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Abstract

We study a non-overlapping domain decomposition method for the Oseen-viscoelastic flow
problem. The data on the interface are transported through Newmann and Dirichlet boundary
conditions for the momentum and constitutive equations, respectively. The discrete variational
formulations of subproblems are presented and investigated for the existence of solutions. We
show convergence of the domain decomposition solution to a solution of the one-domain problem.
Convergence of an iterative algorithm and some numerical results are also presented.
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1 Introduction

In this paper we investigate a domain decomposition method for the Oseen-viscoelastic fluid flow
of Johnson-Segalman type. Viscoelastic flow equations consist of a constitutive equation for the
material, a momentum equation, and a mass equation. For Newtonian fluids, the equations for
stationary, incompressible, creeping flow can be simplified in terms of velocity and pressure because of
the simplistic relationship between stress and velocity. For non-Newtonian fluids, however, there is an
“extra” stress component that accounts for the forces that the material develops under deformation.
Thus, no simplification takes place, and the complete system consists of three equations in the
unknowns pressure (scalar), velocity (vector), and stress (symmetric tensor). One of the difficulties
in simulating viscoelastic flows arises from the hyperbolic nature of the constitutive equation for
which one needs to use a stabilization technique such as the streamline upwinding Petrov-Galerkin
(SUPG) method and the discontinuous Galerkin method [1].

Here we consider the discontinuous Galerkin method for the finite element approximation of
stress. When discretized using a discontinuous space to approximate the stress tensor, the size of
the discrete system is increased considerably increased. In order to handle the large number of
unknowns associated with the viscoelastic systems, we propose a domain decomposition algorithm
for a two-subdomain problem. An extension to a muti-domain problem is straightforward. In each
subdomain we impose a Neumann condition for the momentum equation and a Dirichlet condition
for the constitutive equation on the interface boundary in order to transport data. The idea of
using a Neumann type condition is based on the methods found in [15, 17, 18]. For the finite
element approximation, we use the standard Taylor-Hood element for velocity and pressure and the
discontinuous Galerkin method for stress.

Domain decomposition methods have been used extensively to solve elliptic partial differential
equations (see [22] and references therein), along with the Stokes and Navier-Stokes equations [8,
10, 13, 15, 17]. Some domain decomposition methods for viscoelastic fluids are found in [4, 16, 23].
In [4] the authors use the additive Schwarz method in conjunction with the DEVSS-G operator
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splitting method. The two-level Schwarz method is applied to a Stokes-like problem that results
from the splitting. A domain decomposition spectral collocation (DDSC) method is introduced in
[23] for an Oldroyd-B fluid in model porous geometries. The method discussed in [16] is based on
the concepts of streamlines and local transformation functions, where the local functions are the
primary unknowns. The functions map the physical subdomains to transformed domains where the
mapped streamlines are parallel straight lines.

The remainder of the document is organized as follows. In Section 2, we introduce the model
equations for the Oseen-viscoelastic flow problem, and in Section 3, we describe the model equations
for the problem decomposed into two subdomains. Convergence of a domain decomposition solution
to a solution of the one-domain problem is discussed in Section 4. In Section 5, we present iterative
algorithms and prove convergence of the algorithms. We provide numerical results in Section 6, and
conclusions and future work are given in Section 7.

2 Model equations and finite element approximation

Let Q be a bounded domain in R? with the Lipschitz continuous boundary 9. Consider the
Johnson-Segalman problem

o+ Au-V)o +Ag.(o,Vu) —2aD(u) = 0 inQ, (2.1)
—-V-o0-2(1-a)V-D(u)+Vp = f inQ, (2.2)
divu = 0 inQ, (2.3)

where o denotes the polymeric stress tensor, u the velocity vector, p the pressure of fluid, and A
is the Weissenberg number defined as the product of the relaxation time and a characteristic strain
rate. Assume that p has zero mean value over Q. In (2.1) and (2.2), D(u) := (Vu + Vu?)/2 is the
rate of the strain tensor, o a number such that 0 < o < 1 which may be considered as the fraction
of viscoelastic viscosity, and f the body force. In (2.1), g,(o, Vu) is defined by

14+a

ga(o, Vu) := 1Ta(zj'Vu +vVu’la) (Vuo +oVu’) (2.4)
for a € [-1,1].

We use the Sobolev spaces W™ P (D) with norms ||| p.p if p < 00, ||||m,c0,p if p = 00. We denote
the Sobolev space W™?2 by H™ with the norm || - ||,,. The corresponding space of vector-valued or
tensor-valued functions is denoted by H™. If D = Q, D is omitted, i.e., (+,-) = (-, )o and ||-|| = || [|a -
Existence of a solution to the problem (2.1)-(2.3) with the homogeneous boundary condition for u
has been documented by Renardy ([19]) with the small data condition: if f is sufficiently regular
and small, the problem admits a unique bounded solution (u,p,o) € H3(Q) x H?(Q) x H3(Q).

In this paper, the constitutive equation (2.1) is simplified to define our domain decomposition
problem. We will consider the linear Oseen problem with the given velocity b(x):

o+ ANb-V)o+ Agu(o,Vb) —2aD(u) = 0 inQ, (2.5)
V.o-21-a)V-Du)+Vp = f inQ, (2.6)
divu = 0 inQ, (2.7)

u = 0 onoN. (2.8)

We make the following assumption for b:

beHL(Q), V-b=0  |ble<M  [Vble <M <.



Define the function spaces for the velocity u, the pressure p and the stress o, respectively:
X = HY(9),
S=L§(Q) ={g € L*(Q) : [,qd2=0},
E={rel?Q):m =1 (b-V)r € L2(Q)}.

Note that the velocity and pressure spaces, X and S, satisfy the inf-sup condition

B Tl > © e

The corresponding weak formulation is then given by:

(o, 7)+ X(b-V)o,7) + Aga(o,Vb),7) — 2a(D(u),7) =0 Vre X, (2.10)

(0,D(v)) +2(1 = )(D(u),D(v)) = (p,V-v) = (f,v) VveX, (2.11)

(¢, V-u)=0 Vges. (2.12)
In the weak divergence free space

V= {VEX:/quivde:O Vg € L3(Q)},

the weak formulation (2.10)-(2.12) is equivalent to:

(0,7)+ A(b-V)o,7) + Mga(o,Vb),7) —2a(D(u),7) =0 VreXx, (2.13)

(,d(v)) +2(1 — a)(D(u),D(v)) = (f,v) VveV. (2.14)

We now consider the finite element approximation of the problem (2.10)-(2.12). Suppose T" is
a triangulation of € such that Q = {UK : K € T"}. Assume that there exist positive constants cy,
¢ such that
c1th < hg < copi

where hg is the diameter of K, px is the diameter of the greatest ball included in K, and h =
maxyerh hi.

Due to the hyperbolic nature of the constitutive equation, a stabilization technique is needed
for the finite element simulation of viscoelastic flows. Streamline upwinding ([14], [20]) and the
discontinuous Galerkin method ([2], [7]) are the commonly used discretization techniques to handle
this problem. We use the discontinuous Galerkin method for approximating the stress. Let Py (K)
denote the space of polynomials of degree less than or equal to k on K € T". Then we define finite
element spaces for the approximation of (u, p):

X" = {veXn(C'(0)?:v|k € Py(K)Y, VK € T"},

Sh {qeSNC°(Q): qlx € P(K), VK € T"},

Vh = (veX":(¢,V-v)=0, Vge S"}.
The stress o is approximated in the discontinuous finite element space of piecewise linears:

sh = {reX:71|g € P(K)™ VK e T"}.



We introduce some notation below in order to analyze an approximate solution by the discon-
tinuous Galerkin method. We define

0K~ (b) :={x€ 0K, b-n <0},
where 0K is the boundary of K and n is outward unit normal, and

7E(b) := lim 7(x + eb(x)) .

e—0

We also define
(U)T)h = Z (UaT)Ka

KeTh
<(7'i,’7'i >hb = E /

)(oi(b), Ti(b))|n -b|ds.

Kern /oK~ (b
1/2
[ llo,rn == Z ks (2)76K
KeTh

foro, T € H (L*(K))¥4 | and
KeTh

1/2

Tl = D Il ke

KeTh

forre J] (Wm™2(K))™4, if m < oc.

KeTh
The discontinuous Galerkin finite element approximation of (2.10)—(2.12) is then as follows: find
u" e X", ph e S, ol € " such that

(o, ") + A [((b Vot et < oht - gt it >h,b} (2.15)
+)\(ga(ah, Vbh), ’Th) — 2a(d(uh),'rh) =0 Ve 2”7

(e, d(v") +2(1 — @) (d(u"),d(v")) = (p", V- v") = (f,vh) wwheX", (2.16)

(¢"V-u")=0 vg"es". (2.17)

It was shown in [6] that the discrete problem (2.15)-(2.17) has a unique solution if 1 — 2 AMd > 0,
and the solution satisfies the error estimate

o —a"[lo+ |lu—u"||; < Ch. (2.18)

3 Description of the domain decomposition method

We describe the domain decomposition method using two subdomains, and the analysis that follows
is based on this problem. However, there are no difficulties associated with extending the analysis
to handle as many subdomains as necessary.

Let Q be divided into two disjoint subdomains ; and 5 such that Q = Q; UQ,. The interface
between the two domains is denoted by I'g so that I'g = Q; N Qs. Define

I'p:={x€Tly:b-n; <0}, I';;:={x€Tly:b-ny <0},



where n; is the outward unit normal vector to §; for i = 1,2. Let I'y = Q; N0 and 'y = Qs N ON.
We consider the following pair of Oseen-viscoelastic systems with mixed boundary conditions:

o1+ Ab-V)o1 + Aga(o1,Vb) —2aD(u;) = 0 inQy, (3.1)
V.01 -21-a)V-D(u1)+Vpy = f inO, (3.2)
divu; = 0 inQ, (3.3)
u = 0 only, (3.4)
(61 +2(1—a)D(uy) —p1I)-n; = _%(ul—u2) onI'p, (3.5)
o1 = oy only,, (3.6)
and
o2+ A(b-V)os+ Aga(o2,Vb) —2aD(uz) = 0 inQs, (3.7)
V.01 -2(1-a)V-D(uz)+Vp, = f inQy, (3.8)
divug = 0 inQs, (3.9)
u, = 0 onTy, (3.10)
(2 +2(1—a)D(uz) —p2I) -ny = %(ul —uy) onTy, (3.11)
oy = o1 only. (3.12)

Note that (3.6), the Dirichlet boundary conditions for o1, is imposed on a part of the interface I'g
where b - n; < 0. Similarly, (3.12) is imposed on the inflow boundary of 2, associated with the
given velocity field b.
Define the function spaces for the velocity u;, the pressure p; and the stress o;, respectively, for
1 =1,2:
X;:={veH'(Q): v=0 onI;},

Si = LQ(Q,L'),
3 = (L2(Qi))2><2 n {T = (Tij) P Tij = Tjis b-Vre (Lg(Qi))sz}
and the div free space

Vi::{VEXi:/ qdivvdQ; =0 VYqeS;}.
Q;

The corresponding weak formulation of (3.1)-(3.12) is then given by
(01, 71) + A (b-V)o1,71) + A(ga(o1,Vb),71) — 2a(D(u1),71) =0 V71 €3y, (3.13)
1
(01, D(v1)) +2(1 = a)(D(u1), D(v1)) = (p1, V- v1) + — (w1 — uz, vi)r,
= (f, Vl) Vvi € X3 s (314)
(ql,V-ul) =0 Vq €51, (315)

op =0y only,, (3.16)



and
(02,72) + A(b-V)os, T2) + A (ga(02, Vb), T2) — 2a(D(us), 72) =0 V713 € B, (3.17)
(02, D(v2)) + 2(1 — @) (D(us), D(v2)) — (p2, V - va) — %(ul _ p, va)r,
= (f,vy) VvyeXy, (3.18)
(g2,V-u3) =0 Vg2 €Ss. (3.19)
oy =01 only. (3.20)

We define discrete subspaces for the finite element approximation of the two-domain problem
(3.13)-(3.20). Let T!* denote a triangulation of 2; such that ; = {UK : K € T} for i = 1,2.
Define finite element spaces for the approximation of (o, ul, p/) for i = 1,2:

o= {1 e iTx € PI(K)™Y VK e T},
Xt o= {veX;n(C'%): vk € Py(K)Y, VK € T'},
Sho= {geSinC'():qlx € P(K), VK € T} .

We also define the discrete divergence free subspace
Vi={veX!:(¢,V-v)=0, Vg St}.

The finite element spaces defined above satisfy the standard approximation properties (see [3] or
[9]), i.e., there exist an integer k and a constant C' such that

inf ||v—v"[|, <CRv|; YveH ), (3.21)
v”EXé1
inf llg—q"lly < Ch?|lall, Vaq e H* (), (3.22)
qhesh
and
inf |7 —7"|, < CR?7|l, VTeHQ). (3.23)
Thesh

It is also well known that the Taylor-Hood pair (X2, S%) satisfies the inf-sup condition,

h V- h
nf  sp LV V) o (3.24)
0" €St opvnexy [V*1llg" o

where C' is a positive constant independent of h.
In addition to notation introduced in the previous section for the discontinuous Galerkin method,

we present more notation to analyze o on the interface I'y. We define, for o;, 7; € H (L2(K))*<d
KeTh

<ot rEsp= Y / (0£(b) : 7£(b))n - b] ds,
KeTh,0KNTo=0 oK-(b)

+ + _+ _1/2
<of>ppi=<ofof >/L,

1/2

||7'i||o,rgl = Z |Ti|?)78K )

KeTh



and
1/2

il = D ITilmx
KeT}
for ri € J] (W™2(K))*™, if m < co. Also define, for i,j = 1,2
KeT}

+ + +
<o TE S e = / b) : 7£(b))[n - b| ds,
KeTh, aKﬂF ) OK- (b

1/2

hb,T,

where (I,m) = (1,2) or (2,1). The discrete variational formulations of (3.13)-(3.16) and (3.17)-(3.20)
are then given by

(0’1 ) Tl) + A ((b ’ V)O'iﬂ T?)h + A (ga(o-}b Vb)7 T?) - 20‘(D(u}11)7 T}ll)

- _pt
+A < 0'1 —o T sy N <ol o T >, =0 YrheXh o (3.25)

+ —e gt oF
KOy Pppr; =<0;,0; >

(01, D(v1)) +2(1 = a)(D(u}),D(v})) — (p}, V - V1) + %(u’f —ug,vi)r,
= (f,vl) wieX! (3.26)

(¢, V-ul) =0 Vg € S/(Q), (3.27)
and
(05, 75) + A (( V)os, T5)n + A(ga(0h, Vb), 75) — 2a(D(u3), 75)
+A < 02 - o‘é‘ ,r’; >nb AN <ah—ol Th >n by, = 0 vrh e b (3.28)
(o, D(vA)) +2(1 — a)(D(u}), D(vE)) — (. V- vA) ~ - (uf —uf v,
=(f,v}) wheXl, (3.29

(@b, V-ul)=0 Vg € SHQ). (3.30)

Note that the stress boundary conditions (3.16), (3.20) are imposed weakly [11].

The next theorem shows the existence and uniqueness of a solution to the above coupled system
(3.25)-(3.30). In proving the theorem we use the bilinear forms A; defined on X7 x V! for i = 1,2
by

A((ef ), (71, Vi) = (o], 7)) = 2a(D(u}), 7}) + 2a(o}, D(v]))
+a(l - a) (D(u}),D(v})) +>\(ga(0h Vb), 7). (3.31)

Note that A; is continuous and coercive, if 1 — 2AMd > 0: since

(9a(o, VD), 71) < 2d|[Vb|loc[lo"follT" [l < 2dM [lo™[|o]IT" o , (3.32)
we have
Ai((of ), (r2v) < llofllollT? llo + 2D (u) ol 7 llo
+2a[o [[o[D (v [lo + 4a(1 — o) [D(u])[|oD(v})]lo
+2Md| o]} o
< C(lot o+ llulh )((||7'h||0+||v|| )
< Clitof ud)lls, w172V 55, xx, - (3.33)



where H(T?,V?)Hzixxi is defined as (||77(]2 + ||[vP(|?)'/2. Also, using (3.32),

)
Ai((o],up), (o], u)) lo 13 + Mga(, Vb), o) + 4a(l — a) [ D(uf)|§

> ol —22Md||al||§ + 4a(1 — a) [ D(u})|§ (3.34)
> Cllo )y -
if 1 —2AMd > 0. In the proof of the next theorem we will also use the inverse estimate [3], [9]
Vol lon < Ch7Yolllo  for ol € B, (3.35)
the local inverse inequality [21],
lotlloor < Ch™ 2|0k for o € 5, (3.36)
and the trace theorem [9],
luillor,ury, < Clluglli  for u; € X;. (3.37)

Theorem 3.1. The system (3.25)-(3.30) has a unique solution, if 1 —2AMd > 0.

Proof. Using the div free spaces V? i = 1,2, the coupled system (3.25)-(3.30) is equivalent to
2
Z [Ai((a?,u?)7 (Tzh’vzh)) + )‘((b ’ V)U?ﬂ-?)h +A < O'?JF - Uz}‘L—aT?J’_ >h,b}
i=1
h h h h

1
h _h _h h_ _h _h
+A [< 01— 02,T] >ppr;, T <02 —01,T3 >h,b,1“;1] +g(u1 —uy, vy — V3)r,

2
=Y F((z!,vl) V(v ezt x Ve, (3.38)
=1

where Fy(-) : " x V" — R is a functional defined by
Fi((Th,vl) := 2a(f, vD).

77 K3

It is straight forward to show F; is bounded:
[E((rE v < 20l -1 [IVEl < 20l (7 v s, x, - (3.39)

(s ?

We will show the bilinear form in (3.38) is continuous and coercive in H?Zl(Z? x V), if 1-2AMd >
0. Using (3.35) and (3.36),

% A

+ - ot
((b-V)a?,T?)h+<a? —oh 7! >hb

< C [ IBlool Tt lo.ull o + IBlloc ol pr 17 o s |
< C [IIblloc (B o o) 172 o + [Dlloo (™2t o) (™ /2172 o)
< cMh ol ollrt o, (3.40)

and
<ol —al ! Zhbrn, T < oh — ol 7} Zh,b,ly,
h h h
< C bl (et llor, + oo )T oo + Pllos (I lo.0e + ot lo.ro )75 ll0,r0 ]

< OM [(B7 2o lo + =20 o) (B2 74 o)

+(B2llobllo + 2ot o) (A2 o) |

2
<OME Y ot ol o (3.41)

ij=1



Also, by (3.37),

2
(uf —uf, vi = v, <C Y ([} ||V} - (3.42)
ij=1
Hence, by (3.33) and (3.40)-(3.42),
S [l (e i) + Al(b - W)t Tl 4 A < ot = T 7T 5]
=1

1
h h _h h h _h h h h h
+A {< 01 =09,T1 Zppr, T <02 01,73 >h7b,F2’1} + E(ul —uy, Vi — V3)r,

2 2
< C D dletlo + Il o + IvE) + Ma=E > ool T2l
i=1 ij=1
2
< "> (oo + ) (o + vE )
Q=1
< CMl(otul, o, ul) s x5 1T VS T3, VIS, x50, X, - (3.43)

where C” is a constant dependent on h.
We now show the coercivity of the bilinear form. First note, using integration by parts, that

h _h ht h— _hT
§ [((b'v)aivTi)h+<ai —0o; T >h,b}
i=1
h h _h h h _h
+ <oy =05, Ty >, T <02 = 01,Ty >y

h _h h— _h— ht
= E [_((b'v)Tiao'i)h+<0'i Ty —T5 >h,b}
i=1
h _h h h _h h
+ <05, Ty = T1 >ppry, T <OLTI = T2 > 1o - (3.44)

h

Hence, if 7' = o', we obtain

Z h _h ht h— _hT
{((b'v)ailﬁo'i)h+<o'i —0; ,0; Zhb
i=1
h h _h h h _h
+ <oy —05,07 >h7b’1~;2 + <oy —07,0, >h,b,r;1

2
1 nt h™ .2 h h .2 h h .2
= 3 lg Ko, —o0o; >y +<K0] —0, >>h7b}F1_2 + <Koy —0; >>h7b7F2_1
0

Y

(3.45)



Now the coercivity of the bilinear form follows from (3.34) and (3.45):

> [Ailelul), (@) + A(B- D)ol o) + A <ol ol ol ]

i=1

1
h_ _h _h h_ _h _h h_ h h_ h
+A [< ol — 05,01 >y, + <03 — 07,03 >h,b,F2_1} + ;(u1 —ug,uy — usy)r,

2
A _
>3 It~ 20003 + (1 - DI + 5 < ol = ol 3]
42 [<< ol —oh>? + <ol —ah>? } + l(uh —ul)2
2 1 2 7 hb,T, 2 1 “hbI;, P 2T
2
> [(1=22Md)||o}|§ + 4a(l — ) [D(u})|[3]
=1
2
>C ) lor )l o,
=1
2 ||( 17027u2)||21XX1X22XX2 (346)

Therefore, by the Lax-Milgram theorem, there exists a unique (o, u?) € Zf X V?, if 1—2A\Md > 0.
Finally, existence of a unique solution (o, u?, pf) € Z? x X1 x St follows from the inf-sup condition
(3.24). O

4 Convergence Analysis
We will prove the solution of the two-domain problem (3 25) (3.30) converges to the solution

(", u, p°*) satisfying (2.5)-(2.8). Let 0¢* = o ué” = u®q,ur, and p§* = p* for
i =1,2. Define

g = (" +2(1 — a)D(u®”) + p*I) - n; on T.

Note that, for i = 1,2, (657, u§”, p§®) satisfy

(o, 1) + M(b-V)oi®, 1) + Mga(0f®, Vb), 7)) — 2a(D(ui®), ;) =0 V1;€%;, (4.1)

(07", D(vi)) + 2(1 — a)(D(ui®), D(vi)) — (pi*, V - vi)

= (f7vi) + (_1)1+1(g mvvi)l—‘o vvi S Xi ; (42)

(qi, V- ufr) =0 ti €S;. (43)
In the div free spaces V;, (4.1)-(4.3) is equivalent to
2

DA

=1

Touit), (i, vi) +F AM(b - V)oi®, )] = 2a(f, v;) + 2a(g°", vi — va)r, - (4.4)

We introduce some approximation properties (see [3] or [9]), which will be used in order to prove the
next theorem. If &% € = is the orthogonal projection of o¢* on T/ in 3;, and @ € V! is defined
as the interpolant of u¢® in V;, then we have the following standard results. For u®® € H3(Q;) and

o € H2(Q;)

IV —af)o < Ch?|ui|s, (4.5)
lo® —&lllo+hllV(e® —67)lo < Ch*|los”|2. (4.6)



Theorem 4.1. If 1—-2\Md > 0 and (o, ul) fori = 1,2, satisfy the coupled decomposition problem
(3.25)-(3.30), they converge to the exact solution (6%, u’") as € goes to 0. Furthermore, we have
the estimate

2
> [l = afllo + [[us® —ul 1] < C(h+ Vellg*lIr,)- (4.7)
i=1

Proof. Subtracting (3.38) from (4.4), and adding and subtracting E’Z}-L, ul, imply

2
S [A@h - ot @l —ul, (71 1)
i=1
Mb)@ —ol), T+ A < (@ —ol)T = (& —al) T T S

+A [< (el —ol) — (b —ol), 7! >pbrn, T < (&h —oh)— (& — o), T} >h,b,F;1}

200 h o h h
——(uy —uy, vy — vy)r,

€
2
~; ~
=3 [Al(@) — o5 ), (i)
i=1
FA((b- V)@ = 05), T + A < (& — o) = (& — o) T ]
~h h F ~h T h h
2 [< @l = o) = (B — o), T >, + < (G5 —05) = (B — 05), 7 >y |
+20(g", Vi = vi)r, V(T Vi) €37 x Vi, (4.8)
where we used 0§ = o§” on I'y and that o¢® is a continuous function. Let 7! = 5‘? —oh,

vl =1 — ul'. We have a lower bound of the left hand side of (4.8) using (3.34) and (3.45):

2
- 2«
LHS > 3 (1= 2AMa)5! — 1§ + 4a(1 — o) D! —wbF] + it —ullf, . (49)

Estimates for the jump terms in the right side of (4.8) are obtained in the similar way shown in
(3.40) and (3.41):
~h exr

< (o7 —o{)t — (67 —of) 0l — o) >hp

IN

~h ~h
Clblllles = o¢llornllo7 — oo,

CMh&} = of" olla) — oo, (4.10)

IN

h ~h ~h h
< (o) —o1") = (05 —05"),01 =071 >, p-

+< (@ —o5) - (B) o1, &Z —a% >
< OBl (13} = o5 o, + 155 — 57 lo.0,) (115 + 3% = ohlor,)
< OMEY(I5" — 0%l + 3 — o5 o) (15 — %o + 152 — olo). (4.11)
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Using (3.33), (4.9)-(4.11) and the Young’s inequality, we have

~ 2ce
(1 =22Ma)[5] = [} + 4a(1 — ) |DEE! - u!) 3] + == [uf —uf |,

o8

=1

2
~h ~ ~h ~
<C). [(Ilai —oi"[lo + D@} —ui)lo)(llo — o llo + D@} —ug)llo)
=1
FAM|V (5] = o*)lo57 — oo + AME |57 — oi*[lolle; — o lllo
1 K3 K3 K3 K3 K3 K3 1

2
— ~h ~h
+OAMK™ Y 57 = o |olle — ol + 2allg™ e w1 — uz|r,

i,j=1
2 1
Z [51 o = afllo + ID(@! —uf)fo)® + 51(||5 — oo+ D@ — uf®)[o)?
~ AM ~ ~ AMh=2
+0AM |G} — ol + T IV (e = of")F + s AM|5) — o F + o — ¢ I3
46, 455
2
AMh =2
~h ~h ex
+OY ! — ol + gt~ ot
1 .
+20 | ol = iR, + e, (@12
for arbitrary 6; > 0,4 =1,2,...,5. If we take d5 = §,
2
3 [(1 — 2AMd — 26,C — (62 + 85 + 5)AMC) |5} — o2
i=1
+(da(l - o) = 206)[D(@@} —u?)[3] + *HU? - u3llf,
2
exr ex AM ~h exr
Z HU — oo+ D@} —ui®)[o)? + T IIV(E] — )3
=1 462
AMR=2  AMR™2 _, 12 9
M+ M plE! - o] + adle 1, (113)
Therefore, using (4.5)-(4.6) and the triangle inequality, (4.7) follows. O

Remark 4.2. The pressure on each subdomain, pl, is determined up to a constant. In order to
compute a pressure convergent to p°® which has the zero mean value, construct p" inL3(Q) by

_ h_ K forxeQ
pix)={ P Jorxe
— K forxe)s

where K = (lep’f dQ; + fQ2 ph ng) /meas(Q). Then, convergence of p" to p®® can be proved as
shown in [17] or [18].
Remark 4.3. The estimate (4.7) suggests the optimal scaling e = Ch? between € and h.

5 Iterative Algorithm

In this section we delete the superscript h in (a’?, uzh 7plh) to simplify our notations. Consider the
following iterative algorithm.

12



Algorithm 5.1.
(@™ Y+ A((b - V)Tt Th) 4 XN < op T T gt T ph T s

—2a(D(u" M), ") + A < oM " > h,b,I'T,

= -A(ga(o1™, VD), 7" + X < 5", 7" >hbiIs, vrh e mh (5.1)

("1, D(v")) +2(1 ~ a)(Duy™), D) — (51" V") 4 L™, v,
= (f,v") + %(UQn,Vh)FO vl e X, (5.2)
(¢"V-w"™) =0 vge sy, (5.3)

and

(02" T A(B- V)og T+ X <ot —ap T T sy,

—20(D(w" ™), 7" + A <o >

= X(ga(02™, Vb), 7" + A < ", 7" >hbil;, vrh e xb (5.4)

1
(2", D(v") + 2(1 = a)(D(w" 1), D) = (52", V- v") 4~ (" v,

1
= (f,v") + g(uln,vh)po vl e Xh (5.5)

", V-ut") =0 vgesh. (5.6)
In the proof of the next theorem we will use the Trace theorem

Clluflo,r, < D (us)llo. (5.7)

Theorem 5.2. The iterative algorithm 5.1 converges for each fived € and h if AM is sufficiently
small so that A\Md + 23 <1 — AMd and o satisfies \Md + 2L — 4C%a(1 — a) < 2 < 1— AMd,
where C is the constant in (5.7).

Proof. In the discrete div free space V| subtracting (5.1)-(5.2) and (5.4)-(5.5) from (3.25)-(3.26)
and (3.28)-(3.29) respectively, and letting 7; = o; — ;" "1, v; = u; — u;"*!, we obtain

B -
low— o™ 5+ 5 < (01— o) = (o1 — a1 ™) >,

—2a(D(u1 — u1"+1), o1 — 0'1n+1) +tAKL o] — 0'1"+1 >>2

b7,
= —A(galo1 — 01", Vb),01 — 01" ) + A< 09 — 09", 01 — 0" >hbIT, (5.8)

1
(01— 01", D(uy — ")) +2(1 - @)D (w — w " )|f§ + o L w ",

1
= E(UQ - u2n7 u; — u1n+1)F0 ) (59)
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and

A
lora — o2 FH[5 + 53 < (02 o3 )t — (02 —05™)” >3,
—2a(D(ug —u"™), 00 — 0" ) F A <oy o T

2T 21

= -\ (ga(dg — O'Qn,Vb),O'Q — 0'2”) +A<o1—01", 09— 0'2”+1 >h,b,F;1 R (510)

1
(02 — 02", D(uz — u"™)) +2(1 — a)[|D(uz — u" )13 + vz - w3,

1
_ n n+1
= *(111 —u ,u2 — Uz

c )ro - (5.11)

Multiplying (5.9), (5.11) by 2« and adding all equations together, we have

A _
{a’i — "2 + 5 < (i —a ™) — (o, —a?™H) ™ 7

i=1
nd1y 2, 20 n+12
+a(1 - o) ID(u; — w™ ) + =g — w2,

2

n+1 2 n+1
+AK o1 — o >>h,b,F;2 +FAK o9 — 09 >>h7b’1ﬂ271

2
< Y 2AMd|o; — o} ollo — o7 o

[
=1
n n+1 n n+1
+A |:< O9 — 09 ,01] — O] >h,b,F1_2+<0-1_0-1 ,O9 — 09 >h,b,F2_1

2c

2«
+?(112 —up",u; — u1n+1)1“o + ?(ul —w"up - u2n+1)F0
2
< Y MMl = oF [+ o — o D)
i=1
A n 2 n+1 2
+§ |:<< 02 — 02 >>h,b,F;2 +< o101 >>h,b7F;2
+ o101 >y g+ <o — o >>27b7F;J
«
+; [HUQ _ UQn||12'\0 + Hul _ 111n+1||%0 —+ ||u1 — U1nH%O + ||u2 - u2n+1||12—‘0} ) (512)

by using (3.32), (3.34), (3.45), and the Young’s inequality. Using (5.7), (5.12) becomes
n ~ o n
> [ = Amdo: - o+ (4C%a 0 - a) + L) fus - u R,
i=1

A n+1 2 n+1 2
+§ |:<< o1 — 01 >>h,b,1‘1’2 + Koy —09 >>h,b,1‘2’j

2
< Z/\Mdﬂﬂ'i — "I
=1
A « 2
+3 [<< oy —oy" >>Z,b,r;2 +<o—o" >>Z,b,1“;1} += >l — g, -
=1

As I'ly, I'5; C I'o, using the inverse estimate

Ch2o o, < llo7]

a, (5.13)
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we obtain

M

n ~ a n
(1= 2Ma)o: = o3+ (4201 = a) + ) fus — w1
1

AM n « n
< Z |:()\Md+ Qh) Ho'ifa'i ||(2)+z||ui7ui ||%0:| .

1=2

.
Il

Note that

— <1
4Ca(l —a) + 2
Hence (o1, u*1) converges, if \Md+23M < 1-AMd and AMd+3M —4C%a(1-a) < ¢ < 1-AMd.
In order to prove convergence of pressure, subtract (5.2), (5.5) from (3.26), (3.29), respectively.
(i — 0", D(vi)) +2(1 = a)(D(w; — w;"™),D(vy)) = (pi — P,V - vi)

+E(uz — llinJrl,Vi)po = E(Uj — lljn,Vi)FO s (514)

where (4,7) = (1,2) or (2,1). Using the inf-sup condition (3.24), (5.7) and (5.14), we have

_pntl oy yh
||pz _p?+1HO S C sup (pl pz ha i )
0#vIeX? [[vi Il

1
< C sup —— [lloi — " o +2(1 — a)[D(w; —w" ) o
0#£vhex”h (v [l

2 (1D =)o + D (s — wy™)o)] [D(v:)].

This implies

i~}

2
dolpi—pi Mo < €Y llos — o™ o+ D (w; — w™ ) lo + [D(wi — w™)lo] -
=1 i=1

Therefore, convergence of p"*1 follows from convergence of (g1, ut1). O

As an alternate scheme, we may consider the slightly modified iterative algorithm.

Algorithm 5.3.

(@™ L")+ A((b- V)it 4 A <ot T — ot o sy,
+A (g,,,(a'lnﬂ, Vb),Th) — 2a(D(u1"+1),‘rh) +A< oM P > bir

12
_ n _h h h
=A<oy", T >hb,I, v e 37,

(61, D(v) +2(1 — a)(D(wy"*), D)) — (1", Vv + L (" v

€

1
= (f, Vh) —+ z(u2n7vh)1"0 Vvh S X}f ,

(qh,V ") =0 vge S{”,
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and

(02", 7"+ M(b- V)o3 ) 4 <ot — ot e sy
A (ga(02" 1, Vb), 7") = 20(D(w" ), ) + A <" >

_ n _h h h
=A<o", T >hbry, v e Xy,

("7, D(")) + 21 — a)(D(u" ), D)) — (2, V- v) 4 (" v

1
= (f, vh) + E(uln,vh)p0 wvh e Xg ,

n+1
(qhvv : u}2L )

=0 VYgeSh.

Note that the difference between two algorithms lies in the g, terms of the constitutive equations.
Convergence of Algorithm 5.3 can be shown under stronger conditions on parameters AM and «;
we need the assumptions AM < 262h(1 —2AMd) and 231 — 4C%a(1 — a) < &< ézh(l — 2)\Md),
where C' is the constant appears in the inverse inequality (5.13). The requirement on « is more
restrictive than the condition in the Theorem 5.2 since € is expected to be Ch? as stated in Remark
4.3. However, it turned out that the conditions for convergence are not necessary in numerical tests
and the convergence rate of each algorithm is strongly dependent on €. The convergence issue will
be addressed in the next section.

6 Preliminary Numerical Results

In this section we present numerical results obtained using Algorithm 5.3. The example is a non-
physical problem with domain Q = [0, 1] x [0, 1] and a specified solution. The function b was chosen
to be the exact solution u. The right hand side functions in (2.5)-(2.8) were appropriately given so
that the exact solution was

sin(ra)y(y — 1)
sin(z) (x — 1)y cos(my/2)

p = cos(2m) y(y — 1)

o =2aD(u)

The parameters A, a and a in the equations were chosen as 1, 0.5 and 0, respectively. We used the
Taylor-Hood element for (u,p) and discontinuous linear polynomials for o. Although we assumed
that div u = 0 for analysis, it turns out that the div free condition is not necessary for the numerical
experiments. Note that the example we chose has the homogeneous boundary condition on 92, but
div u # 0.

The domain Q was divided into two subdoamins ©; = [0,1/2] x [0,1] and Q2 = [1/2,1] x [0,1]
For comparison of accuracy, the solution to (4.1)-(4.3) was first computed in each subdomain using
the exact Neumann and Dirichlet boundary data on the interface I'y. See Table 1 for errors and
convergence rates. Then we computed solutions by Algorithm 5.1 using different values of €. Errors
for u and o are presented in Table 2. First, note that the rates presented in Table 1 are better than
the theoretical result in (2.18), which is not unusual in simulation of viscoelastic fluid flows with
a known exact solution [5, 6, 12]. Although the scaling e = Ch? is suggested for an optimal error
estimate in (4.7), the actual optimal scaling may be € = Ch* based on the computed rates in Table
1, and this is partially verified by results in Table 2. For example, for hg = 1/4, ¢y should be as small
as 1/80 so that errors are similar to those errors in Table 1. When h is reduced by half (h; = 1/8),
the e value should be as small as e; = 1/1300 (= 1/16 of €), as shown in Table 2. Therefore, we
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expect € needs to be as small as 1/20480 when h = 1/16, which we could not check as the maximum
number of iterations were exceeded.

[ h [ [lu—uffs [rate | Ju—ub]i [rate | o —clllo | rate [ o — b0 | rate |
1/4 ][ 3.337- 102 3.083-1077 1.862- 1072 2.206 - 1077
1/8 || 7629-107° | 2.1 [ 7.232-10°% | 2.1 [ 4570-1077 | 2.0 | 5.065-107° | 2.1
1/16 [ 1.836-107° | 21 [ 1.776-107° | 2.0 | 1.187-107° | 1.9 | 1.265-107° | 2.0

Table 1: Errors by exact interface data

[ b [ e TJiter.no [ Ju—ufli [ Ju—u}yi [ [lo—alo [ [lo—0cBlo |

1/4 1/20 13 4.778-1072 ] 4.580-1077 | 2.558 - 102 | 2.401-10 2
1/40 26 3.798-1072 | 3.,512-1072 | 2.177-1072 | 2.272-1072

1/60 38 3.497-1072 | 3.200-1072 | 2.059-107% | 2.236- 1072

1/80 48 3.391-1072 | 3.094-1072 | 2.009-1072 | 2.221-1072

1/100 54 3.398-1072 | 3.084-1072 | 1.985-1072 | 2.215-1072

1/150 77 3.387-1072 | 3.087-1072 | 1.960-1072 | 2.211-1072

1/200 101 3.392-1072 | 3.109-1072 | 1.952-1072 | 2.221-1072

1/500 257 3.398-1072 | 3.179-1072 | 1.946-10"2 | 2.216-10"2

1/8 1/20 14 4.053-107% | 4.208-1077 | 1.999-10"% | 1.130- 102
1/60 34 2.184-1072 | 2.090-1072 | 1.018-102 | 6.999-1073

1/100 66 1.531-107% | 1.458-1072 | 7.537-1072 | 5.994-1073

1/200 134 1.089-1072 | 9.982-107% | 5.675-107% | 5.391-1073

1/400 298 8.492-1072 | 7.796- 1073 | 4.924-1073 | 5.162-1073

1/500 404 7.996-1072 | 7.412-107% | 4.812-107% | 5.127-107®

1/1000 704 7.997-1073 | 7.282-107% | 4.687-107% | 5.103-1073

1/1300 973 7.696-1072 | 7.122-1073 | 4.655-10% | 5.090-107?

1/16 [ 1/10000 | 8000 | 2.414-10"° | 2.063-10"% | 1.238-10"° | 1.297-10 7
1/20000 | 15000 | 2.830-107° | 2.310-107° | 1.274-1073 | 1.322-1073

Table 2: Errors by various e values

7 Conclusions and Future Work

We investigated a non-overlapping domain decomposition algorithm for the linearized viscoelastic
fluid equations. The domain decomposition algorithm is presented as a discrete variational formu-
lation for which we analyzed for the existence and uniqueness of a solution. Convergence of the
domain decomposition solution both with respect to the grid size h and with respect to the pa-
rameter € was also proved. We also presented some preliminary computational results. However,
to make the method more practical, further studies are needed, mostly in the realm of efficient
implementation. For example, convergence of algorithm 5.1 could be accelerated by introducing a
relaxation parameter in the boundary integrals of the momentum equations as shown in [18]. A
similar technique may be effective in handling stress boundary conditions on the interface. We will
also study domain decomposition methods designed for viscoelastic fluid flows with other type of
constitutive equations, for instance, fluids having a power law constitutive equation.
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