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a b s t r a c t

For flow inside a four-to-one contraction domain, we minimize the vortex that occurs in
the corner region by controlling the heat flux along the corner boundary. The problem
of matching a desired temperature along the outflow boundary is also considered. The
energy equation is coupledwith themass, momentum, and constitutive equations through
the assumption that viscosity depends on temperature. The latter three equations are a
non-isothermal version of the three-field Stokes–Oldroyd model, formulated to have
the same dependent variable set as the equations governing viscoelastic flow. The state
and adjoint equations are solved using the finite element method. Previous efforts in
optimal control of fluid flows assume a temperature-dependent Newtonian viscosity
when describing the model equations, but make the simplifying assumption of a constant
Newtonian viscosity when carrying out computations. This assumption is not made in the
current work.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the four-to-one contraction domain, where a fluid is flowing through a channel whose width is suddenly
reduced by three-quarters. This geometry commonly occurs, for example, in the forming ‘die’ used in extrusion processes.
Due to the sudden reduction in width, in the corner region a vortex appears, as in Fig. 1. In this region where the fluid
recirculates it has the potential to degrade,which produces an inferior product, for example, in the case of polymer extrusion.
Therefore, we would like to be able to control some parameter(s) of the flow to reduce this vortex. We also consider the
problemof temperaturematching.Wewish tomatch a specified temperature along the outflow boundary, which represents
the die exit.
The characteristics of isothermal fluid flows (Newtonian, shear-thinning, and viscoelastic) through a contraction

domain are described in [1]. Finite element simulations for isothermal Newtonian and generalized Newtonian fluids
through a contraction domain are presented in [2]. For fluid flows involving high viscosities and high deformation rates,
non-isothermal effects should not be overlooked, as unexpected consequences are known to occur [3].
Kunisch and Marduel [4] and Ito and Ravindran [5] both consider two-dimensional adjoint-based optimization for

non-isothermal flow. Although the fluid in both papers is assumed to be non-isothermal, in both cases the Newtonian
viscosity is independent of temperature. Ito and Ravindran consider the Boussinesq viscous flow equations, and hence stress
is not an unknown. The focus of that work is minimizing vortices by controlling the temperature along a portion of the
boundary. A cost functional is introduced where the curl of the velocity field is minimized over the domain or a portion of
the domain. The authors look at the backward-facing-step channel as well as a vertical reactor. It is shown that they can
reduce the L2 norm (squared) of the vorticity by 46% by controlling the temperature along a portion of the boundary.
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Fig. 1. Typical streamlines of velocity u.

In [4] the authors also consider vortex minimization, although there are differences between [4,5], the first of which
is the computational domain. In [4], they consider flow of a non-isothermal viscoelastic fluid (governed by the linearized
Phan-Thien/Tannermodel) through the four-to-one contraction domain. They introduce two cost functionals, both of which
are intended to minimize the vorticity. One minimizes the difference between the computed flow field and the flow field
of a Newtonian fluid, and the other penalizes negative contributions of the velocity field to prevent recirculation. They do
not assume symmetry, and hence apply one cost functional to each corner region. Using temperature as a control, they
show that the vortex can be reduced, and then discuss in physical terms what has to happen to lead to a reduction in the
vortex.
Like [5,4], we consider non-isothermal flow. However, we do not make the assumption that the Newtonian viscosity is

independent of temperature; that is, the energy equation is coupled to the constitutive and momentum equations through
the viscosity. Our results indicate that an 80% reduction in the vorticity can be achieved.
The outline of the rest of this paper is as follows. In Section 2wepresent the governing equations,with particular attention

given to the manner in which temperature dependence is expressed. The optimization problem is defined in Section 3.
Section 4 contains details of the weak formulation of the governing equations and the computational algorithm. Numerical
results for three model problems are presented in Section 5, and Section 6 contains a summary and a discussion of future
work.

2. Governing equations

The current effort is directed towards the long term goal of optimal control of viscoelastic fluid flow. The development
of the state equations begins with the governing equations in [6], where the Stokes problem is formulated with the same
three-field dependent variable structure as the Maxwell model for viscoelastic flow. We consider fluid flowing through a
bounded, connected domainΩ ⊂ R2, with Lipschitz continuous boundary Γ . Let the velocity be denoted by u, pressure p,
extra stress σ , and temperature T . The isothermal Stokes–Oldroyd equations presented in [6] are

σ − 2αd(u) = 0 inΩ, (1)

−∇ ·
[
σ + 2(1− α)d(u)

]
+∇p = f inΩ, (2)

∇ · u = 0 inΩ. (3)

In (1) and (2), d(u) represents the rate of deformation tensor, defined as

d(u) =
1
2

(
∇u+ (∇u)T

)
,

and f is a body source term.When viscoelastic terms are included in Eqs. (1) and (2), αmay be interpreted as the viscoelastic
part of the total viscosity. In the Newtonian case, keeping 0 < α < 1 alleviates the need, in the discrete formulation, for an
inf–sup condition on (σ ,u), [6].
We introduce a temperature-dependent viscosity using an Arrhenius relationship, [7], i.e.

η(T ) = A exp
(
B
T

)
. (4)

The rheological constants in (4) are determined experimentally as

B =
∆E
R
, A = η0 exp

[
−∆E
RTR

]
,
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Fig. 2. Computational domainΩ .

where∆E is the activation energy, R the ideal gas constant, TR is a reference temperature, and η0 = η(TR), [7]. The Arrhenius
relationship is commonly assumed to be applicable for temperatures above Tg + 100 ◦C, where Tg is the glass transition
temperature of the polymer. For Tg < T < Tg + 100 ◦C, the WLF (Williams–Landel–Ferry) equation is often used. Variation
between polymers makes it difficult to establish a rule about which model to use for all cases [8]. Since we are concerned
with a molten flow upstream from the quench environment, the Arrhenius model is used in this paper. As in [4,5], we drop
the viscous heating term in the energy equation, so that the governing equations are

σ − 2αη(T )d(u) = 0 inΩ, (5)

−∇ ·
[
σ + 2(1− α)η(T )d(u)

]
+∇p = f inΩ, (6)

∇ · u = 0 inΩ, (7)
−∇ · (κ∇T )+ u · ∇T = Q inΩ, (8)

where in (8), κ is a dimensionless term related to thermal conductivity and Q is a heat source term. In light of the earlier
discussion, α is included in this formulation. As in (1) and (2), α in (5) and (6) is a constant with 0 < α < 1. Its role is more
numerical than physical. Properties of the weak solution to Eqs. (5)–(8) are analyzed in [9].
As shown in Fig. 2, boundary Γ is divided into four disjoint parts: the inflow boundary Γin, the wall boundary Γwall,

the outflow boundary Γout, and the symmetry boundary Γsym (so that Γ = Γin ∪ Γwall ∪ Γout ∪ Γsym). Then the boundary
conditions are as follows [10]:

u = uin, T = T0 on Γin, (9)
u = 0, ∇T · n = 0 on Γwall, (10)
u = uout, ∇T · n = 0 on Γout, (11)
u · n = 0, ∇T · n = 0, π : nt = 0 on Γsym. (12)

In (12), π is the Cauchy stress tensor, and unit vectors outward and tangential to the boundary are n and t, respectively. A
double contraction between two second-rank tensors τ and σ is defined as

τ : σ =
∑
i,j

τijσji.

Note that the boundary condition π : nt on Γsym is equivalent for the problem considered here to ∂u1
∂y = 0. A discussion of

other outflow boundary conditions can be found in [11].

3. Optimization problem and adjoint equations

As stated previously our goal is to minimize the vortex in the corner region, as shown in Fig. 1, or ideally eliminate it
altogether. A measure of the vortex is the curl of the velocity field. Hence, an optimization problem consists of minimizing
the magnitude of the curl, e.g.,∫

Ω

(∇ × u)2 dΩ (13)

subject to the state equations (5)–(8) with boundary equations (9)–(12). We will also consider matching a desired
temperature T ∗ along the outflow boundary. Then our optimization problem is to minimize a linear combination of the
integrals
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Fig. 3. Domain of the control problem.∫
Ω

(∇ × u)2 dΩ and
∫
Γout

(T − T ∗)2dΓ ,

subject to (5)–(12).
With the quantity that is to be minimized defined, as well as the constraints, it is now necessary to define the control

variable. Similar to Kunisch et al. [4], we consider affecting the flow by a temperature boundary control. However, while the
authors of [4] consider temperature T along a portion of the boundary as their control, we consider controlling the heat flux
over a portion of the boundary, as in [12], and using a formulation similar to that in [5]. Specifically, we let our control g̃ be
defined as

g̃ = −κ∇T · n,

which is applied to a subset Γc of the boundary, (see Fig. 3). We now have the following conditions on the control
boundary Γc :

u = 0,
−κ∇T · n = g̃,

where the quantity g̃ is determined by optimization.
In order to ensure that the control g̃ has a realistic magnitude, we introduce a penalty term. Also, we will weight the curl

and temperature integrals in order to vary the strength of each term relative to one another. Define the cost functional as

Jδ(u, p, σ , T , g̃) =
a
2

∫
Ω ′
(∇ × u)2 dΩ +

δ

2

∫
Γc

g̃2dΓ +
1− a
2

∫
Γout

(
T − T ∗

)2 dΓ , (14)

where 0 ≤ a ≤ 1. Notice that in the first term on the right-hand side, we only integrate over a portion of the domain
Ω ′ ⊂ Ω . The penalty term has a coefficient δ, which is assumed to be small.
Our optimal control problem is then to find a suitable control g̃ such that Jδ is minimized subject to the state equation

(5)–(12).
We will consider adjoint-based optimization techniques. Adjoint-based optimization methods turn a constrained

optimization problem into an unconstrained one [13]. For completeness,we present the strong formof the adjoint equations,
their boundary conditions, and the optimality condition. Motivation for the derivation of the equations and boundary
conditions is given in the next section. The adjoint equations are:

γ + d(µ) = 0, (15)

2∇ · (αη(T )γ )− 2∇ · ((1− α)η(T )d(µ))+∇ξ +∇TΦ = −a∇ × ∇ × u, (16)

∇ · µ = 0, (17)

−∇ · (κ∇Φ)− u · ∇Φ +
2B
T 2
αη(T )d(u) : γ −

2B
T 2
(1− α)η(T )d(u) : d(µ) = 0, (18)

where γ ,µ, ξ , andΦ are the adjoint stress, velocity, pressure, and temperature, respectively. Note that the adjoint equations
are linear in the adjoint variables.
The boundary conditions for the adjoint equations are as follows:

µ = 0, Φ = 0 on Γin,
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µ = 0,
2B
T 2
(1− α)η(T )d(u) · µ · n+ κ∇Φ · n = 0 on Γwall ∪ Γc,

µ = 0,
2B
T 2
(1− α)η(T )d(u) · µ · n+ κ∇Φ · n+ Φu · n+ (1− a)(T − T ∗) = 0 on Γout,

µ · n = 0,
2B
T 2
(1− α)η(T )d(u) · µ · n+ κ∇Φ · n = 0 on Γsym.

Finally, the optimality condition is found to be

g̃ +
1
δ
Φ = 0.

4. Variational formulation and finite element approximation

We develop the variational formulation of the modified non-isothermal Stokes–Oldroyd equations and the associated
adjoint equations. Let Hm(Ω) be the standard Hilbert space with respect to a domain Ω and let ‖ · ‖m be the norm for
Hm(Ω). We use (·, ·)Ω as the L2 inner product for functions onΩ . Finally, let Hm(Ω) be the corresponding Sobolev space of
vector-valued functions in Rn. We have the following approximation spaces for velocity, pressure, stress, and temperature,
respectively:

X := {u ∈ H1(Ω) : u = 0 on Γwall ∪ Γc,u · n = 0 on Γsym},

P :=
{
q ∈ L2(Ω) :

∫
Ω

q dΩ = 0
}
,

6 :=
(
L2(Ω)

)n×n
∩ {τ =

(
τij
)
: τij = τji, τij ∈ L2(Ω)},

E := H1(Ω).

Notice that the velocity and pressure spaces, X and P , satisfy the inf–sup condition, [14,15]:

inf
q∈P
sup
v∈X

(q,∇ · v)Ω
‖q‖0‖v‖1

≥ β > 0.

Boundary functions in (9) and (11) are in H1/2(Γin) and H1/2(Γout), respectively.
For the weak formulation we also define test spaces:

X := {v ∈ H1(Ω) : v = 0 on Γ \ Γsym, v · n = 0 on Γsym},

E := {S ∈ H1(Ω) : S = 0 on Γin}.

Then the weak formulation for the system (5)–(8) is to find (u, p, σ , T ) ∈ X× P × 6× E so that

(σ , τ )Ω − 2(αη(T )d(u), τ )Ω = 0 ∀τ ∈ 6, (19)

(σ , d(v))Ω + 2((1− α)η(T )d(u), d(v))Ω − (p,∇ · v)Ω

+ ((pI − σ + 2(1− α)η(T )d(u)) · n, v)Γsym = (f, v)Ω ∀v ∈ X, (20)

(q,∇ · u)Ω = 0 ∀q ∈ P, (21)

κ(∇T ,∇S)Ω + (u · ∇T , S)Ω − κ(∇T · n, S)Γc = (Q , S)Ω ∀S ∈ E, (22)

and the corresponding boundary conditions (9)–(12) are satisfied. The heat flux κ(∇T · n, S)Γc arises from Green’s theorem
when obtaining the weak form of the energy equation. If the heat flux on Γc is given as

g̃ = −κ∇T · n, (23)

with g̃ ∈ L2(Γc), then the weak form of the energy equation becomes

κ(∇T ,∇S)Ω + (u · ∇T , S)Ω = (Q , S)Ω − (g̃, S)Γc ∀S ∈ E. (24)

We now present the motivation for the adjoint equations. We will describe the general framework and then apply it to
our problem. Let φ denote the state variables, g the control variable(s), F(φ, g) the state equations, J the cost functional,
and ζ the adjoint variables. The Lagrangian is defined as

L(φ, g, ζ ) = J − ζ ∗F(φ, g).

Then the unconstrained optimization problem is to find states φ, control g , and adjoint variables ζ so that the Lagrangian
is rendered stationary. The first order necessary conditions yield the optimality system from which we can determine the
optimal states φ and control g . Consider taking the Fréchet derivative with respect to the state variables, adjoint variables,
and control. We then have the following relationships:
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∂L

∂φ
= 0⇒ Adjoint equations,

∂L

∂ζ
= 0⇒ State equations,

∂L

∂g
= 0⇒ Optimality condition(s).

With J = Jδ in (14), F as in (5)–(8) and the Dirichlet boundary conditions for the state equations, the Lagrangian is the
following equation:

L(u, p, σ , T , g̃,µ, ξ , γ ,Φ, ρ, λi) =
a
2

∫
Ω ′
(∇ × u)2 dΩ +

δ

2

∫
Γc

g̃2dΓ

+
1− a
2

∫
Γout

(T − T ∗)2dΓ +
∫
Ω

[
σ − 2αη(T )d(u)

]
: γ dΩ

+

∫
Ω

[
−∇ ·

(
σ + 2(1− α)η(T )d(u)

)
+∇p− f

]
· µdΩ

+

∫
Ω

(−∇ · u)ξdΩ +
∫
Ω

[−∇ · (κ∇T )+ u · ∇T − Q ]ΦdΩ

+

∫
Γc

g̃ΦdΓ +
∫
Γin

(u− uin)λ1dΓ +
∫
Γwall∪Γc

(u− 0)λ2dΓ

+

∫
Γsym

(u · n− 0)λ3dΓ +
∫
Γin

(T − T0)λ4dΓ +
∫
Γout

(u− uout)λ5dΓ ,

where the λi’s are the Lagrange multipliers associated with the boundary conditions. Taking the Fréchet derivative of the
Lagrangian with respect to the state variables, and then applying Green’s theoremwill result in the weak form of the adjoint
equations and their boundary conditions. Enforcing the domain integrals to be zero will yield the adjoint equations, and
enforcing the boundary integrals to be zero will yield their boundary conditions. In particular, setting ∂L

∂σ
= 0 will yield the

adjoint constitutive equation:

(γ , τ )Ω + (d(µ), τ )Ω = 0 ∀τ ∈ 6.

Taking the derivative of the Lagrangian with respect to velocity will give the adjoint momentum equation:

−2(αη(T )γ , d(v))Ω + 2((1− α)η(T )d(µ), d(v))Ω

−(ξ ,∇ · v)Ω + (v · ∇T ,Φ)Ω = −a(∇ × u,∇ × v)Ω ′ ∀v ∈ X.

The adjoint incompressibility condition is obtained by setting ∂L
∂p = 0:

(q,∇ · µ)Ω = 0 ∀q ∈ P.

Finally, taking the derivative with respect to temperature gives the adjoint energy equation:

κ(∇Φ,∇S)Ω − (u · ∇Φ, S)Ω +
(
2
B
T 2
αη(T )d(u) : γ , S

)
Ω

−

(
2
B
T 2
(1− α)η(T )d(u) : d(µ), S

)
Ω

= −(1− a)((T − T ∗), S)Γout ∀S ∈ E.

The weak form of the optimality condition is found by setting ∂L
∂ g̃ = 0. We obtain

(g̃, S)Γc = −
1
δ
(Φ, S)Γc ,

for all S ∈ H1(Γ ).
We will use the finite element method to approximate the solution to the state equations (19)–(21) and (24) and the

adjoint equations. Suppose Th is a triangulation of the domainΩ such that Ω̄ = {∪K : K ∈ Th}; i.e., K is an element of the
triangulation. Further suppose that there exist positive constants c1 and c2 such that

c1h ≤ hK ≤ c2ρK ,

where hK is the diameter of K , ρK is the diameter of the greatest ball included in K , and h = maxK∈Th hK . Denote the space
of polynomials of degree less than or equal to k on K ∈ Th by Pk(K). To approximate the solution (u, p, σ , T ), we define the
following finite element spaces in R2.
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Xh := {v ∈ X ∩ (C0(Ω̄))2 : v|K ∈ P2(K),∀K ∈ Th},
Ph := {q ∈ P ∩ C0(Ω̄) : q|K ∈ P1(K),∀K ∈ Th},
6h := {τ ∈ 6 : τ |K ∈ P1(K),∀K ∈ Th},

Eh := {S ∈ E ∩ C0(Ω̄) : S|K ∈ P2(K),∀K ∈ Th},

X
h
:= {v ∈ X ∩ (C0(Ω̄))2 : v|K ∈ P2(K),∀K ∈ Th},

E
h
:= {S ∈ E ∩ C0(Ω̄) : S|K ∈ P2(K),∀K ∈ Th}.

We are using continuous piecewise quadratic elements for velocity and temperature, continuous piecewise linear elements
for pressure, and discontinuous piecewise linear elements for stress. We use discontinuous elements in anticipation of
applying this method to equations with more complex constitutive models which require a form of upwinding in the
numerical approximation [16]. Analogous to the continuous function spaces, the discrete spacesXh and Ph satisfy the discrete
inf–sup condition [15]:

inf
qh∈Ph

sup
vh∈Xh

b(qh, vh)Ω
‖qh‖0‖vh‖1

≥ β > 0.

Then our discrete problem for the state variables is to find (uh, ph, σ h, T h) ∈ (Xh, Ph,6h, Eh) such that

(σ h, τ h)Ω − 2(αη(T h)d(uh), τ h)Ω = 0 ∀τ h ∈ 6h, (25)

(σ h, d(vh))Ω + 2((1− α)η(T h)d(uh), d(vh))Ω + ((phI − σ h + 2(1− α)η(T h)d(uh)) · n, vh)Γsym

− (ph,∇ · vh)Ω = (f, vh)Ω ∀vh ∈ X
h
, (26)

(qh,∇ · uh)Ω = 0 ∀qh ∈ Ph, (27)

κ(∇T h,∇Sh)Ω + (uh · ∇T h, Sh)Ω = (Q , Sh)Ω − (g̃, Sh)Γc ∀S
h
∈ E

h
, (28)

and the corresponding boundary conditions are satisfied. Similarly, the discrete problem for the adjoint variables is to find
(µ(h), ξ h, γ h,Φh) ∈ (X

h
, Ph,6h, E

h
) such that

(γ h, τ h)Ω + (d(µ(h)), τ h)Ω = 0 ∀τ h ∈ 6h, (29)

−2(αη(T h)γ h, d(vh))Ω + 2((1− α)η(T h)d(µ(h)), d(vh))Ω − (ξ h,∇ · vh)Ω + (vh · ∇T h,Φh)Ω

= −a(∇ × uh,∇ × vh)Ω ′ ∀vh ∈ X
h
, (30)

(qh,∇ · µ(h))Ω = 0 ∀qh ∈ Ph, (31)

κ(∇Φh,∇Sh)Ω − (uh · ∇Φh, Sh)Ω + 2
(
B

(T h)2
αη(T h)d(uh) : γ h, Sh

)
Ω

− 2
(
B

(T h)2
(1− α)η(T h)d(uh) : d(µ(h)), Sh

)
Ω

= −(1− a)(T h − T ∗, Sh)Γout ∀S
h
∈ E

h
, (32)

and the corresponding boundary conditions are satisfied.
To solve the unconstrained optimization problem, we use the method of steepest descent [13]. The gradient method

step is

g̃(n+1) = g̃(n) −
ν

δ

∂Jδ

∂ g̃
,

where δ is the penalty parameter in the functional (14) and ν
δ
is a (constant) step size. By calculating ∂Jδ

∂ g̃ , we find that the
update for the control g̃ is

g̃(n+1) = (1− ν)g̃(n) −
ν

δ
Φ(n).

We will use the following steps when solving the optimal control problem. Initialize the control variable g̃(0). For
n = 0, 1, . . .

1. Solve the state equations to obtain the state solution (u(n), p(n), σ (n), T (n)).
2. Solve the adjoint equations to obtain the adjoint solution (µ(n), ξ (n), γ (n),Φ(n)).
3. Evaluate the cost functional Jδ(u(n), p(n), σ (n), T (n), g̃(n)) (optional).
4. Update the control via g̃(n+1) = (1− ν)g̃(n) + ν

δ
Φ(n).
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Table 1
Parameter values.

α A B δ

1
2 1.0× 10−14 14,500 0.00005
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Fig. 4. Computational mesh used for the FEM.

5. Test for convergence, either by checking the optimality condition g̃(n)+ 1
δ
Φ(n)
= 0, or a maximum change in the control

‖g̃(n+1) − g̃(n)‖∞.
6. Repeat all steps until convergence is attained.

Newton’s method is used in Step 1 due to the nonlinear forms present in the state system. The step size ν
δ
for the gradient

method is chosen appropriately so that a favorable convergence in the iterates is observed. A more rigorous method for
determining the step size, including adaptivity, would improve convergence properties. Such an approach is beyond the
scope of the current work.

5. Numerical results

In this section, we consider three scenarios: the problems of vortex minimization and temperature matching, and the
combination of those two problems. In all three problems, we have the following characteristics. The dimensions of the
channel before the contraction are {(x, y) : 0 ≤ x ≤ 10, 0 ≤ y ≤ 4}, while after the contraction the dimensions
become {(x, y) : 10 ≤ x ≤ 20, 0 ≤ y ≤ 1}. The computational mesh is shown in Fig. 4. A more refined mesh was
considered, but it was found that the solution is not appreciably affected. Recall that the cost functional has the form
(14), where Ω ′ ⊂ Ω and a ∈ [0, 1]. The boundary segments that comprise Γc were determined so that the vortex
is contained within the rectangle defined by these boundary segments. For the conditions in this work, it sufficed to let
Γc = {(x, y)|8 ≤ x ≤ 10, y = 4} ∪ {(x, y)|x = 10, 2.5 ≤ y ≤ 4}. The region Ω ′ is {(x, y) : 8 ≤ x ≤ 10, 2.5 ≤ y ≤ 4}.
Both the state pressure p and the adjoint pressure ξ are only determined up to a constant. We assume that the desired
temperature T ∗ is constant along Γout. For future reference, define the quadratic forms I1 and I2 as

I1 =
a
2

∫
Ω ′
(∇ × u)2 dΩ,

I2 =
1− a
2

∫
Γout

(T − T ∗)2dΓ .

5.1. Vortex minimization

Wewill consider the problem ofminimizing the vortex in the four-to-one contraction domain. Herewe consider the case
where a = 1, i.e., we concentrate on minimizing the vortex and ignore matching the temperature along Γout. In this and all
subsequent examples we set the source terms f and Q to zero, and assign the other parameter values as given in Table 1. For
this first case, we set

ν = 0.05.

The values for A and B lead to typical zero-shear viscosity profiles for η(T ) [10]. Also, notice that the step size for the gradient
method is ν

δ
= 1000. The optimal control code ran for 153 iterations before the convergence criterion was met. The results

of the run are summarized in Table 2. We are able to reduce the vortex by controlling the heat flux across the boundary. We
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Fig. 5. Comparison of streamlines after 153 iterations of the control algorithm.

Table 2
Results of the vortex minimization run.

Iteration I1

1 1.2667
2 1.2220
3 1.1750
4 1.1268
5 1.0780
6 1.0290
7 0.9796
8 0.9288
9 0.8747
10 0.8147
11 0.7462
12 0.6695
.
.
.

.

.

.

151 0.2461
152 0.2461
153 0.2461

can also compare plots of the streamlines for the uncontrolled and controlled flows. These are shown in Fig. 5. We are able
to reduce the value of the integral by 80.6%, and it is apparent from these plots that the remaining vortex is significantly
weaker than in the uncontrolled flow.
Recall that the control affects the solution of the state equations through the addition of the inner product −(g̃, S)Γc

in the energy equation. Hence, a positive value for g̃ yields a heat sink along Γc , and a negative value of g̃ yields a heat
source along Γc . We see that we need to cool on Γc to reduce the vortex. Fig. 6 contains the profile of g̃ as computed in this
example.

5.2. Temperature matching

Now we consider the case when a = 0, or we simply would like to match a desired temperature T ∗ at the outflow
boundaryΓout. For this run,we set ν = 0.005. Here notice that the step size for the gradientmethod is νδ = 100. Furthermore,
we decide tomatch a desired temperature of T ∗ = 550 K from an initial temperature of T0 = 540 K. Define T̄f to be the nodal
average of T along Γout. The results are in Table 3. The integral I2 strictly decreases, which means that as we iterate, we get
closer to matching T ∗ along Γout. We may also consider the profile of the control g̃ . The computed control is presented in
Fig. 7. The negative values of g̃ mean that we heat along Γc . The heating in this case tends to increase the magnitude of the
vortex. In this case, the quadratic form I1 will increase due to the addition of heat.

5.3. Combination of problems

We have shown that we are able to minimize the vortex and match a desired outflow temperature separately. In this
section we attempt to minimize both subfunctionals at the same time. Thus, we let a = 1

2 . We consider the case where the
matching temperature is smaller than the temperature on the inflow boundary, i.e., T ∗ < T0. For this case,
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Fig. 6. Profile of the control g̃ .
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Fig. 7. Profile of the control g̃ for the temperature matching case.

ν = 0.0025,
T ∗ = 530,
T0 = 540.

The step size for the gradient method is ν
δ
= 50. We summarize the results by displaying the first seven iterates in Table 4.

We are able to minimize both subfunctionals I1 and I2. In order to match the desired temperature, we are required to
remove heat through Γc which in turn reduces the vortex. The profiles of the control g̃ along the horizontal and vertical
walls for this case are presented in Fig. 8.

6. Conclusions and future work

The main thrust of this research is to apply optimal control techniques to equations modeling non-isothermal viscous
flow in four dependent variables. Specifically, we considered fluid flow through a four-to-one contraction domain, where
a vortex is generated near the corner region of the contraction. Within this vortex, the fluid will recirculate for some
time before being released, and may degrade. This leads to an inferior product upon extrusion. In addition to the vortex
minimization problem, we looked at temperature matching along the outflow boundary. The control in each case was
the heat flux across the boundary in the corner region. For the single problem of vortex minimization, we found that a
combination of heating and cooling reduces the vortex. For the separate problem of temperature matching, we were able to
match a specified outflow temperature T ∗ from an initial temperature of T0.
We then considered a combination of the problems. We found that we are able to minimize both the vortex and the

temperature difference along the outflow boundary in the case where T ∗ < T0. This was attained by removing heat from
the system along the control boundary Γc .
There are many directions that we could pursue based upon this research. The first is to move on to non-Newtonian

constitutive models. Recall that the modified non-isothermal Stokes–Oldroyd equations were designed with the ultimate
goal of implementing a viscoelastic constitutive model in mind. In turn, we could also progress to three-dimensional flows.
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Table 3
Results of the temperature matching run.

Iteration I2 T̄f

1 50.0 540.0
2 6.39 553.57
3 0.92 548.64
4 0.10 550.44
5 0.02 549.79
6 3.55× 10−4 550.03
7 1.79× 10−3 549.94
8 4.13× 10−4 549.97
9 7.99× 10−4 549.96
10 6.44× 10−4 549.96
11 6.98× 10−4 549.96
12 6.78× 10−4 549.96
13 6.86× 10−4 549.96
14 6.83× 10−4 549.96
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Fig. 8. Profile of the control g̃ for when T ∗ < T0 .

Table 4
Cost functional values for when T ∗ < T0 .

Iteration Jδ I1 I2

1 25.63 0.63 25.0
2 11.30 0.43 10.85
3 5.04 0.32 4.66
4 2.32 0.23 1.99
5 1.15 0.18 0.85
6 0.65 0.14 0.37
7 0.44 0.12 0.16

In addition to the increase in complexity of the equations and advancing in spatial dimension, there are a couple of other
directions we could consider. As we have only considered the flow up to the extrusion point, it would be interesting to
extend the domain to include the free surface region where the fluid cools and the draw ratio is large. Optimization and
control for the problem of die swell is of strong interest to industry [17]. Other optimization problems could be considered
as well, such as shape optimization, to determine an optimal geometry for the interior flow domain.
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