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Optimal control of non-isothermal viscous fluid flow

Christopher L. Cox†, Hyesuk Lee∗, and David Szurley‡

Department of Mathematical Sciences, Clemson, SC, 29634, USA

SUMMARY

For flow inside a four-to-one contraction domain, we minimize the vortex that occurs in the corner
region by controlling the heat flux along the corner boundary. The energy equation is coupled with
the mass, momentum, and constitutive equations through the assumption that viscosity depends
on temperature. Previous efforts in optimal control of polymeric fluid flows assume a temperature
dependent Newtonian viscosity when describing the model equations, but make the simplifying
assumption of a constant Newtonian viscosity when carrying out computations; we assume no such
simplification for the computations. Copyright c© 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Today’s society has in great abundance products that are made from polymers: clothing made
from synthetic fibers, plastic bags, food wrap, and disposable diapers are among the most
common examples. It has become imperative for today’s manufacturers to understand the
processes used to make these products as fully as possible. Numerical simulation is a powerful
tool which can be used for this purpose. The processes involve complex fluid flow of molten
polymer modeled by systems of differential equations, which, along with their required initial
conditions and parameters, are in general difficult to solve due to the complexity of the model
equations.

We consider the four-to-one contraction domain, where a fluid is flowing through a channel
whose width is suddenly reduced by three-quarters. This geometry commonly occurs in the
forming ‘die’ for polymer fibers and films. Due to the sudden reduction in width, in the corner
region a vortex appears, as in Figure 1. In this region while the polymer recirculates, it has the
potential to degrade, which produces an inferior product at extrusion. Hence, we would like
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Figure 1. Typical streamlines of velocity u.

to be able to control some parameter(s) of the flow to reduce this vortex. Also, we consider
the problem of temperature matching. We wish to match a specified temperature along the
outflow boundary, which represents the die exit.

Kunisch and Marduel [1] and Ito and Ravindran [2] both consider two-dimensional adjoint-
based optimization for non-isothermal flow. Although the fluid in both papers is assumed to
be non-isothermal, in both cases the Newtonian viscosity is independent of temperature. Ito
and Ravindran consider the Boussinesq equations, and hence stress is not an unknown. The
focus of that work is minimizing vortices controlling the temperature along a portion of the
boundary. A cost functional is introduced where the curl of the velocity field is minimized over
the domain or a portion of the domain. The authors look at the backward-facing-step channel
as well as a vertical reactor. It is shown that they can reduce the L2 norm of the vorticity by
46% by controlling the temperature along a portion of the boundary.

In [1] the authors also consider vortex minimization, although there are differences between
[1] and [2], the first of which is the computational domain. In [1], they consider flow of a non-
isothermal viscoelastic fluid (governed by the linearized Phan-Thien/Tanner model) through
the four-to-one contraction domain, which is common in polymer applications. Also, they
introduce two cost functionals, both of which are intended to minimize the vorticity. One
minimizes the difference between the computed flow field and the flow field of a Newtonian fluid,
and the other penalizes negative contributions of the velocity field to prevent recirculation.
They do not assume symmetry, and hence apply one cost functional to each corner region.
Using temperature as a control, they show that the vortex can be reduced, and then discuss
in physical terms what has to happen to lead to a reduction in the vortex.

Like [2] and [1], we consider non-isothermal flow. However, we do not make the assumption
that the Newtonian viscosity is independent of temperature; that is, the equation governing
temperature is coupled to the other equations through the Newtonian viscosity.

The outline of the rest of this paper is as follows. In the next section we present the governing
equations, with particular attention given to the manner in which temperature dependence is
expressed. The optimization problem and the adjoint equations are defined in Section 3. Section
4 contains details of the weak formualtion of the governing equations and the computational
algorithm. Numerical results for three model problems are presented in Section 5, and Section
6 contains a summary and a discussion of future work.
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2. GOVERNING EQUATIONS

The current effort is directed towards the long term goal of optimal control of viscoelastic fluid
flow. With this goal in mind, we give a brief derivation of the governing equations used in
the present work. We consider fluid flowing through a bounded, connected domain Ω ⊂ Rd́,
whose boundary we denote as Γ. Let the velocity be denoted by u, pressure p, extra stress σ,
temperature T , and unit vectors outward and tangential to the boundary n and t, respectively.
Keunings [3] provides the general form of the equations governing viscoelastic fluid flows, with
the assumption of incompressibility, as follows. The Cauchy stress π can be expressed in terms
of the pressure p and extra stress σ as

π = −pδ + σ, (1)

where δ is the identity tensor. The continuity equation takes the form

∇ · u = 0, (2)

and the momentum equation, assuming steady state flow with no inertial terms can be written
as

−∇ · π = f , (3)

where f is a body source term. Combining (1) and (3) leads to

−∇ · σ +∇p = f . (4)

For viscoelastic fluid flow, the extra stress tensor is often split into solvent and polymer parts,

σ = σs + σp.

Normally the solvent part of the extra stress is assumed to be Newtonian, i.e.

σs = 2
ηs(T )
η0(TR)

d(u), (5)

where ηs(T ) is the solvent viscosity, η0(TR) the zero-shear viscosity at a reference temperature
TR, and d(u), the rate of deformation tensor, is defined as

d(u) =
1
2

(
∇u + (∇u)T

)
.

Equation (4) then becomes

−∇ ·
(

σp + 2
ηs(T )
η0(TR)

d(u)
)

+∇p = f . (6)

The system of equations (2), (6) is closed by introducing a constitutive equation relating
polymeric stress and d(u). The constitutive model is generally nonlinear and differential or
integral in nature. The Oldroyd-B model, for example, has the form

σp + λσp,(1) = 2η[d(u) + λ∗d(u)(1)], (7)

where ϕ
(1)

is the upper convected derivative of the tensor ϕ, η is the total shear viscosity, i.e.,

η = ηs + ηp,
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λ is a relaxation time, λ∗ = ληs

η , and ηp is the polymeric viscosity, which could be temerature
dependent. We simplify the model to a nonisothermal viscous flow but preserve the dependent
variable structure of the viscoelastic case. Toward that end, we set λ in (7) to 0 and assume
that the form of the polymeric stress σp is similar to that of the solvent (5). We then have

σp = 2
ηp(T )
η0(TR)

d(u). (8)

As in [1] and [2], we drop the viscous heating term in the energy equation, so that the steady
state form of this equation is

−∇ · (κ∇T ) + u · ∇T = Q, (9)

where κ is a dimensionless term related to thermal conductivity and Q is a heat source term.
We couple the system of equations (2), (6), and (8) by allowing both the solvent and

polymeric parts of the viscosity to depend on temperature, and assume that ηs is significantly
smaller than ηp. Specifically, we introduce α1(T ) and α2(T ) and assume that an Arrhenius
relationship can be used to express the dependence of viscosity on temperature [4] so that

ηp(T )
η0(TR)

= α1(T ) = A1 exp
(

B1

T

)
, (10)

and
ηs(T )
η0(TR)

= εα2(T ) = εA2 exp
(

B2

T

)
, (11)

with α1 and α2 of similar magnitude and ε small. In equations (10) and (11), the temperature
T has dimensions Kelvin. We assume further that there exist constants α1,min and α2,min so
that

0 < α1,min ≤ α1(T ) ≤ 1,

and
0 < α2,min ≤ α2(T ) ≤ 1,

and that B1 6= 0.
In the rest of this paper, the polymeric stress σp will be referred to as σ for ease of notation.

Our governing equations are then

σ + 2α1(T )d(u) = 0 in Ω, (12)
−∇ · [σ + 2εα2(T )d(u)] +∇p = f in Ω, (13)

∇ · u = 0 in Ω, (14)
−∇ · (κ∇T ) + u · ∇T = Q in Ω, (15)

where the boundary conditions will be specified later. Based on [5], we refer to these equations
as the modified non-isothermal Stokes-Oldroyd equations. See [6] for analysis of the solution
of equations (12)-(15).

Here we relate the values for Ai and Bi to physical quantities and establish conditions to
assure that 0 < αi(T ) ≤ 1. The form for the Arrhenius-type temperature shift factor is

aT = exp
[
∆E

R

(
1
T
− 1

TR

)]
,
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Figure 2. Computational domain Ω.

where ∆E is the activation energy and R the ideal gas constant, [4]. Assuming that the
polymer and solvent viscosities add up to the zero-shear viscosity, (as in [7]), it follows that
α1(T ) = (1− ε)aT and α2(T ) = aT . As a result, for our simplified model, we set

B1 = B2 = ∆E
R , A2 = exp

[
−∆E
RTR

]
, and A1 = (1− ε)A2

The constraint 0 < αi(T ) ≤ 1 will be satisfied as long as the temperature of the system stays
above TR. This constraint can be relaxed somewhat for T ≤ TR so the analytic results hold
as long as there is a positive finite constant A so that 0 < αi ≤ A. This condition is simple to
satisfy for the application considered in this paper, i.e. flow through a fiber- or film-forming
die. As shown in Figure 2, boundary Γ is divided into four parts: the inflow boundary Γin, the
wall boundary Γwall, the outflow boundary Γout, and the symmetry boundary Γsym (so that
Γ = Γin ∪ Γwall ∪ Γout ∪ Γsym). Then the boundary conditions are as follows [7].

• Inflow boundary Γin:

u = uin,

T = T0.

• Wall boundary Γwall:

u = 0,

∇T · n = 0.

• Outflow boundary Γout:

u = uout,

∇T · n = 0.

• Symmetry boundary Γsym:

u · n = 0,

∇T · n = 0,

π : nt = 0.

Note that the boundary condition π : nt on Γsym is equivalent for the problem considered
here to ∂u1

∂y = 0.
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Figure 3. Domain of the control problem.

3. OPTIMIZATION PROBLEM AND ADJOINT EQUATIONS

As stated previously our goal is to minimize the vortex in the corner region, as shown in Figure
1, or ideally eliminate it altogether. A measure of the vortex is the curl of the velocity field.
Hence, an optimization problem consists of minimizing the magnitude of the curl, e.g.,∫

Ω

(∇× u)2 dΩ (16)

subject to the state equations (12)-(15). We will also consider matching a desired temperature
T ∗ along the outflow boundary. Then our optimization problem is to minimize∫

Ω

(∇× u)2 dΩ +
∫

Γout

(T − T ∗)2dΓ,

subject to the state equations.
With the quantity that is to be minimized defined, as well as the constraints, it is now

necessary to define the control variable. Similar to Kunisch et al. [1], we consider affecting the
flow by a temperature boundary control. However, while the authors of [1] consider temperature
T along a portion of the boundary as their control, we consider controlling the heat flux over
a portion of the boundary, as in [8], and similar to the condition in [2]. Specifically, we let our
control g̃ be defined as

g̃ = −κ∇T · n,

which is applied to a subset Γc of the boundary. The domain Ω for the control problem is
shown in Figure 3. We now have the following conditions on the control boundary Γc:

u = 0,

−κ∇T · n = g̃,

where the quantity g̃ is determined by optimization.
In order to ensure that the control g̃ has a realistic magnitude, we introduce a penalty term.

Also, we will weight the curl and temperature integrals in order to vary the extent to which
each optimization condition is enforced. Define the cost functional as

Jδ(u, p, σ, T, g̃) =
a

2

∫

Ω′
(∇× u)2 dΩ +

δ

2

∫

Γc

g̃2dΓ +
1− a

2

∫

Γout

(T − T ∗)2 dΓ, (17)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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where 0 ≤ a ≤ 1. Notice that in the first term on the right hand side, we only integrate over
a portion of the domain Ω′ ⊂ Ω. The penalty term has a coefficient δ, which is assumed to be
small.

Our optimal control problem is then to find a suitable control g̃ such that Jδ is minimized
subject to the state equations (12)-(15).

We will consider adjoint-based optimization techniques. Adjoint-based optimization methods
turn a constrained optimization problem into an unconstrained one [9]. For completeness, we
present the strong form of the adjoint equations, their boundary conditions, and the optimality
condition. Motivation for the derivation of the equations and boundary equations is given in
the next section. The adjoint equations are:

γ + d(µ) = 0,

2∇ · (α1(T )γ)− 2ε∇ · (α2(T )d(µ)) +∇ξ +∇TΦ = −a∇×∇× u,

∇ · µ = 0,

−∇ · (κ∇Φ)− u · ∇Φ +
2B1

T 2
α1(T )d(u) : γ − 2εB2

T 2
α2(T )d(u) : d(µ) = 0,

where γ, µ, ξ, and Φ are the adjoint stress, velocity, pressure, and temperature, respectively.
Note that the adjoint equations are linear in the adjoint variables.

The boundary conditions for the adjoint equations are as follows.

• Inflow boundary Γin:

µ = 0,

Φ = 0.

• Wall boundary Γwall:

µ = 0,

2εB2

T 2
α2(T )d(u) · µ · n + κ∇Φ · n = 0.

• Outflow boundary Γout:

µ = 0,

2εB2

T 2
α2(T )d(u) · µ · n + κ∇Φ · n + Φu · n + (1− a)(T − T ∗) = 0.

• Symmetry boundary Γsym:

µ = 0,

2εB2

T 2
α2(T )d(u) · µ · n + κ∇Φ · n = 0.

• Control boundary Γc:

µ = 0,

2εB2

T 2
α2(T )d(u) · µ · n + κ∇Φ · n = 0.

Finally, the optimality condition is found to be

g̃ +
1
δ
Φ = 0.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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8 C. L. COX, H. LEE, AND D. SZURLEY

4. FINITE ELEMENT FORMULATION

We develop the variational formulation of the modified non-isothermal Stokes-Oldroyd
equations and the associated adjoint equations. Let H1(Ω) be the standard Sobolev space
with respect to a domain Ω. Let || · ||1 and (·, ·)Ω be the norm and inner product for H1(Ω),
respectively. Finally, let H1(Ω) be the corresponding Sobolev space of vector-valued functions
in Rd́. We have the following approximation spaces:

Velocity Space : X := H1(Ω),

Pressure Space : P := L2(Ω),

Stress Space : Σ :=
(
L2(Ω)

)d́×d́ ∩ {τ = (τij) : τij = τji, τij ∈ L2(Ω)},
Temperature Space : E := H1(Ω).

Notice that the velocity and pressure spaces, X and P respectively, satisfy the inf − sup
condition [10, 11]

inf
q∈P

sup
v∈X

(q,∇ · v)
||q||0||v||1 ≥ β > 0.

Now define the bilinear and trilinear forms

b(p,v) = −
∫

Ω

p ∇ · v dΩ,

e(T, S) =
∫

Ω

∇T · ∇S dΩ,

c(u, T, S) =
∫

Ω

u · ∇TS dΩ.

We have the property that c(u, T, T ) = 0 if u = 0 on Γ and ∇ · u = 0. With these forms
defined, the weak form of the modified non-isothermal Stokes-Oldroyd equations is to find
(u, p, σ, T ) ∈ X× P ×Σ× E so that

(σ, τ)Ω − 2(α1(T )d(u), τ)Ω = 0 ∀τ ∈ Σ, (18)
(σ, d(v))Ω + 2ε(α2(T )d(u), d(v))Ω + b(p,v) = (f ,v)Ω ∀v ∈ X, (19)

b(q,u) = 0 ∀q ∈ P, (20)
κe(T, S) + c(u, T, S)− κ(∇T · n, S)Γc = (Q,S)Ω ∀S ∈ E, (21)

and the corresponding boundary conditions are satisfied. The heat flux κ(∇T · n, S)Γc arises
from Green’s theorem when obtaining the weak form of the energy equation. If the heat flux
on Γc is given as

g̃ = −κ∇T · n, (22)

then the weak form of the energy equation becomes

κe(T, S) + c(u, T, S) = (Q,S)Ω − (g̃, S)Γc ∀S ∈ E. (23)

We now present the motivation for the adjoint equations. We’ll describe the general
framework and then apply it to our problem. Let φ denote the state variables, g the control

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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OPTIMAL CONTROL OF NON-ISOTHERMAL VISCOUS FLUID FLOW 9

variable(s), F (φ, g) the state equations, J the cost functional, and ζ the adjoint variables. The
Lagrangian is defined as

L(φ, g, ζ) = J − ζ∗F (φ, g).

Then the unconstrained optimization problem is to find states φ, control g, and adjoint
variables ζ so that the Lagrangian is rendered stationary. The first order necessary conditions
yield the optimality system from which we can determine the optimal states φ and control g.
Consider taking the Fréchet derivative with respect to the state variables, adjoint variables,
and control. We then have the following relationships:

∂L
∂φ = 0 ⇒ Adjoint equations,

∂L
∂ζ = 0 ⇒ State equations,

∂L
∂g = 0 ⇒ Optimality condition(s).

With J = Jδ in (17), F as in (12)-(15) and the Dirichlet boundary conditions for the state
equations, the Lagrangian is the following equation:

L(u, p, σ, T, g̃, µ, ξ, γ, Φ, ρ, λi) =
a

2

∫

Ω′
(∇× u)2 dΩ +

δ

2

∫

Γc

g̃2dΓ

+
1− a

2

∫

Γout

(T − T ∗)2dΓ +
∫

Ω

[σ − 2α1(T )d(u)] : γdΩ

+
∫

Ω

[−∇ · (σ + 2εα2(T )d(u)) +∇p− f ] · µdΩ

+
∫

Ω

(−∇ · u)ξdΩ +
∫

Ω

[−∇ · (κ∇T ) + u · ∇T −Q] ΦdΩ

+
∫

Γc

g̃ΦdΓ +
∫

Γin

(u− uin)λ1dΓ +
∫

Γwall∪Γc

(u− 0)λ2dΓ

+
∫

Γsym

(u · n− 0)λ3dΓ +
∫

Γin

(T − T0)λ4dΓ,

where the λi’s are the adjoint multipliers associated with the boundary conditions. Taking the
Fréchet derivative of the Lagrangian with respect to the state variables, and then applying
Green’s theorem will result in the weak form of the adjoint equations and their boundary
conditions. Enforcing the domain integrals to be zero will yield the adjoint equations, and
enforcing the boundary integrals to be zero will yield their boundary conditions. In particular,
setting ∂L

∂σ = 0 will yield the adjoint constitutive equation:

(γ, τ)Ω + (d(µ), τ)Ω = 0 ∀τ ∈ Σ.

Taking the derivative of the Lagrangian with respect to velocity will give the adjoint momentum
equation:

−2(α1(T )γ, d(v))Ω + 2ε(α2(T )d(µ), d(v))Ω
+b(ξ,v) + c(v, T, Φ) = −a(∇× u,∇× v)Ω′ ∀v ∈ X.

The adjoint incompressibility condition is obtained by setting ∂L
∂p = 0:

b(q, µ) = 0 ∀q ∈ P.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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10 C. L. COX, H. LEE, AND D. SZURLEY

Finally, taking the derivative with respect to temperature gives the adjoint energy equation:

κe(Φ, S)− c(u, Φ, S) + 2
∫

Ω

B1

T 2
α1(T )d(u) : γSdΩ

−2ε

∫

Ω

B2

T 2
α2(T )d(u) : d(µ)SdΩ = −(1− a)

∫

Γout

(T − T ∗)SdΓ ∀S ∈ E.

The weak form of the optimality condition is found by setting ∂L
∂g̃ = 0. We obtain

(g̃, S)Γc
= −1

δ
(Φ, S)Γc

,

for all S ∈ H1(Γ).
We will use the finite element method to approximate the solution to the state equations

(18)-(20), (23) and the adjoint equations. Suppose Th is a triangulation of the domain Ω such
that Ω̄ = {∪K : K ∈ Th}; i.e., K is an element of the triangulation. Further suppose that
there exist positive constants c1 and c2 such that

c1h ≤ hK ≤ c2ρK ,

where hK is the diameter of K, ρK is the diameter of the greatest ball included in K, and
h = maxK∈Th

hK . Denote the space of polynomials of degree less than or equal to k on
K ∈ Th by Pk(K). To approximate the strong solution (u, p, σ, T ), we define the following
finite-element spaces in Rd́.

Xh := {v ∈ X ∩ (C0(Ω̄))d́ : v|K ∈ P2(K),∀K ∈ Th},
Ph := {q ∈ P ∩ C0(Ω̄) : q|K ∈ P1(K), ∀K ∈ Th},
Σh := {τ ∈ Σ : τ |K ∈ P1(K), ∀K ∈ Th},
Eh := {S ∈ E ∩ C0(Ω̄) : S|K ∈ P2(K), ∀K ∈ Th}.

We are using continuous piecewise quadratic elements for velocity and temperature, continuous
piecewise linear elements for pressure, and discontinuous piecewise linear elements for stress.
We use discontinuous elements in anticipation of applying this method to equations with more
complex constitutive models which require a form of upwinding in the numerical approximation
[12]. Analogous to the continuous function spaces, the discrete spaces Xh and Ph satisfy the
discrete inf − sup condition [11]:

inf
qh∈P h

sup
vh∈Xh

b(qh,vh)
||qh||0||vh||1 ≥ β > 0.

Our discrete problem for the state variables is then to find (uh, ph, σh, Th) ∈ (Xh, Ph,Σh, Eh)
such that

(σh, τh)Ω − 2(α1(Th)d(uh), τh)Ω = 0 ∀τh ∈ Σh, (24)
(σh, d(vh))Ω + 2ε(α2(Th)d(uh), d(vh))Ω + b(ph,vh) = (f ,vh)Ω ∀vh ∈ Xh, (25)

b(qh,uh) = 0 ∀qh ∈ Ph, (26)
κe(Th, Sh) + c(uh, Th, Sh) = (Q,Sh)Ω

−(g̃, Sh)Γc ∀Sh ∈ Eh, (27)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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OPTIMAL CONTROL OF NON-ISOTHERMAL VISCOUS FLUID FLOW 11

and the corresponding boundary conditions are satisfied.
To solve the unconstrained optimization problem, we use the method of steepest descent,

[9]. The gradient method step is

g̃(n+1) = g̃(n) − ν

δ

∂Jδ

∂g̃
,

where ν is a (constant) step size. By calculating ∂Jδ

∂g̃ , we find that the update for the control
g̃ is

g̃(n+1) = (1− ν)g̃(n) − ν

δ
Φ(n).

We will use the following steps when solving the optimal control problem. Initialize the
control variable g̃(0). For n = 0, 1, . . .

1. Solve the state equations to obtain the state solution (u(n), p(n), σ(n), T (n)).
2. Solve the adjoint equations to obtain the adjoint solution (µ(n), ξ(n), γ(n),Φ(n)).
3. Evaluate the cost functional Jδ(u(n), p(n), σ(n), T (n), g̃(n)) (optional).
4. Update the control via g̃(n+1) = (1− ν)g̃(n) + ν

δ Φ(n).
5. Test for convergence, either by checking the optimality condition

g̃(n) + 1
δ Φ(n) = 0, or a maximum change in the control ||g̃(n+1) − g̃(n)||∞.

6. Repeat all steps until convergence is attained.

Newton’s method is used in Step 1 due to the nonlinear forms present in the state system. The
step size ν

δ for the gradient method is chosen appropriately so that a favorable convergence
in the iterates is observed. A more rigorous method for determining the step size, icluding
adaptivity, would improve convergence properties. Such an approach is beyond the scope of
the current work.

5. NUMERICAL RESULTS

In this section, we cosider three scenarios: the problems of vortex minimization and
temperature matching, and the combination of those two problems. In all three problems,
we have the following characteristics. The dimensions of the channel before the contraction
are {(x, y) : 0 ≤ x ≤ 10, 0 ≤ y ≤ 4}, while after the contraction the dimensions become
{(x, y) : 10 ≤ x ≤ 20, 0 ≤ y ≤ 1}. The computational mesh is shown in Figure 4. A
more refined mesh was considered, but it was determined that the solution is not appreciably
affected. Recall that the cost functional has the form (17), where Ω′ ⊂ Ω and a ∈ [0, 1]. The
boundary segments that comprise Γc were determined so that the vortex is contained within
the rectangle defined by these boundary segments. For the conditions in this work, it sufficed
to let Γc = {(x, y)|8 ≤ x ≤ 10, y = 4} ∪ {(x, y)|x = 10, 2.5 ≤ y ≤ 4}. The region Ω′ is
{(x, y) : 8 ≤ x ≤ 10, 2.5 ≤ y ≤ 4}. Both the state pressure p and the adjoint pressure ξ are
only determined up to a constant. For uniqueness, they are set to zero at the point (20, 0).
Also, we assume that the desired outflow temperature T ∗ is constant along Γout. For future

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls



12 C. L. COX, H. LEE, AND D. SZURLEY

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 4. Computational mesh used for the FEM.

Table I. Parameter values.

Q TR A1 A2 B1 B2 ε δ

0 450K 1.013 ∗ 10−14 1.014 ∗ 10−14 14500 14500 0.001 0.00005

reference, define the quadratic forms I1 and I2 as

I1 =
a

2

∫

Ω′
(∇× u)2 dΩ,

I2 =
1− a

2

∫

Γout

(T − T ∗)2dΓ.

5.1. Vortex minimization

We will consider the problem of minimizing the vortex in the four-to-one contraction domain.
Here we consider the case where a = 1, i.e., we concentrate on minimizing the vortex and
ignore matching the temperature along Γout. In this and all subsequent examples we set the
source term f to zero, and assign the other parameter values as given in Table I. For this first
case, we set

ν = 0.05.

The definitions of Ai and Bi lead to typical zero-shear viscosity profiles for α1(T ) and α2(T )
[13]. Also, notice that the step size for the gradient method is ν

δ = 1000. The optimal control
code ran for 153 iterations before the convergence criterion was met. The results of the run
are summarized in Table II. We are able to reduce the vortex by controlling the heat flux
across the boundary. We can also compare plots of the streamlines for the uncontrolled and
controlled flows. These are shown in Figure 5. We are able to reduce the value of the integral
by 80.6%, and it is apparent from these plots that the remaining vortex is significantly weaker
than in the uncontrolled flow.

Recall that the control affects the solution of the state equations through the addition of the
inner product −(g̃, S)Γc in the energy equation. Hence, a positive value for g̃ yields a heat sink
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Table II. Results of the vortex minimization run.

Iteration I1

1 1.2667
2 1.2220
3 1.1750
4 1.1268
5 1.0780
6 1.0290
7 0.9796
8 0.9288
9 0.8747
10 0.8147
11 0.7462
12 0.6695
...

...
151 0.2461
152 0.2461
153 0.2461
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(a) Uncontrolled flow (b) Controlled flow

Figure 5. Comparison of streamlines after 153 iterations of the control algorithm.

along Γc, and a negative value of g̃ yields a heat source along Γc. We see that we need to cool
on Γc to reduce the vortex. Figure 6 contains the profile of g̃ as computed in this example.

5.2. Temperature matching

Now we consider the case when a = 0, or we simply would like to match a desired temperature
T ∗ at the outflow boundary Γout. For this run, we set ν = 0.005. Here notice that the step size
for the gradient method is ν

δ = 100. Furthermore, we decide to match a desired temperature
of T ∗ = 550K from an initial temperature of T0 = 540K. Define T̄f to be the nodal average
of T along Γout. The results are in Table III. The integral I3 strictly decreases, which means
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Figure 6. Profile of the control g̃.

Table III. Results of the temperature matching run.

Iteration I2 T̄f

1 50.0 540.0
2 6.39 553.57
3 0.92 548.64
4 0.10 550.44
5 0.02 549.79
6 3.55 ∗ 10−4 550.03
7 1.79 ∗ 10−3 549.94
8 4.13 ∗ 10−4 549.97
9 7.99 ∗ 10−4 549.96
10 6.44 ∗ 10−4 549.96
11 6.98 ∗ 10−4 549.96
12 6.78 ∗ 10−4 549.96
13 6.86 ∗ 10−4 549.96
14 6.83 ∗ 10−4 549.96

that as we iterate, we get closer to matching T ∗ along Γout. We may also consider the profile
of the control g̃. The computed control is presented in Figure 7. The negative values of g̃ mean
that we heat along Γc. The heating in this case tends to increase the magnitude of the vortex.
In this case, the quadratic form I1 will increase due to the addition of heat.

5.3. Combination of problems

We have shown that we are able to minimize the vortex and match a desired outflow
temperature separately. In this section we attempt to minimize both subfunctionals at the
same time. Thus, we let a = 1

2 . We consider the case where the matching temperature is
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Figure 7. Profile of the control g̃ for the temperature matching case.

Table IV. Cost functional values for when T ∗ < T0.

Iteration Jδ I1 I2

1 25.63 0.63 25.0
2 11.30 0.43 10.85
3 5.04 0.32 4.66
4 2.32 0.23 1.99
5 1.15 0.18 0.85
6 0.65 0.14 0.37
7 0.44 0.12 0.16

smaller than the temperature on the inflow boundary, i.e., T ∗ < T0. For this case,

ν = 0.0025,

T ∗ = 530,

T0 = 540.

The step size for the gradient method is ν
δ = 50. We only summarize the results of the first

seven iterates. They are in Table IV. We are able to minimize both subfunctionals I1 and I3.
In order to match the desired temperature, we are required to remove heat through Γc which
in turn reduces the vortex. We consider the profile of the control g̃ along the horizontal and
vertical walls in this case. The profiles are presented in Figure 8.

6. CONCLUSIONS AND FUTURE WORK

The main thrust of this research is to apply optimal control techniques to equations modeling
fluid flows related to polymer processing. Specifically, we considered fluid flow through a
four-to-one contraction domain, where a vortex is generated near the corner region of the
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Figure 8. Profile of the control g̃ for when T ∗ < T0.

contraction. Within this vortex, the polymer will recirculate for some time before being
released, and may degrade. This leads to an inferior product upon extrusion. In addition
to the vortex minimization problem, we looked at temperature matching along the outflow
boundary. The control in each case was the heat flux across the boundary in the corner region.
For the single problem of vortex minimization, we found that a combination of heating and
cooling reduces the vortex. For the separate problem of temperature matching, we were able
to match a specified outflow temperature T ∗ from an initial temperature of T0.

We then considered a combination of the problems. We found that we are able to minimize
both the vortex and the temperature difference along the outflow boundary in the case where
T ∗ < T0. This was attained by removing heat from the system along the control boundary Γc.

There are many directions that we could pursue based upon this research. The first is
to move on to more advanced constitutive models. Recall that the modified non-isothermal
Stokes-Oldroyd equations were designed with two viscosity functions α1(T ) and α2(T ). The
equations were designed in this manner with the ultimate goal of implementing a viscoelastic
constitutive model in mind. In turn, we could also progress to three-dimensional flows.

In addition to the increase in complexity of the equations and advancing in spatial dimension,
there are a couple of other directions we could consider. As we have only considered the flow
up to the extrusion point, it would be interesting to extend the domain to include the free
surface region where the fluid cools and the draw ratio is large. Optimization and control for
the problem of die swell is of strong interest to industry [14]. Other optimization problems
could be considered as well, such as shape optimization, to determine an optimal geometry for
the interior flow domain.
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