Moduli stacks of local Hecke representations.

Joint project w/ Toby Gee

Idea: To make moduli spaces of p-odori & mod-p reps. of G_k where k/p is finite.

Murae, et. al.: Formal moduli of such reps. We want actual algebraic moduli. (as p really varies in families.)

One motivation: Reduction of crystalline Hecke representations.

If $k = \mathbb{Q}_p$, p: $G_{\mathbb{Q}_p} \to GL_2(\mathbb{Q}_p)$ etc. and reps.

If H.T weights 0, $k - 1$, dot = cycle $1 - k$.

p is (essentially) classified by $a_P = h$. of crystalline Frob.

Formed \mathcal{M}/\mathbb{Z}_p.

Red. mod $a_P \to \overline{a_P}$.

$2 \leq k \leq p$

$a_P \to \overline{a_P}$.

$k = p + 1$

coordinate here in (a_P/p).

Inside are γ (the cycle $1 - m$) $\mapsto 5^{m-1}F^2$

Formed \mathcal{M}/\mathbb{Z}_p blow up at a pt in the special fibre.
Goal: For any K/Q_p finite, type r, integer h, to construct a formal abelian stack \mathcal{X}_r^h (dep. fin. type).

\[\mathcal{X}_r^h \]

\[\Sigma \]

$\mathbb{F}_p - \text{pts} \leftrightarrow p : G_K \to G_{L_n}(\mathbb{F}_p)$ s.t.

$p \otimes \rho \in \text{pol. semi-stable}$

$k \in \{0, h\}$ and type r.

And also construct \mathcal{X} a finite type alg. stack $/\mathbb{F}_p$ s.t.

$\mathbb{F}_p - \text{pts of } \mathcal{X} \leftrightarrow \overline{\rho} : G_K \to G_{L_n}(\mathbb{F}_p)$ and
gives an embedding $\mathcal{X}_{\mathbb{F}_p} \hookrightarrow \mathcal{X}$ whose image is a union of components s.t. the specialization map

$\mathcal{X}_{\mathbb{F}_p}(\mathbb{F}_p) \to \mathcal{X}_{\text{red}}(\mathbb{F}_p) \hookrightarrow \mathcal{X}(\mathbb{F}_p)$

in $\rho \mapsto \overline{\rho}$.

and K/Q_p unram.

If h is small, one can make component of \mathcal{X} as moduli space of \mathbb{F}_p-modules. (Daniel le Thése)

If h isn't small, this doesn't work.

If $K = Q_p$, G_{L_n}, $h = p-1$: fix det trivial, then the reduction $\overline{\rho}$ are in the representation family

\[
\begin{pmatrix}
0 & * \\
0 & \text{unram}_p
\end{pmatrix}
\]

So we have the following picture:
F-L. Theory:

produce,

so the functor to Deloc reps is not faithful.

As we need to glue them somehow along this line.

We have good progress towards the construction of \mathbb{A}, \mathbb{A}, etc.
The details are worked out so far after replacing K by K_{∞}, where $K_{\infty} = \bigcup_{n \geq 1} K(\pi_n)$.

This is enough to handle the case of \mathbb{A}_l.

To get the general case, we will have to add $\overline{\mathbb{Q}}$-structure

following Tony Liu.

Once K_{∞}, Fontaine-Berger-Kisin give a nice integral \mathbb{Q}-adic

Hodge theory, which Pappas-Rapoport put in moduli.

Work over \mathbb{Z}/p^2, a fixed. Fix d.

$$\mathbb{Z}_{(p)} \to \mathbb{R}$$

$M \to M[1]$.

Moduli stack of K-modules

higher \mathbb{A}.

A given \mathbb{Z}/p-et locally free \mathbb{Q}_d.

$M / \mathbb{A}_{et} \otimes \mathbb{Q}_d$.
$G^m \rightarrow M$

cornered killed by E_{sh}.

Build \mathcal{F} as the union of the image of these maps.

We need to construct these images as objects in alg. geo.

杈の more they exist at a point in a case by case basis

What we have is

\[G^m \rightarrow \mathcal{R} \] is proper

\[\mathcal{R} \] is a stack

\[\mathcal{R} \] is huge, $\Delta : \mathcal{R} \rightarrow \mathcal{R} \times \mathcal{R}$ is representable, finite type.

of fppf type / \mathbb{Z}/p^2

\mathcal{R} admits a neutral map of each fppf pt.

Set-Disp: $\mathcal{F} \xrightarrow{\mathcal{S}} \mathcal{F}$ stack / Set

alg. stack \mathcal{R}, $\Delta : \mathcal{R} \rightarrow \mathcal{R} \times \mathcal{R}$ is rep. by alg. space

aff. for

G has neutral map at each fppf

Define: "scheme-theoretic ring" of \mathcal{S}, $\mathcal{Z} \rightarrow \mathcal{F}$ substack

local f is

* of A is "Artinian", $\mathcal{Z}(A) \subseteq \mathcal{F}(A)$ and the maps \mathcal{F}

Spec $A \rightarrow \mathcal{F}$ which factor as $\text{Spec } A \rightarrow \text{Spec } B \rightarrow \mathcal{F}$ where

- B is complete local \mathbb{N}eth / \mathcal{S}.
- \mathcal{F} is $\text{sch } \mathcal{S}$, \mathcal{F}-constant

Spec B

* of T is finite type, $\mathcal{Z}(T) \rightarrow \mathcal{F}(T)$ to be maps

s.t. $\text{Spec } \mathcal{O}_T/\mathfrak{m}_T \rightarrow \mathcal{F}$ lie in \mathcal{Z}

\[A \otimes T \] all T a finite type pt in T
of T/S is affine, write $T = \lim T_i$ and define $Z(T) = \bigcup_i Z(T_i) \rightarrow T_0 \rightarrow T(1)$.

Thm: If $\pi : X \rightarrow T$ is proper, and X is an alg.

- Stack of fin. type $/S$, $\Delta : T \rightarrow T \times T$ is repre. by alg. space X.
- T admits versal ring at each fin. pt.
- Then Z admits effective versal ring at fin. pt., then Z is an alg. stack $\text{fin} \times \text{type} / S$.