On Saito-Kurokawa Lifts

Dania Zantout

Department of Mathematical Sciences
Clemson University

December 03, 2011
Recall

\[\iota_n = \begin{pmatrix} 0_n & 1_n \\ -1_n & 0_n \end{pmatrix}. \]

\[\text{GSp}_{2n} = \{ g \in \text{GL}_{2n} : {}^t g \iota_n g = \mu_n(g) \iota_n, \quad \mu_n(g) \in \text{GL}_1 \} \]

and

\[\text{Sp}_{2n} = \ker(\mu_n) \]

Dania Zantout

On Saito-Kurokawa Lifts
Recall

$$\iota_n = \begin{pmatrix} 0_n & 1_n \\ -1_n & 0_n \end{pmatrix}.$$

$$\text{GSp}_{2n} = \{ g \in \text{GL}_{2n} : {}^t g \iota_n g = \mu_n(g) \iota_n, \quad \mu_n(g) \in \text{GL}_1 \}$$

and

$$\text{Sp}_{2n} = \ker(\mu_n)$$

Siegel upper half space of degree n is given by

$$\mathcal{H}^n = \{ Z \in \text{Mat}_n(\mathbb{C}) : {}^t Z = Z, \text{Im}(Z) > 0 \}.$$
Action of $\text{GSp}_{2n}^+(\mathbb{R})$ on \mathfrak{h}^n

$\text{GSp}_{2n}^+(\mathbb{R}) = \{ \gamma \in \text{GSp}_{2n}^+(\mathbb{R}) : \mu_n(\gamma) > 0 \}$ action on \mathfrak{h}^n is given by

$$
\gamma Z = (a_\gamma Z + b_\gamma)(c_\gamma Z + d_\gamma)^{-1}
$$

for $\gamma = \begin{pmatrix} a_\gamma & b_\gamma \\ c_\gamma & d_\gamma \end{pmatrix} \in \text{GSp}_{2n}^+(\mathbb{R})$ and $Z \in \mathfrak{h}^n$.

Dania Zantout
On Saito-Kurokawa Lifts
For $M \geq 1$, the congruence subgroup of $\operatorname{Sp}_{2n}(\mathbb{Z})$ is defined as:

$$
\Gamma_0^{(n)}(M) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{Sp}_{2n}(\mathbb{Z}) : c \equiv 0 \pmod{M} \right\}.
$$

Note this is the natural generalization of $\Gamma_0(M) \subset \operatorname{SL}_{2}(\mathbb{Z})$ to this setting.
For $M \geq 1$,

Definition

\[\Gamma_0^{(n)}(M) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{Sp}_{2n}(\mathbb{Z}) : c \equiv 0 \pmod{M} \right\}. \]

Note this is the natural generalization of $\Gamma_0(M) \subset \text{SL}_2(\mathbb{Z})$ to this setting.
Action of $\text{GSp}^+_2(\mathbb{R})$ on functions $F : \mathfrak{h}^n \to \mathbb{C}$

For $\gamma \in \text{GSp}^+_2(\mathbb{R})$ and $Z \in \mathfrak{h}^n$,

$$j(\gamma, Z) = \det(c_{\gamma}Z + d_{\gamma}).$$

Let κ be a positive integer. Given a function $F : \mathfrak{h}^n \to \mathbb{C}$, we set

$$(F|_{\kappa\gamma})(Z) = \mu_n(\gamma)^{n\kappa/2}j(\gamma, Z)^{-\kappa}F(\gamma Z).$$
Action of \(\text{GSp}_{2n}^+(\mathbb{R}) \) on functions \(F : \mathfrak{h}^n \to \mathbb{C} \)

For \(\gamma \in \text{GSp}_{2n}^+(\mathbb{R}) \) and \(Z \in \mathfrak{h}^n \),

\[
j(\gamma, Z) = \det(c_\gamma Z + d_\gamma).
\]

Let \(\kappa \) be a positive integer. Given a function \(F : \mathfrak{h}^n \to \mathbb{C} \), we set

\[
(F|_{\kappa \gamma})(Z) = \mu_n(\gamma)^{\kappa/2} j(\gamma, Z)^{-\kappa} F(\gamma Z).
\]

Definition

We say such an \(F \) is a Siegel modular form of degree \(n \), weight \(\kappa \), and level \(\Gamma \) if \(F \) is a holomorphic function and satisfies

\[
(F|_{\kappa \gamma})(Z) = F(Z)
\]

for all \(\gamma \in \Gamma \).

The space of Siegel modular forms of weight \(\kappa \) and level \(\Gamma \) is \(M_\kappa(\Gamma) \).
If F is a Siegel modular form of degree $n > 1$, it has a Fourier expansion of the form

$$F(Z) = \sum_{T \in S_n^{\geq 0}(\mathbb{Z})} a_F(T)e(\operatorname{Tr}(TZ))$$

where $S_n^{\geq 0}(\mathbb{Z})$ is the semi-group of nxn positive semi-definite half-integral symmetric matrices.
If F is a Siegel modular form of degree $n > 1$, it has a Fourier expansion of the form

$$F(Z) = \sum_{T \in S_{n}^{\geq 0}(\mathbb{Z})} a_F(T)e(\text{Tr}(TZ))$$

where $S_{n}^{\geq 0}(\mathbb{Z})$ is the semi-group of $n \times n$ positive semi-definite half-integral symmetric matrices.

Definition

F is a **Siegel cusp form** ($F \in S_{\kappa}(\Gamma)$) if and only if $a_F(T) = 0$ when $\det T = 0$ and

$$F(Z) = \sum_{T \in S_{n}^{\geq 0}(\mathbb{Z}), T > 0} a_F(T)e(\text{Tr}(TZ)).$$
Consider the Siegel upper half plane \mathfrak{h}^2 of degree 2 and the following form

Definition

Let $t \geq 1$ be an integer and let

$$P_t = \text{diag}(1, t) = \begin{pmatrix} 1 & 0 \\ 0 & t \end{pmatrix}$$

and we consider the skew-symmetric bilinear form written in block form

$$J_t = \begin{pmatrix} 0 & P_t \\ -P_t & 0 \end{pmatrix}$$
The Paramodular Group of level $t \geq 1$

Definition

The Paramodular Group of level t

$$\Gamma[t] = \text{Sp}_4(\mathbb{Q}) \cap \left\{ \begin{pmatrix} \mathbb{Z} & t\mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\ \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & t^{-1}\mathbb{Z} \\ \mathbb{Z} & t\mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\ t\mathbb{Z} & t\mathbb{Z} & t\mathbb{Z} & \mathbb{Z} \end{pmatrix} \right\}$$
The Paramodular Group of level $t \geq 1$

Definition

The Paramodular Group of level t

$$\Gamma[t] = \text{Sp}_4(\mathbb{Q}) \cap \left\{ \begin{pmatrix} \mathbb{Z} & t\mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\ \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & t^{-1}\mathbb{Z} \\ \mathbb{Z} & t\mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\ t\mathbb{Z} & t\mathbb{Z} & t\mathbb{Z} & \mathbb{Z} \end{pmatrix} \right\}$$

Note that for $t = 1$ this group is the Siegel Modular group $\text{Sp}_4(\mathbb{Z})$.

Dania Zantout

On Saito-Kurokawa Lifts
The quotient space

\[\mathfrak{h}^2 / \Gamma[t] \]

is the moduli space of abelian surfaces \(S \) with polarization of type \((1, t)\) (conductor \(t \)).
The quotient space
\[\mathbb{H}^2 / \Gamma[t] \]
is the moduli space of abelian surfaces \(S \) with polarization of type \((1, t)\) (conductor \(t \)).

We may write \(S \) as a two dimensional complex torus
\[\mathbb{C}^2 / L \]
where
\[L = \mathbb{Z}\mathbb{Z}^2 \oplus P_t\mathbb{Z}^2 \]
\(Z \in \mathbb{H}^2 \) and \(P_t = \text{diag}(1, t) \).

The polarization with respect to this basis is given by the form \(J_t \).
Here are a couple of reasons paramodular levels are interesting:
Here are a couple of reasons paramodular levels are interesting:

1. Paramodular levels are the “right” levels to work with in terms of a newform theory. Roberts and Schmidt have a local newform theory for paramodular levels.
Here are a couple of reasons paramodular levels are interesting:

1. Paramodular levels are the “right” levels to work with in terms of a newform theory. Roberts and Schmidt have a local newform theory for paramodular levels.

2. The following conjecture of Brumer and Kramer:
Here are a couple of reasons paramodular levels are interesting:

1. Paramodular levels are the “right” levels to work with in terms of a newform theory. Roberts and Schmidt have a local newform theory for paramodular levels.

2. The following conjecture of Brumer and Kramer:

Conjecture

There is a one-to-one correspondence between isogeny classes of abelian surfaces A/\mathbb{Q} of conductor t with $\text{End}_\mathbb{Q}(A) = \mathbb{Z}$ and weight 2 and level $\Gamma[t]$ newforms F with rational eigenvalues, not in the span of Gritsenko lifts, such that $L(s, A) = L(s, F, \text{spin})$.
The Jacobi group

Let Γ be a congruence subgroup of $\text{SL}_2(\mathbb{Z})$. The Jacobi group $\Gamma^J := \Gamma \rtimes \mathbb{Z}^2$ is

$$\Gamma^J := \{ (M, X) : (M, X)(M', X') = (MM', XM' + X') \}$$

for all $M, M' \in \Gamma$ and $X = [\lambda, \mu], X' = [\alpha, \beta] \in \mathbb{Z}^2$.
Let Γ be a congruence subgroup of $\text{SL}_2(\mathbb{Z})$.

The Jacobi group $\Gamma^J := \Gamma \rtimes \mathbb{Z}^2$ is

$$\Gamma^J := \{(M, X) : (M, X)(M', X') = (MM', XM' + X')\}$$

for all $M, M' \in \Gamma$ and $X = [\lambda, \mu], X' = [\alpha, \beta] \in \mathbb{Z}^2$.

If $\Gamma = \text{SL}_2(\mathbb{Z})$, $\text{SL}_2(\mathbb{Z})^J$ is called the full Jacobi group.
The Jacobi group

Let Γ be a congruence subgroup of $SL_2(\mathbb{Z})$. The Jacobi group $\Gamma^J := \Gamma \ltimes \mathbb{Z}^2$ is

$$\Gamma^J := \{ (M, X) : (M, X)(M', X') = (MM', XM' + X') \}$$

for all $M, M' \in \Gamma$ and $X = [\lambda, \mu], X' = [\alpha, \beta] \in \mathbb{Z}^2$.

If $\Gamma = SL_2(\mathbb{Z})$, $SL_2(\mathbb{Z})^J$ is called the the full Jacobi group.

The space of Jacobi cusp forms of weight κ, index t and level $\Gamma_0(M)^J$ (resp $SL_2(\mathbb{Z})^J$) is $J^c_{\kappa, t}(\Gamma_0(M)^J)$ (resp. $J^c_{\kappa, t}$).
Let $f \in S_{2\kappa-2}^{\text{new}}(\Gamma_0(m))$ be a newform. There are essentially two classical ways to construct a Siegel modular form F_f associated to f (referred to as a Saito-Kurokawa lift of f):
Let $f \in S_{2\kappa-2}^{\text{new}}(\Gamma_0(m))$ be a newform. There are essentially two classical ways to construct a Siegel modular form F_f associated to f (referred to as a Saito-Kurokawa lift of f):

1. If κ is even, one has a lifting $F_f \in S_{\kappa}(\Gamma_0^2(m))$ due to numerous people: Manickham-Ramakrishnan-Vasudevan, Piatetski-Shapiro, Schmidt, Skinner-Urban.
Let $f \in S_{2\kappa - 2}^{\text{new}}(\Gamma_0(m))$ be a newform. There are essentially two classical ways to construct a Siegel modular form F_f associated to f (referred to as a Saito-Kurokawa lift of f):

1. If κ is even, one has a lifting $F_f \in S_{\kappa}(\Gamma_0^{(2)}(m))$ due to numerous people: Manickham-Ramakrishnan-Vasudevan, Piatetski-Shapiro, Schmidt, Skinner-Urban.

2. If $f \in S_{2\kappa - 2}^{\text{new},-}(\Gamma_0(m))$, then one has a lifting $F_f \in S_{\kappa}(\Gamma[m])$ due to Skoruppa-Zagier and Gritsenko.
Schmidt has given a representation theoretic construction of each of the classical Saito-Kurokawa lifts assuming m is odd and square-free.
Schmidt has given a representation theoretic construction of each of the classical Saito-Kurokawa lifts assuming m is odd and square-free.

His construction is local in nature, so one can form many Saito-Kurokawa lifts from a single f.
Schmidt has given a representation theoretic construction of each of the classical Saito-Kurokawa lifts assuming m is odd and square-free.

His construction is local in nature, so one can form many Saito-Kurokawa lifts from a single f.

In this talk we will give a precise statement about “mixed-level” Saito-Kurokawa lifts and outline a classical construction of such liftings.
Definition

Let t and $M \in \mathbb{N}$.

$$\Gamma_M[t] = \text{Sp}_4(\mathbb{Q}) \cap \left\{ \begin{pmatrix} \mathbb{Z} & t\mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\ \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & t^{-1}\mathbb{Z} \\ M\mathbb{Z} & Mt\mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\ Mt\mathbb{Z} & Mt\mathbb{Z} & t\mathbb{Z} & \mathbb{Z} \end{pmatrix} \right\}$$
Definition

Let t and $M \in \mathbb{N}$.

$$\Gamma_{M[t]} = \text{Sp}_4(\mathbb{Q}) \cap \left\{ \begin{pmatrix} \mathbb{Z} & t\mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\ \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & t^{-1}\mathbb{Z} \\ M\mathbb{Z} & Mt\mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\ Mt\mathbb{Z} & Mt\mathbb{Z} & t\mathbb{Z} & \mathbb{Z} \end{pmatrix} \right\}$$

1. The group $\Gamma_{M[t]}$ has mixed levels in it; it is of paramodular level t and of congruence level M.
Definition

Let t and $M \in \mathbb{N}$.

The group $\Gamma_M[t]$ has mixed levels in it; it is of paramodular level t and of congruence level M.

For $M = 1$, $\Gamma_M[t] = \Gamma[t]$; hence we can say that the paramodular group $\Gamma[t]$ is of congruence level 1.
Definition

Let t and $M \in \mathbb{N}$.

$$\Gamma_M[t] = \text{Sp}_4(\mathbb{Q}) \cap \left\{ \begin{pmatrix}
\mathbb{Z} & t\mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\
\mathbb{Z} & \mathbb{Z} & \mathbb{Z} & t^{-1}\mathbb{Z} \\
M\mathbb{Z} & Mt\mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\
Mt\mathbb{Z} & Mt\mathbb{Z} & t\mathbb{Z} & \mathbb{Z}
\end{pmatrix} \right\}$$

1. The group $\Gamma_M[t]$ has mixed levels in it; it is of paramodular level t and of congruence level M.

2. For $M = 1$, $\Gamma_M[t] = \Gamma[t]$; hence we can say that the paramodular group $\Gamma[t]$ is of congruence level 1.

3. Similarly, for $t = 1$, the group $\Gamma_M[t]$ is the congruence subgroup $\Gamma_0^{(2)}(M)$ of $\text{Sp}_4(\mathbb{Z})$.
Let $t, M \in \mathbb{N}$ be odd square-free such that $\gcd(M, t) = 1$. Fix f a newform in $S_{2\kappa-2}^{\text{new}}(tM)$.

Depending on certain choices of a set S of places p with condition on the Atkin-Lehner eigenvalue at p, the possible Saito-Kurokawa lifts that f can have are the following:

- If $f \in S_{2\kappa-2}^{\text{new, -}}(\Gamma_0(Mt))$ then $F_f \in S_{\kappa}(\Gamma[tM]).$
- If κ is even
 1. $F_f \in S_{\kappa}(\Gamma_M[t]).$
 2. $F_f \in S_{\kappa}(\Gamma_t[M]).$
 3. $F_f \in S_{\kappa}(\Gamma_0^{(2)}(tM)).$
A couple definitions before the main theorem

Define

\[S_{2\kappa-2}^t(\Gamma_0(Mt)) = \{ f \in S_{2\kappa-2}(\Gamma_0(Mt)) : f|_{W_t} = (-1)^\kappa f \}. \]
A couple definitions before the main theorem

Define

\[S_{2\kappa-2}^t(\Gamma_0(Mt)) = \{ f \in S_{2\kappa-2}(\Gamma_0(Mt)) : f|_{W_t} = (-1)^\kappa f \}. \]

Note that in the case \(M = 1 \) this coincides with \(S_{2\kappa-2}(\Gamma_0(t)) \).
Define

\[S^t_{2\kappa-2}(\Gamma_0(Mt)) = \{ f \in S_{2\kappa-2}(\Gamma_0(Mt)) : f|W_t = (-1)^\kappa f \}. \]

Note that in the case \(M = 1 \) this coincides with \(S^-_{2\kappa-2}(\Gamma_0(t)) \).

Recall that for \(F \in S_\kappa(\Gamma) \) a Siegel eigenform, the Spinor \(L \)-function is defined by

\[L(s, F, \text{spin}) = \zeta(2s - 2k + 4) \sum_{n \geq 1} \lambda_F(n)n^{-s}. \]
(Brown, Z.) Let M and t be odd square-free integers, $\gcd(M, t) = 1$, $\kappa \geq 2$ an even integer, and $f \in S_{2\kappa-2}^{t,\text{new}}(\Gamma_0(Mt))$ a newform. Let ϵ_p be the eigenvalue of f under the Atkin-Lehner involution at p and let η_p be the Atkin-Lehner involution of degree 2 at p. There exists an eigenform $F_f \in S_{\kappa}(\Gamma_M[t])$, unique up to constant multiples, whose Spinor L-function is given by

$$L(s, F_f, \text{spin}) = \left(\prod_{\substack{p \mid M \\ \epsilon_p = -1}} (1 - p^{-s+\kappa-1}) \right) \zeta(s-\kappa+1)\zeta(s-\kappa+2)L(s, f).$$

Moreover, for each $p \mid t$ we have $\eta_p F_f = \epsilon_p F_f$ and for each $p \mid M$ we have $\eta_p F_f = F_f$.

Dania Zantout

On Saito-Kurokawa Lifts
We can produce the lifting completely classically without using representation theory. This will be important for future applications.
1. We can produce the lifting completely classically without using representation theory. This will be important for future applications.

2. We can construct the lifting without the requirement M and t be square-free. We only require square-free in order to get uniqueness (it won’t be unique in general) as well as to get the correct L-functions.
We can produce the lifting completely classically without using representation theory. This will be important for future applications.

We can construct the lifting without the requirement M and t be square-free. We only require square-free in order to get uniqueness (it won’t be unique in general) as well as to get the correct L-functions.

We use representation theoretic methods to get uniqueness and the result on the L-functions, which is why we require odd and square-free.
Outline of the proof

We construct F_f via a series of liftings:

1. First we lift from $S_{	ext{new}}^\kappa - 2(\Gamma_0(M))$ to $S_{\text{Koh}}^\kappa - 1/2(\Gamma_0(4M))$ via the Shintani lifting.

2. Next we lift from $S_{\text{Koh}}^\kappa - 1/2(\Gamma_0(M))$ to $J_{c, t}(\Gamma_0(M))$.

3. Finally, we generalize Gritsenko's lifting to get a map $J_{c, t}(\Gamma_0(M))$ to $S^\kappa(\Gamma_M[t])$. This is the focus of the remainder of the talk.
We construct F_f via a series of liftings:

1. First we lift from $S_{2\kappa-2}^{\text{new}}(\Gamma_0(Mt))$ to $S_{\kappa-1/2}^{\text{Koh}}(\Gamma_0(4Mt))$ via the Shintani lifting.

Dania Zantout
On Saito-Kurokawa Lifts
Outline of the proof

We construct F_f via a series of liftings:

1. First we lift from $S_{2\kappa-2}^{\text{new}}(\Gamma_0(Mt))$ to $S_{\kappa-1/2}^{\text{Koh}}(\Gamma_0(4Mt))$ via the Shintani lifting.

2. Next we lift from $S_{\kappa-1/2}^{\text{Koh}}(\Gamma_0(Mt))$ to $J^c_{\kappa,t}(\Gamma_0(M)^J)$.

We construct F_f via a series of liftings:

1. First we lift from $S_{2\kappa-2}^{\text{new}}(\Gamma_0(Mt))$ to $S_{\kappa-1/2}^{\text{Koh}}(\Gamma_0(4Mt))$ via the Shintani lifting.

2. Next we lift from $S_{\kappa-1/2}^{\text{Koh}}(\Gamma_0(Mt))$ to $J_{\kappa,t}^c(\Gamma_0(M)^J)$.

3. Finally, we generalize Gritsenko’s lifting to get a map $J_{\kappa,t}^c(\Gamma_0(M)^J)$ to $S_\kappa(\Gamma_M[t])$. This is the focus of the remainder of the talk.
Outline of the proof

We construct F_f via a series of liftings:

1. First we lift from $S_{2\kappa-2}^{new}(\Gamma_0(Mt))$ to $S_{\kappa-1/2}^{Koh}(\Gamma_0(4Mt))$ via the Shintani lifting.

2. Next we lift from $S_{\kappa-1/2}^{Koh}(\Gamma_0(Mt))$ to $J_{\kappa,t}^c(\Gamma_0(M)^J)$.

3. Finally, we generalize Gritsenko’s lifting to get a map $J_{\kappa,t}^c(\Gamma_0(M)^J)$ to $S_{\kappa}(\Gamma_M[t])$. This is the focus of the remainder of the talk.
Fourier Series of a Siegel Modular Form of degree 2

For $Z = \begin{pmatrix} \tau & z \\ z & \tau' \end{pmatrix} \in \mathfrak{h}^2$ we write it as a row vector (τ, z, τ'), $\tau, \tau' \in \mathfrak{h}^1$, $z \in \mathbb{C}$, and $\text{Im}(z)^2 < \text{Im}(\tau) \text{Im}(\tau')$.

Dania Zantout

On Saito-Kurokawa Lifts
For $Z = \begin{pmatrix} \tau & z \\ z & \tau' \end{pmatrix} \in \mathfrak{h}^2$ we write it as a row vector (τ, z, τ'), $\tau, \tau' \in \mathfrak{h}^1$, $z \in \mathbb{C}$, and $\text{Im}(z)^2 < \text{Im}(\tau) \text{Im}(\tau')$.

We write $F(\tau, z, \tau')$ instead of $F(Z)$.
Fourier Series of a Siegel Modular Form of degree 2

For $Z = \begin{pmatrix} \tau & z \\ z & \tau' \end{pmatrix} \in \mathfrak{h}^2$ we write it as a row vector (τ, z, τ'), $\tau, \tau' \in \mathfrak{h}^1$, $z \in \mathbb{C}$, and $\text{Im}(z)^2 < \text{Im}(\tau) \text{Im}(\tau')$.

We write $F(\tau, z, \tau')$ instead of $F(Z)$.

For every $T = \begin{pmatrix} n & r/2 \\ r/2 & m \end{pmatrix} \in S_{2}^{>0}(\mathbb{Z})$, we write $a_F(n, r, m)$ for $a_F(T)$ where $n, r, m \in \mathbb{Z}$, $n, m \geq 0$ and $r^2 \leq 4mn$.
Fourier Series of a Siegel Modular Form of degree 2

- For \(Z = \begin{pmatrix} \tau & z \\ z & \tau' \end{pmatrix} \in \mathfrak{h}^2 \), we write it as a row vector \((\tau, z, \tau')\), \(\tau, \tau' \in \mathfrak{h}^1, z \in \mathbb{C}\), and \(\text{Im}(z)^2 < \text{Im}(\tau) \text{Im}(\tau')\).

- We write \(F(\tau, z, \tau') \) instead of \(F(Z) \).

- For every \(T = \begin{pmatrix} n & r/2 \\ r/2 & m \end{pmatrix} \in S_{2}^{>0}(\mathbb{Z}) \), we write \(a_F(n, r, m) \) for \(a_F(T) \) where \(n, r, m \in \mathbb{Z}, n, m \geq 0 \) and \(r^2 \leq 4mn \).

The Fourier expansion of \(F \in S_{\kappa}(\Gamma) \) takes the form

\[
F(\tau, z, \tau') = \sum_{m,n,r \in \mathbb{Z}, m,n,4mn-r^2>0} a_F(n, r, m)e(n\tau + rz + m\tau').
\]

Dania Zantout

On Saito-Kurokawa Lifts
Fourier-Jacobi expansion of Mixed Congruence level Paramodular forms

Let $F \in M_\kappa(\Gamma_M[t])$. We can rewrite its Fourier expansion as

$$F(\tau, z, \tau') = \sum_{m \geq 0} \phi_{mt}(\tau, z) e(2\pi i (mt)\tau').$$
Let $F \in M_\kappa(\Gamma_M[t])$. We can rewrite its Fourier expansion as

$$F(\tau, z, \tau') = \sum_{m \geq 0} \phi_{mt}(\tau, z) e(2\pi i (mt) \tau').$$

Theorem (Z.)

Let $F \in M_\kappa(\Gamma_M[t])$. For each m, its Fourier-Jacobi coefficient ϕ_{mt} belongs to $J_{\kappa,mt}(\Gamma_0(M)^J)$.

Dania Zantout

On Saito-Kurokawa Lifts
Fourier-Jacobi expansion of Mixed Congruence level Paramodular forms

Let $F \in M_{\kappa}(\Gamma_M[t])$. We can rewrite its Fourier expansion as

$$F(\tau, z, \tau') = \sum_{m \geq 0} \phi_{mt}(\tau, z) e(2\pi i (mt) \tau').$$

Theorem (Z.)

Let $F \in M_{\kappa}(\Gamma_M[t])$. For each m, its Fourier-Jacobi coefficient ϕ_{mt} belongs to $J_{\kappa,mt}(\Gamma_0(M)^J)$.

Corollary

Let $F \in M_{\kappa}(\Gamma[t])$. For each m, F’s Fourier-Jacobi coefficient ϕ_{mt} belongs to $J_{\kappa,mt}$.
Theorem (Z.)

Let ϕ_t be a Jacobi cusp form of weight $\kappa \geq 2$, index t, and level $\Gamma_0(M)^J$ with Fourier expansion

$$\phi_t(\tau, z) = \sum_{n, r \in \mathbb{Z}, n \geq 0 \atop 4nt > r^2} c(n, r)e(2\pi i(n\tau + rz)).$$

Then

$$G_M(\phi_t)(\tau, z, \tau') := \sum_{m \geq 1} V_m(\phi_t)e(2\pi imt\tau')$$

lies in $S_\kappa(\Gamma_M[t])$ where V_m is the index-shifting operator.
For $t = 1$ the lifting
\[\mathcal{G}_M : \phi_1 \rightarrow \mathcal{G}_M(\phi_1) \]
is the Maass lifting with level M
\[\mathcal{V} : J_{\kappa,1}^c(\Gamma_0(M)^J) \rightarrow S_{\kappa}(\Gamma_0^{(2)}(M)). \]
1. For $t = 1$ the lifting
 \[\mathcal{G}_M : \phi_1 \rightarrow \mathcal{G}_M(\phi_1) \]
 is the Maass lifting with level M
 \[\mathcal{V} : J_{\kappa,1}^c(\Gamma_0(M)^J) \rightarrow S_\kappa(\Gamma_0^{(2)}(M)). \]

2. For $M = 1$ the lifting
 \[\mathcal{G}_M : \phi_t \rightarrow \mathcal{G}_M(\phi_t) \]
 is Gritsenko’s lifting
 \[\mathcal{G} : J_{\kappa,t}^c \rightarrow S_\kappa(\Gamma[t]). \]
Let $F \in S_\kappa(\Gamma_M[t])$ have Fourier-Jacobi expansion

$$F(\tau, z, \tau') = \sum_{m \geq 1} \phi_{mt}(\tau, z)e(2\pi imt\tau').$$
Let $F \in S_\kappa(\Gamma_M[t])$ have Fourier-Jacobi expansion

$$F(\tau, z, \tau') = \sum_{m \geq 1} \phi_{mt}(\tau, z)e(2\pi i mt\tau').$$

One obtains an infinite family of liftings given by

$$S_\kappa(\Gamma_M[t]) \twoheadrightarrow \prod_{m \geq 1} J_{\kappa, mt}(\Gamma_0(M)^J) \twoheadrightarrow \prod_{m \geq 1} S_\kappa(\Gamma_M[mt])$$

$$F \twoheadrightarrow (\phi_{mt})_{m \geq 1} \twoheadrightarrow (\mathcal{G}(\phi_{mt}))_{m \geq 1}.$$

One can iterate this process indefinitely.
Corollary (Z.)

The map $G_M : J_{\kappa,t}^c(\Gamma_0(M)^J) \to S_\kappa(\Gamma_M[t])$ is injective.
Corollary (Z.)

The map $G_M : J_{\kappa, t}(\Gamma_0(M)^J) \to S_{\kappa}(\Gamma M[t])$ is injective.

The composition

$$J_{\kappa, t}(\Gamma_0(M)^J) \to S_{\kappa}(\Gamma M[t]) \to \prod_{m \in \mathbb{N}} J_{\kappa, mt}(\Gamma_0(M)^J) \to J_{\kappa, t}(\Gamma_0(M)^J)$$

is the identity.
The image of the lifting \mathcal{G}_M is the subspace of $S_\kappa(\Gamma_M[t])$ consisting of modular forms whose Fourier coefficients satisfy the following relations

$$a(n, r, mt) = \sum_{d | (n, r, m)} d^{\kappa-1} c\left(\frac{nm}{d^2}, \frac{r}{d}\right).$$

Note that for $t = 1$ these relations are exactly the Maass relations satisfied by the classical Saito-Kurokawa lifting of level $\Gamma_M(2)$.

We denote this subspace by $S^{*}_\kappa(\Gamma_M[t])$ to make it consistent with the Maass subspace notation.

Corollary (Z.)

We have the following isomorphism of vector spaces

$$J_c\kappa, t(\Gamma_0(M)) \cong S^{*}_\kappa(\Gamma_M[t]).$$
The image of the lifting G_M is the subspace of $S_κ(Γ_M[t])$ consisting of modular forms whose Fourier coefficients satisfy the following relations

$$a(n, r, mt) = \sum_{d \mid (n, r, m), \quad r^2 < 4nm, \quad (d, M) = 1} d^{κ-1} c\left(\frac{nm}{d^2}, \frac{r}{d}\right).$$

Note that for $t = 1$ these relations are exactly the Maass relations satisfied by the classical Saito-Kurokawa lifting of level $Γ_0^{(2)}(M)$.
The image of the lifting G_M is the subspace of $S_\kappa(\Gamma_M[t])$ consisting of modular forms whose Fourier coefficients satisfy the following relations

$$a(n, r, mt) = \sum_{d \mid (n, r, m) \atop r^2 < 4nmt \atop (d, M) = 1} d^{\kappa-1} c\left(\frac{nm}{d^2}, \frac{r}{d}\right).$$

Note that for $t = 1$ these relations are exactly the Maass relations satisfied by the classical Saito-Kurokawa lifting of level $\Gamma_0^{(2)}(M)$. We denote this subspace by $S_{\kappa}^*(\Gamma_M[t])$ to make it consistent with the Maass subspace notation.
The image of the lifting G_M is the subspace of $S_\kappa(\Gamma_M[t])$ consisting of modular forms whose Fourier coefficients satisfy the following relations

$$a(n, r, mt) = \sum_{d \mid (n, r, m), r^2 < 4nmt, (d, M) = 1} d^{\kappa - 1} c \left(\frac{nm}{d^2}, \frac{r}{d} \right).$$

Note that for $t = 1$ these relations are exactly the Maass relations satisfied by the classical Saito-Kurokawa lifting of level $\Gamma_0^{(2)}(M)$. We denote this subspace by $S^*_\kappa(\Gamma_M[t])$ to make it consistent with the Maass subspace notation.

Corollary (Z.)

We have the following isomorphism of vector spaces

$$J^c_{\kappa, t}(\Gamma_0(M)^J) \cong S^*_\kappa(\Gamma_M[t]).$$
Lemma (Z.)

The Mixed level lifting G_M is Hecke equivariant with respect to the Hecke algebra homomorphism $\iota : \mathbb{T}_{\mathbb{Z}}^{S,tM} \rightarrow \mathbb{T}_{\mathbb{Z}}^{J,tM}$ given by

$$\iota(T_S(p)) = -T_J(p) + p^{k-1} + p^{k-2} \quad (p \nmid tM),$$

$$\iota(T'_S(p)) = (p^{k-1} + p^{k-2})T_J(p) + 2p^{2k-3} + p^{2k-4} \quad (p \nmid tM).$$

Equivalently, the lifting G_M satisfies

$$(G_M(\phi)| T = G_M(\phi|\iota(T))$$

for any $T \in \mathbb{T}_{\mathbb{Z}}^{S,tM}$.
Some future directions

1. Study the algebraicity of special values of the L-functions of the mixed level liftings. In the case $M = 1$ or $t = 1$ this is known by work of Brown-Pitale.
Some future directions

1. Study the algebraicity of special values of the L-functions of the mixed level liftings. In the case $M = 1$ or $t = 1$ this is known by work of Brown-Pitale.

2. Show that these liftings can be put in a Hida family. The case of $M = 1$ and $t = 1$ is known by Guerzhoy, Kawamura, the case of $t = 1$ is known by work of Brown-Klosin and the case $M = 1$ is known by work of Skinner-Urban.
Some future directions

1. Study the algebraicity of special values of the L-functions of the mixed level liftings. In the case $M = 1$ or $t = 1$ this is known by work of Brown-Pitale.

2. Show that these liftings can be put in a Hida family. The case of $M = 1$ and $t = 1$ is known by Guerzhoy, Kawamura, the case of $t = 1$ is known by work of Brown-Klosin and the case $M = 1$ is known by work of Skinner-Urban.

3. Construct congruences between the lifted forms and non-lifted Siegel forms. This has applications to a further conjecture of Brumer-Kramer. Namely, if $M = 1$, they conjecture a congruence modulo p between a Saito-Kurokawa lift and a non-lifted form should correspond to a p-torsion point on the abelian surface given by the non-lifted form. So far their congruences are all computational.