞ þ ðn;r � vÞ ¼
Xm

i¼1

Z
Si

u � n dSi � Qi

 !

�
Z

Si

v � n dSi; 8 v 2 X; ð2:33Þ

ðq;r �wÞ ¼ 0; 8 q 2 P: ð2:34Þ

Remark 2.2. The adjoint problem (2.32) is defined in a correct
function space. Note thatZ

X
jrjrr0�4rðr : gÞr jrjr dX 6

Z
X
jrjrr0�4rjgjrjrj2r dX ¼

Z
X
jrjr

0�rjgjr dX

ð2:35Þ
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and using the Hölder’s inequality,Z
X
jrjr

0�rjgjr dX 6
Z

X
ðjrjr

0�rÞp dX
� �1=p Z

X
ðjgjrÞq dX

� �1=q

;

where p ¼ r0

r0 � r
and q ¼ r0

r
¼ krkr0�r

R kgkr
R <1: ð2:36Þ

Therefore, jrjr
0�4ðr : gÞr; jrjr

0�2g 2 ðLrðXÞÞn�n for g 2 R.
For the adjoint system above, define the linear operator A de-

fined on R � R by

Aðg; sÞ :¼ m1�r0
0 ðr0 � 2Þðjrjr

0�4ðr : gÞr; sÞ þ m1�r0
0 ðjrjr

0�2g; sÞ: ð2:37Þ

Using the adjoint bilinear form A defined by (2.37), the adjoint
equations in (2.24)–(2.26) can be equivalently written as

Aðg; sÞ þ ðDðwÞ; sÞ ¼ 0; 8 s 2 R; ð2:38Þ

ðg;DðvÞÞ ¼
Xm

i¼1

Z
Si

u � ndS� Q i

 !Z
Si

v � ndSi; 8 v 2 V: ð2:39Þ

Lemma 2.3. The adjoint operator A is Lipschitz continuous and
strictly monotone.

Proof. First, we show the continuity:

m1�r0
0 ðr0 � 2Þðjrjr

0�4ðr : gÞr;sÞ þ m1�r0
0 ðjrjr

0�2g;sÞ
6 C kjrjr

0�4ðr : gÞrkLrðXÞkskR þ kjrj
r0�2gkLr ðXÞkskR

� �

6 C
Z

X
jrjrr0�4rðr : gÞr jrjr dX

� �1=r

þ
Z

X
jrjrr0�2rjgjr dX

� �1=r
" #

kskR

6 C
Z

X
jrjr

0�rjgjr dX
� �1=r

kskR

6 C krkr0�r
R kgkr

R

� �1=r
kskR using ð2:36Þ

6 Ckrkr0�2
R kgkRkskR 6 CkgkRkskR by ð1:15Þ and ð2:19Þ:

ð2:40Þ
Strict monotonicity can be easily seen as

Aðg;gÞ ¼ m1�r0
0 ðr0 �2Þ

Z
X
jrjr

0�4ðr : gÞ2 dXþ m1�r0
0

Z
X
jrjr

0�2jgj2 dX> 0

for g – 0. h

Remark 2.4. Unfortunately, the solvability of the adjoint problem
(2.38) and (2.39) is not clear as coercivity of the operator A can not
be shown. However, when discretized, one can show the existence
of a finite element approximate solution. See Theorem 3.1.

3. Finite element approximation

3.1. Finite element spaces

Suppose Th is a triangulation of X such that �X ¼ f
S

K : K 2 Thg.
Assume that there exist positive constants c1, c2 such that
c1qK 6 hK 6 c2qK ;

where hK is the diameter of K, qK is the diameter of the greatest ball
included in K, and h ¼ maxK2Th

hK .
Let Pk(K) denote the space of polynomials of degree less than or

equal to k on K 2 Th. We define finite element spaces for an approx-
imation of (u,p,r):

Xh :¼ fv 2 X \ ðC0ð�XÞÞn : vjK 2 PkðKÞ; 8 K 2 Thg;
Ph :¼ fq 2 P \ ðC0ð�XÞÞ : qjK 2 PmðKÞ; 8 K 2 Thg;
Rh :¼ fs 2 R \ ðC0ð�XÞÞn�n : sjK 2 PlðKÞ; 8K 2 Thg;
Vh :¼ fv 2 Xh : ðq;r � vÞ ¼ 0; 8 q 2 Phg:

We assume that the velocity-stress and the pressure–velocity space
satisfy the following discrete inf–sup (or LBB) conditions [2]: There
exist constants CXPh, CRXh > 0 such that

inf
0–qh2Ph

sup
0–vh2Xh

ðqh;r � vhÞ
kvhkXkqhkP

P CXPh; ð3:1Þ

inf
0–vh2Xh

sup
0–sh2Rh

ðsh;DðvhÞÞ
kshkRkvhkX

P CRXh: ð3:2Þ

The finite element approximation of (1.10)–(1.12) is then as fol-
lows: find uh 2 Xh, ph 2 Ph, rh 2 Rh such that

m1�r0
0 ðjrhjr

0�2rh; shÞ � ðDðuhÞ; shÞ ¼ 0; 8 sh 2 Rh; ð3:3Þ

ðrh;DðvhÞÞ � ðph;r � vhÞ ¼ ðf;vhÞ

þ 1
�r=r0 ðjw

hjr�2wh;vhÞS; 8 vh 2 Xh; ð3:4Þ

ðqh;r � uhÞ ¼ 0; 8 qh 2 Ph: ð3:5Þ

Existence result and error estimates for the finite element solution
of (3.3)–(3.5) can be found in [2,7] for a given wh.

Finite element approximation of the adjoint system reads as:

m1�r0
0 ðr0 � 2Þðjrhjr

0�4ðrh : ghÞrh; shÞ þ m1�r0
0 ðjrhjr

0�2gh; shÞ
þ ðDðwhÞ; shÞ ¼ 0; 8 sh 2 Rh; ð3:6Þ

ðgh;DðvhÞÞ þ ðnh;r � vhÞ ¼
Xm

i¼1

Z
Si

uh � n dSi � Q i

 !

�
Z

Si

vh � n dSi; 8 vh 2 Xh; ð3:7Þ

ðqh;r �whÞ ¼ 0; 8 qh 2 Ph; ð3:8Þ

Theorem 3.1. For given uh 2 Xh and rh 2Rh, the discrete linear
adjoint system (3.6)–(3.8) admits a unique solution (wh,nh,gh)
2 Xh � Ph � Rh.

Proof. In the discrete div free space Vh, the adjoint problem is
equivalent to

Ahðgh; shÞ þ ðDðwhÞ; shÞ ¼ 0; 8 ðvh; shÞ 2 Vh � Rh; ð3:9Þ

ðgh;DðvhÞÞ ¼
Xm

i¼1

Z
Si

uh � n dSi � Q i

 !Z
Si

vh � n; 8 vh 2 Vh;

ð3:10Þ

where Ah is a discrete adjoint operator defined analogously to
(2.37). Note that the system (3.9) and (3.10) is a saddle point prob-
lem defined in the div free space Vh.

The operator Ah is symmetric and positive definite by Lemma
2.3. Therefore, by the inf–sup condition (3.2) there exists of a
unique (wh,gh) satisfying (3.9) and (3.10). The existence and
uniqueness of nh then follows from the inf–sup condition (3.1). h

3.2. Computational algorithm

The optimality system is a coupled system whose solution yields
a solution of the optimization problem (2.18). In practice, the size of
the system is huge, and therefore, the state and adjoint systems
need to be decoupled. One way of accomplishing this is through a
gradient type method. The gradient method for minimizing the
functionalMðgÞ :¼ J ðuðgÞ; pðgÞ;rðgÞ; gÞ is given as the form

H. Lee / Comput. Methods Appl. Mech. Engrg. 200 (2011) 2498–2506 2501
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gðkþ1Þ ¼ gðkÞ � qk
dM
dgk

; ð3:11Þ

where qk is a step size. The gradient of the function dM
dgk

can be deter-
mined by a solution of the adjoint system by the optimality condi-
tion (2.28) [11]:

dM
dgk
¼ �jgkj

r0�2gk �wkjS: ð3:12Þ

Choosing the step size dependent on the penalty parameter �, i.e.,
qk = ak/� and using (3.12), the steepest decent algorithm for gk is
written as

gkþ1 ¼ ð1� akjgkj
r0�2Þgk þ

ak

�
wkjS: ð3:13Þ

Since the size of coupled optimality system is large and the gradient
of the functional (3.12) involves only the control and an adjoint var-
iable, the steepest decent type method can be used as an minimiz-
ing routine while also decoupling the system. The computational
algorithm is then given as follows.

Algorithm 3.2. (Steepest descent algorithm)

Choose the initial control gh
0.

For k = 0,1, . . .

1. Solve (3.3), (3.5) and

ðrh;DðvhÞÞ � ðph;r � vhÞ ¼ ðf;vhÞ þ ðgh
k ;v

hÞS
for uh

k ;p
h
k ;r

h
k

� 	
.

2. Solve (3.6)–(3.8) for wh
k ; n

h
k ;g

h
k

� �
.

3. Update the control by (3.13).

Here the step size ak can be chosen optimally in each iteration
or a constant step size q may be used in all iterations. The conver-
gence property of the above algorithm can be obtained in the stan-
dard manner. Other methods such as the trust region method and a
Newton-type method may be considered as a minimization
algorithm.

4. Dirichlet control

In this section we consider a Dirichlet boundary control for the
flow rate condition. Choosing

g :¼ gi :¼ u on Si; i ¼ 1;2; . . . ;m ð4:14Þ

as a control satisfyingZ
S

g � n dS ¼ 0 ð4:15Þ

for the incompressibility condition, imposing the Dirichlet bound-
ary condition weakly and combining with the mass conservation
equation in a variation formulation, we obtain the following form:

m1�r0
0 ðjrjr

0�2r; sÞ � ðDðuÞ; sÞ ¼ 0; 8s 2 R; ð4:16Þ

ðr;DðvÞÞ � ðp;r � vÞ � ðt;vÞS ¼ ðf;vÞ; 8v 2 X; ð4:17Þ

ðq;r � uÞ þ ðz;uÞS ¼ ðg; zÞS; 8ðq; zÞ 2 P � ðW1=r�1;rðSÞÞn: ð4:18Þ

In (4.17) the additional unknown function t 2 (W1/r�1,r(S))n repre-
sents the stress force on S and g belongs to the control space defined
as M :¼ h 2 ðW1;rðSÞÞn :

R
S h � n dS ¼ 0

n o
.

Remark 4.1. The system (4.16)–(4.18) is formulated as a twofold
saddle point problem as in (1.10)–(1.12), of the form

m1�r0
0 ðjrjr

0�2r; sÞ � ðDðuÞ; sÞ ¼ 0; ð4:19Þ

ðr;DðvÞÞ � cððp; tÞ;vÞ ¼ ðf;vÞ; ð4:20Þ

cððq; zÞ;uÞ ¼ ðg; zÞS; ð4:21Þ

where c((p, t),v) :¼ (p,r�v) + (t,v)S. Therefore, the bilinear form
c((�, �), �) needs to satisfy the inf–sup condition for the existence
and uniqueness of a solution. Such analytical issues will be ad-
dressed in a later paper.

For the Dirichlet control we consider the functional

J ðu;p;r; gÞ : ¼ 1
2

Xm

i¼1

Z
Si

u � n dSi � Q i

 !2

þ �
r

Z
S
jrsgjr þ jgjr dS; ð4:22Þ

wherers denotes the surface gradient. It is known that the gradient
term in the penalty integral in (4.22) provides more regularity of
the control and reduces oscillatory behavior of iterations near a
minimizer [11]. We define the Lagrangian

Lðu;r;p; t;g;w;g; n; sÞ ¼ J ðu;p;r;gÞ þ m1�r0
0 ðjrjr

0�2r;gÞ
� ðDðuÞ;gÞ þ ðr;DðwÞÞ � ðp;r �wÞ
� ðt;wÞS � hf;wi � ðn;r � uÞ
� ðu; sÞS þ ðg; sÞS þ kðg;nÞS; ð4:23Þ

where the last term in (4.23) was added to enforce the condition
(4.15). Using the same arguments in Section 2, the adjoint system
is derived as

m1�r0
0 ðr0 � 2Þðjrjr

0�4ðr : gÞr; sÞ þ m1�r0
0 ðjrjr

0�2g; sÞ
þ ðDðwÞ; sÞ ¼ 0; 8 s 2 R; ð4:24Þ

ðg;DðvÞÞ þ ðn;r � vÞ þ ðs;vÞS ¼
Xm

i¼1

Z
Si

u � n dSi � Q i

 !

�
Z

Si

v � n dSi; 8 v 2 X; ð4:25Þ

�ðq;r �wÞ � ðz;wÞS ¼ 0; 8 ðq; zÞ 2 P � ðW1=r�1;rðSÞÞn; ð4:26Þ

where w, n, g, s are the adjoint velocity, pressure, stress and stress
force, respectively. Also by @L

@g ¼ 0, we obtain the optimality
conditionZ

S
�jrsgjr�2rsg � rshþ �jgjr�2g �hþ s �hþ kn �h dS¼ 0; 8 h 2M:

ð4:27Þ

Note that this condition yields a differential equation to be solved
for the control on S. Implementing the steepest decent algorithm
to update the control, we have the following variational form: find
ðgkþ1; kkþ1Þ 2 ðW1;rðSÞÞn � R satisfying

ðjrsgkþ1j
r�2rsgkþ1;rshÞS þ ðjgkþ1j

r�2gkþ1;hÞS þ
a
�

� ðkkþ1n;hÞS ¼ ð1� akÞ ðjrsgkj
r�2rsgk;rshÞS þ ðjgkj

r�2gk;hÞS
h i

� ak

�
ðskþ1;hÞS; 8h 2W1;rðSÞ: ð4:28Þ

ðgkþ1;nÞS ¼ 0: ð4:29Þ

The restriction
R

S h � n dS ¼ 0 on the control space M is taken care of
by (4.29) in the variational formulation.

Remark 4.2. Note that the optimality condition yields a relation
between the control and the adjoint stress force variable s. The
Dirichlet control is updated using s in (4.28), while Neumann
control is determined by w, the adjoint velocity variable in (3.13).
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This is because the Dirichlet control affects the system through
(4.18), not (4.17).

In the case that the rsg term is deleted from (4.22), the opti-
mality condition is given asZ

S
�jgjr�2g � hþ s � hþ kn � h dS ¼ 0: ð4:30Þ

Thus the control is updated by the explicit form

gkþ1 ¼ gk �
ak

�
ð�jgkj

r�2gk þ sk þ kknÞ; ð4:31Þ

where, enforcing the condition (4.15)–(4.31), we can obtain the ex-
plicit formula for the lagrange multiplier kk:

kk ¼
1
jSj

�
a

Z
S
ð1� ajgkj

r�2Þgk � n dS�
Z

S
sk � n dS

� �
: ð4:32Þ

5. Mean pressure boundary condition

The optimization technique by boundary controls can be ex-
tended for other types of defective boundary condition, e.g., mean
pressure boundary condition. Supposed we have mean pressure
specified on defective boundaries:

1
jSij

Z
Si

pdS ¼ Pi for i ¼ 1; . . . ;m: ð5:33Þ

Since pressure is unique up to a constant, we may set g1 = 0, and p is
shifted appropriately so that the mean pressure condition on S1 is
satisfied. Define the functional

J ðu; p;r;gÞ :¼ 1
2

Xm

i¼1

1
jSij

Z
Si

p dSi � Pi

 !2

þ �
r0

Z
S
jgjr

0
dS; ð5:34Þ

where g is the Neumann boundary control. Using the similar ap-
proach shown in previous sections, we can obtain the optimality
system

m1�r0
0 ðjrjr

0�2r; sÞ � ðDðuÞ; sÞ ¼ 0; 8 s 2 R; ð5:35Þ

ðr;DðvÞÞ � ðp;r � vÞ ¼ ðf;vÞ þ 1
�r=r0 ðjwj

r�2w;vÞS; 8 v 2 X;

ð5:36Þ

ðq;r � uÞ ¼ 0; 8 q 2 P ð5:37Þ

and the adjoint equations

m1�r0
0 ðr0 � 2Þðjrjr

0�4ðr : gÞr; sÞ þ m1�r0
0 ðjrjr

0�2g; sÞ þ ðDðwÞ; sÞ ¼ 0;
8 s 2 R; ð5:38Þ

ðg;DðvÞÞ þ ðn;r � vÞ ¼ 0; 8 v 2 X; ð5:39Þ

ðq;r �wÞ ¼
Xm

i¼1

1
jSij

Z
Si

p dSi � Pi

 !Z
Si

q dSi; 8 q 2 P: ð5:40Þ

If Dirichlet control g is considered to minimize the penalized
functional

J ðu; p;r;gÞ :¼ 1
2

Xm

i¼1

1
jSij

Z
Si

p dSi � Pi

 !2

þ �
r

Z
S
jrsgjr þ jgjr dS

ð5:41Þ

for the mean pressure matching, one needs to solve (4.16)–(4.18)
and

m1�r0
0 ðr0 � 2Þðjrjr

0�4ðr : gÞr; sÞ þ m1�r0
0 ðjrjr

0�2g; sÞ þ ðDðwÞ; sÞ ¼ 0;
8 s 2 R; ð5:42Þ

ðg;DðvÞÞ þ ðn;r � vÞ þ ðs;vÞS ¼ 0; 8 v 2 X; ð5:43Þ

ðq;r �wÞ þ ðz;wÞS ¼
Xm

i¼1

1
jSij

Z
Si

pdS� Pi

 !Z
S

qdS;

8 ðq; zÞ 2 P � ðW1=r�1;rðSÞÞn; ð5:44Þ

The same optimality condition (4.27) is obtained and the control g
can be updated by (4.28) and (4.29).

6. Numerical results

In this section we present numerical results for a flow problem
subject to specified flow rates conditions or mean pressure condi-
tions on the defective boundaries. Along the other boundaries we
impose the usual non-slip condition for the fluid velocity. We con-
sider a model problem of flow in a square domain, (0,5) � (0,5),
with boundaries where defective boundary conditions are im-
posed: S1 = {(x,y) : x = 0,1 < y < 2}, S2 = {(x,y) : x = 0,3 < y < 4} on
the left side of the domain and S3 = {(x,y) : x = 5,2 < y < 3} on the
right side. See Fig. 1. In the constitutive Eq. (1.1) the parameter r
is chose as r ¼ 3

2 (r0 = 3). All computations were performed using
31 � 31 uniform grid. For the approximation of the velocity and
pressure we used continuous piecewise quadratic and continuous
piecewise linear finite elements, respectively, (i.e. the Taylor–Hood
pair). For the approximation of the stress we used continuous
piecewise linear finite elements. Note that the finite element
spaces satisfy the inf–sup conditions (3.1), (3.2).

6.1. Flow rate boundary condition

For comparison purpose, first we computed velocity, pres-
sure and stress using a standard Dirichlet boundary condition

of parabolic profile on each Si; u ¼ �8ðy� 1Þðy� 2Þ
0


 �
;

�4ðy� 3Þðy� 4Þ
0


 �
;
�12ðy� 2Þðy� 3Þ

0


 �
on S1, S2, S3, respectively.

The magnitude of velocity and streamlines are given in Figs. 2, and
3 shows pressure profile and mean pressure on each defective
boundary.

The Dirichlet boundary condition chosen yields flow rates
Q1 = �4/3, Q2 = �2/3 and Q3 = 2. These values were used as flow
rate boundary conditions in the flow matching problem. For the
optimization routine, the constant vector g = [0.1, . . . ,0.1]T was
used as an initial guess for both Dirichlet and Neumann controls.
We selected the penalty parameter � = 10�10 and the stopping cri-
terion J ðgÞ < 10�6. Streamlines of fluid flow by the Neumann and
Dirichlet controls are presented in Figs. 4 and 5, respectively. The
horizontal velocity profiles on the defective boundaries are also
shown in Figs. 6 and 7. The figures show the Neumann control
yields velocity profile that looks more similar to the standard case

Ω S3

S2

S1

u=0

u=0

Fig. 1. The flow domain.
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Fig. 3. pressure on boundaries S0, S1, S2 by the given Dirichlet boundary condition.

 

 

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0

0.5

1

1.5

2

2.5
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control.
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Fig. 5. Plot of the magnitude of the velocity and streamlines by Dirichlet boundary
control.

 

 

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0

0.5

1

1.5

2

2.5

Fig. 2. Plot of the magnitude of the velocity and streamlines by the given Dirichlet
boundary condition.
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Fig. 6. Horizontal velocity profiles on boundaries S0, S1, S2 by Neumann boundary
control.
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control.
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of parabolic-shaped Dirichlet condition than the Dirichlet control.
In fact, it was observed in numerical experiments that the
Neumann control is more robust. The Dirichlet control is more
sensitive to an initial guess, parameters chosen, and sometimes
yields a non-physical solution with the objective functional still
minimized within the tolerance. On the other hand, the Neumann
control yielded consistent results in most simulations with differ-
ent choices for an initial guess and parameters. As mentioned in
the beginning of the paper, the defective boundary problem is
not a well-posed problem. Also, when formulated as a control
problem, an optimal solution is not unique for the model problem.
The presented results should be understood as one possible solu-
tion satisfying the defective boundary conditions.

6.2. Mean pressure boundary condition

Using the Dirichlet boundary condition chosen we computed
pressure and shifted the numerical solution so that P1, the mean
pressure on S1, is 0. The pressure on S2, S3 were computed as
P2 = �0.968, P3 = �3.143, and these values were used for the mean
pressure matching problem. Streamlines of fluid flow by the

Neumann and Dirichlet controls are presented in Figs. 8 and 9,
respectively. The pressure profiles on the defective boundaries
are also shown in Figs. 10 and 11. As in the flow matching problem,
the Neumann control yielded similar results to the standard case
shown in Fig. 2, and was more robust than the Dirichlet control.

7. Concluding remarks and future work

We studied defective boundary condition problems using the
optimal control technique by introducing Neumann or Dirichlet
type control. The similar approach may be considered for time-
dependent unsteady flows or more complex fluids. As an extension
of this work, we will consider non-Newtonian, viscoelastic fluid
flows governing by the Oldroyd-B model

rþ k u � rrþ ðruÞTr� rru
� �

� 2aDðuÞ ¼ 0 in X; ð7:45Þ

�r � r� 2ð1� aÞr � DðuÞ þ rp ¼ f in X; ð7:46Þ

div u ¼ 0 in X; ð7:47Þ

where k is the Weissenberg number defined as the product of the
relaxation time and a characteristic strain rate, and a is a number
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Fig. 8. Plot of the magnitude of the velocity and streamlines by Neumann boundary
control.
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control.
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Fig. 10. Pressure on boundaries S0, S1, S2 by Neumann boundary control.
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Fig. 11. Pressure on boundaries S0, S1, S2 by Dirichlet boundary control.
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such that 0 < a < 1 which may be considered as the fraction of vis-
coelastic viscosity.

Unlike in the quasi-Newtonian fluid, the extra stress of visco-
elastic fluids is coupled with the velocity through a nonlinear con-
stitutive equation. Since the viscoelastic fluid is a fluid with
memory, some information on flow history should be provided
when entering into a fluid domain, thus, a stress boundary condi-
tion needs to be specified on inflow boundaries in order to be a
well-posed problem. We will assume no boundary information
on the velocity and the stress provided except the flow rates con-
dition (1.5). This defective boundary condition problem can be for-
mulated as a two-parameter control problem by introducing a
Neumann control for velocity on S and Dirichlet control for stress
on Sin, the inflow defective boundary. Results of this problem will
be reported in the later paper.
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