In the theory of classical modular forms, there are cusp forms and Eisenstein series.
In the theory of classical modular forms, there are cusp forms and Eisenstein series.

It is always easy to construct Eisenstein series, but it is not that easy to construct cusp forms.
In the theory of classical modular forms, there are cusp forms and Eisenstein series. It is always easy to construct Eisenstein series, but it is not that easy to construct cusp forms. For a group G, which is not GL_2, it is a big problem to construct Maass cusp forms.
In the theory of classical modular forms, there are cusp forms and Eisenstein series. It is always easy to construct Eisenstein series, but it is not that easy to construct cusp forms. For a group G, which is not GL_2, it is a big problem to construct Maass cusp forms. In this talk, we discuss recent progress on how to construct cuspidal automorphic representations of classical groups by means of residues of Eisenstein series and the relations with Langlands functoriality and the theory of endoscopy.
Automorphic Descent method, first introduced by David Ginzburg, Stephen Rallis and David Soudry in 1998, is to construct certain cuspidal automorphic forms on classical groups in terms of these on general linear groups, which are related by the Langlands functoriality.
Automorphic Descent method, first introduced by David Ginzburg, Stephen Rallis and David Soudry in 1998, is to construct certain cuspidal automorphic forms on classical groups in terms of these on general linear groups, which are related by the Langlands functoriality.

In 2003, J.-Soudry developed the local theory, which refines the properties of the descent method. This has been further developed by J.-Nien-Qin (2010) and by J.-Soudry (2011).
Automorphic Descent method, first introduced by David Ginzburg, Stephen Rallis and David Soudry in 1998, is to construct certain cuspidal automorphic forms on classical groups in terms of these on general linear groups, which are related by the Langlands functoriality.

In 2003, J.-Soudry developed the local theory, which refines the properties of the descent method. This has been further developed by J.-Nien-Qin (2010) and by J.-Soudry (2011).

In 2008, Ginzburg extended the idea of the descent method to cover the endoscopy transfers for irreducible generic cuspidal automorphic representations. The complete proof is an on-going work of Ginzburg-J.-Soudry.

In this talk, I will discuss the general construction of endoscopy transfers and their relations with Arthur packets. This is my work in progress with Ginzburg and Soudry.
Automorphic Descent method, first introduced by David Ginzburg, Stephen Rallis and David Soudry in 1998, is to construct certain cuspidal automorphic forms on classical groups in terms of these on general linear groups, which are related by the Langlands functoriality.

In 2003, J.-Soudry developed the local theory, which refines the properties of the descent method. This has been further developed by J.-Nien-Qin (2010) and by J.-Soudry (2011).

In 2008, Ginzburg extended the idea of the descent method to cover the endoscopy transfers for irreducible generic cuspidal automorphic representations. The complete proof is an on-going work of Ginzburg-J.-Soudry.

In this talk, I will discuss the general construction of endoscopy transfers and their relations with Arthur packets. This is my work in progress with Ginzburg and Soudry.
G a reductive algebraic group defined over \(\mathbb{Q} \). For this talk, take \(G \) to \(\mathbb{Q} \)-split classical groups such as \(\text{GL}_n, \text{SO}_m, \text{Sp}_{2n} \).
Square-Integrable Automorphic Forms

- G a reductive algebraic group defined over \mathbb{Q}. For this talk, take G to \mathbb{Q}-split classical groups such as GL_n, SO_m, Sp_{2n}.

- For example,

\[\text{SO}_m := \{ g \in \text{GL}_m \mid ^t g J_m g = J_m, \det g = 1 \}, \]

with J_m defined inductively by $J_m := \begin{pmatrix} & 1 \\ J_{m-1} & \end{pmatrix}$.

G a reductive algebraic group defined over \mathbb{Q}. For this talk, take G to \mathbb{Q}-split classical groups such as GL_n, SO_m, Sp_{2n}.

For example,

$$\text{SO}_m := \{ g \in \text{GL}_m \mid ^t g J_m g = J_m, \det g = 1 \},$$

with J_m defined inductively by $J_m := \begin{pmatrix} 1 & \ 0 \\ J_{m-1} & 1 \end{pmatrix}$.

$G(\mathbb{Q})$ is a discrete subgroup of $G(\mathbb{A})$, where \mathbb{A} is the ring of adeles of \mathbb{Q}. The quotient $X_G := Z_G(\mathbb{A})G(\mathbb{Q}) \backslash G(\mathbb{A})$ has finite volume, where Z_G is the center of G.

Square-Integrable Automorphic Forms

Dihua Jiang University of Minnesota

Constructions of Automorphic Forms
Square-Integrable Automorphic Forms

- G a reductive algebraic group defined over \mathbb{Q}. For this talk, take G to \mathbb{Q}-split classical groups such as GL_n, SO_m, Sp_{2n}.

- For example,

$$\text{SO}_m := \{g \in \text{GL}_m \mid {}^t g J_m g = J_m, \det g = 1\},$$

with J_m defined inductively by $J_m := \begin{pmatrix} 1 \\ J_{m-1} \end{pmatrix}$.

- $G(\mathbb{Q})$ is a discrete subgroup of $G(\mathbb{A})$, where \mathbb{A} is the ring of adeles of \mathbb{Q}. The quotient $X_G := Z_G(\mathbb{A})G(\mathbb{Q}) \backslash G(\mathbb{A})$ has finite volume, where Z_G is the center of G.

- $L^2(X_G)$ denotes the space of functions: $\phi : X_G \to \mathbb{C}$ such that

$$\int_{Z_G(\mathbb{A})G(\mathbb{Q}) \backslash G(\mathbb{A})} |\phi(g)|^2 dg < \infty.$$
G a reductive algebraic group defined over \mathbb{Q}. For this talk, take G to \mathbb{Q}-split classical groups such as GL_n, SO_m, Sp_{2n}.

For example,

$$\text{SO}_m := \{g \in \text{GL}_m \mid {}^t g J_m g = J_m, \det g = 1 \},$$

with J_m defined inductively by $J_m := \begin{pmatrix} 1 \\ J_{m-1} \end{pmatrix}$.

$G(\mathbb{Q})$ is a discrete subgroup of $G(\mathbb{A})$, where \mathbb{A} is the ring of adeles of \mathbb{Q}. The quotient $X_G := Z_G(\mathbb{A})G(\mathbb{Q}) \backslash G(\mathbb{A})$ has finite volume, where Z_G is the center of G.

$L^2(X_G)$ denotes the space of functions: $\phi : X_G \to \mathbb{C}$ such that

$$\int_{Z_G(\mathbb{A})G(\mathbb{Q}) \backslash G(\mathbb{A})} |\phi(g)|^2 dg < \infty.$$
A smooth function in $L^2(X_G)$ is called an automorphic form on $G(\mathbb{A})$ if it generates an irreducible $G(\mathbb{A})$-submodule in $L^2(X_G)$.

Theorem (Gelfand, Graev, Piatetski-Shapiro, Langlands) \[L^2_d(X_G) = \bigoplus_{\pi \in \hat{G}(\mathbb{A})} m_d(\pi) \cdot V_\pi \] with the multiplicity $m_d(\pi)$ finite, where $\hat{G}(\mathbb{A})$ is the unitary dual of $G(\mathbb{A})$.

The question is to determine $m_d(\pi)$ explicitly.
A smooth function in $L^2(X_G)$ is called an automorphic form on $G(\mathbb{A})$ if it generates an irreducible $G(\mathbb{A})$-submodule in $L^2(X_G)$.

All irreducible $G(\mathbb{A})$-submodules in $L^2(X_G)$ form the discrete spectrum of $G(\mathbb{A})$, which is denoted by $L^2_d(X_G)$.

Theorem (Gelfand, Graev, Piatetski-Shapiro, Langlands)

$L^2_d(X_G) = \bigoplus_{\pi \in \hat{G}(\mathbb{A})} m_d(\pi) \cdot V_\pi$ with the multiplicity $m_d(\pi)$ finite, where $\hat{G}(\mathbb{A})$ is the unitary dual of $G(\mathbb{A})$.

The question is to determine $m_d(\pi)$ explicitly.
A smooth function in $L^2(X_G)$ is called an automorphic form on $G(\mathbb{A})$ if it generates an irreducible $G(\mathbb{A})$-submodule in $L^2(X_G)$.

All irreducible $G(\mathbb{A})$-submodules in $L^2(X_G)$ form the discrete spectrum of $G(\mathbb{A})$, which is denoted by $L^2_d(X_G)$.

Theorem (Gelfand, Graev, Piatetski-Shapiro, Langlands)

$$L^2_d(X_G) = \bigoplus_{\pi \in \widehat{G}(\mathbb{A})} m_d(\pi) \cdot V_\pi$$

with the multiplicity $m_d(\pi)$ finite, where $\widehat{G}(\mathbb{A})$ is the unitary dual of $G(\mathbb{A})$.

The question is to determine $m_d(\pi)$ explicitly.
A smooth function in $L^2(X_G)$ is called an automorphic form on $G(\mathbb{A})$ if it generates an irreducible $G(\mathbb{A})$-submodule in $L^2(X_G)$.

All irreducible $G(\mathbb{A})$-submodules in $L^2(X_G)$ form the discrete spectrum of $G(\mathbb{A})$, which is denoted by $L^2_d(X_G)$.

Theorem (Gelfand, Graev, Piatetski-Shapiro, Langlands)

$$L^2_d(X_G) = \bigoplus_{\pi \in \hat{G}(\mathbb{A})} m_d(\pi) \cdot V_{\pi}$$

with the multiplicity $m_d(\pi)$ finite, where $\hat{G}(\mathbb{A})$ is the unitary dual of $G(\mathbb{A})$.

The question is to determine $m_d(\pi)$ explicitly.
For classical groups, the Arthur Conjecture asserts that

$$m_d(\pi) \leq \begin{cases}
1, & \text{if } G = \text{SO}_{2n+1}, \text{Sp}_{2n} \\
2, & \text{if } G = \text{SO}_{2n}.
\end{cases}$$
For classical groups, the **Arthur Conjecture** asserts that

\[m_d(\pi) \leq \begin{cases} 1, & \text{if } G = \text{SO}_{2n+1}, \text{Sp}_{2n} \\ 2, & \text{if } G = \text{SO}_{2n}. \end{cases} \]

- $G = \text{GL}_n$, $m_d(\pi) \leq 1$ (Shalika; Piatetski-Shapiro; Moeglin-Waldspurger);
- $G = \text{SL}_2$, $m_d(\pi) \leq 1$ (Langlands-Lebasse; Ramkrishnan);
- $G = \text{SL}_n (n \geq 3)$, $m_d(\pi) > 1$ for some π (Blasius; Lapid);
- $G = \text{U}_3$, $m_d(\pi) \leq 1$ (Rogawski);
- $G = \text{G}_2$, $m_d(\pi)$ unbounded for some family of π’s (Gan-Gurevich-J.) and also (Gan);
- $G = \text{GSp}_4$, $m_d(\pi) \leq 1$ with π generic (J.-Soudry);
For classical groups, the **Arthur Conjecture** asserts that

\[m_d(\pi) \leq \begin{cases}
1, & \text{if } G = SO_{2n+1}, Sp_{2n} \\
2, & \text{if } G = SO_{2n}.
\end{cases} \]

- **$G = GL_n, m_d(\pi) \leq 1$** (Shalika; Piatetski-Shapiro; Moeglin-Waldspurger);
- **$G = SL_2, m_d(\pi) \leq 1$** (Langlands-Lebasse; Ramkrishnan);
- **$G = SL_n (n \geq 3), m_d(\pi) > 1$** for some π (Blasius; Lapid);
- **$G = U_3, m_d(\pi) \leq 1$** (Rogawski);
- **$G = G_2, m_d(\pi)$** unbounded for some family of π’s (Gan-Gurevich-J.) and also (Gan);
- **$G = GSp_4, m_d(\pi) \leq 1$** with π generic (J.-Soudry);
- The **Arthur Conjecture** is expected to be proved soon.
How to Construct Automorphic Forms?

- This is an easy-hard problem in general.

Let $\Theta(g, h)$ be an automorphic function on $G(A) \times H(A)$ and ϕ, φ be automorphic forms on $G(A), H(A)$, respectively. Consider the following integral (assuming convergence)

$$
\int_{G(A) \times H(A)} \Theta(g, h) \phi(g) \varphi(h) \, dg \, dh.
$$

If (1) is nonzero, then the integration along dh will construct automorphic functions on $G(A)$ by means of those on $H(A)$, while the integration along dg will produce the opposite direction construction. Hence the construction is easy!

However, if ϕ and φ need to satisfy a particular relation, say, Langlands functoriality, for instance, it is in general a very hard problem to design the kernel function $\Theta(g, h)$!
How to Construct Automorphic Forms?

- This is an easy-hard problem in general.
- Let \(\Theta(g, h) \) be an automorphic function on \(G(\mathbb{A}) \times H(\mathbb{A}) \) and \(\phi, \varphi \) be automorphic forms on \(G(\mathbb{A}), H(\mathbb{A}) \), respectively. Consider the following integral (assuming convergence)

\[
\int_{[G] \times [H]} \Theta(g, h)\phi(g)\varphi(h)dgdh. \tag{1}
\]
This is an easy-hard problem in general.

Let $\Theta(g, h)$ be an automorphic function on $G(\mathbb{A}) \times H(\mathbb{A})$ and ϕ, φ be automorphic forms on $G(\mathbb{A}), H(\mathbb{A})$, respectively. Consider the following integral (assuming convergence)

$$\int_{[G] \times [H]} \Theta(g, h)\phi(g)\varphi(h)dgdh. \quad (1)$$

If (1) is nonzero, then the integration along dh will construct automorphic functions on $G(\mathbb{A})$ by means of those on $H(\mathbb{A})$, while the integration along dg will produces the opposite direction construction. Hence the construction is easy!
How to Construct Automorphic Forms?

- This is an easy-hard problem in general.
- Let $\Theta(g, h)$ be an automorphic function on $G(\mathbb{A}) \times H(\mathbb{A})$ and ϕ, φ be automorphic forms on $G(\mathbb{A}), H(\mathbb{A})$, respectively. Consider the following integral (assuming convergence)

$$
\int_{[G] \times [H]} \Theta(g, h) \phi(g) \varphi(h) dgdh.
$$

(1)

- If (1) is nonzero, then the integration along dh will construct automorphic functions on $G(\mathbb{A})$ by means of those on $H(\mathbb{A})$, while the integration along dg will produces the opposite direction construction. Hence the construction is easy!
- However, if ϕ and φ need to satisfy a particular relation, say, Langlands functoriality, for instance, it is in general a very hard problem to design the kernel function $\Theta(g, h)$!
Automorphic Representations

- Automorphic representations are $G(\mathbb{A})$-submodules in $L^2(\mathcal{X}_G)$. The set of all irreducible ones is denoted by $\Pi^a(G)$.
Automorphic representations are $G(\mathbb{A})$-submodules in $L^2(X_G)$. The set of all irreducible ones is denoted by $\Pi^a(G)$.

Following Harish-Chandra and Bernstein, any $\pi \in \Pi^a(G)$ can be written as $\pi \cong \bigotimes_v \pi_v$, where π_v is an irreducible admissible representation of $G(\mathbb{Q}_v)$.
Automorphic representations are $G(\mathbb{A})$-submodules in $L^2(X_G)$. The set of all irreducible ones is denoted by $\Pi^a(G)$.

Following Harish-Chandra and Bernstein, any $\pi \in \Pi^a(G)$ can be written as $\pi \cong \bigotimes_v \pi_v$, where π_v is an irreducible admissible representation of $G(\mathbb{Q}_v)$.

By Satake theory of spherical functions, for almost all v,

$$\pi_v \iff c(\pi_v)$$

where $c(\pi_v)$ is a conjugacy class of semi-simple elements in the Langlands dual group $^L G$.
Automorphic Representations

- Automorphic representations are $G(\mathbb{A})$-submodules in $L^2(X_G)$. The set of all irreducible ones is denoted by $\Pi^a(G)$.
- Following Harish-Chandra and Bernstein, any $\pi \in \Pi^a(G)$ can be written as $\pi \cong \bigotimes_v \pi_v$, where π_v is an irreducible admissible representation of $G(\mathbb{Q}_v)$.
- By Satake theory of spherical functions, for almost all v,
 \[\pi_v \iff c(\pi_v) \]
 where $c(\pi_v)$ is a conjugacy class of semi-simple elements in the Langlands dual group L^G.
- $L^G = G^\vee(\mathbb{C}) \rtimes \Gamma_\mathbb{Q}$, where $G^\vee(\mathbb{C})$ is given by
 \[G \iff (X, \Delta; X^\vee, \Delta^\vee) \]
 \[G^\vee(\mathbb{C}) \iff (X^\vee, \Delta^\vee; X, \Delta) \]
- $GL_n^\vee(\mathbb{C}) = GL_n(\mathbb{C})$ and $SO_{2n+1}^\vee(\mathbb{C}) = Sp_{2n}(\mathbb{C})$.
Automorphic Representations

- S denotes any finite set of primes p and ∞.
- $c(S) := \{c_v \mid v \not\in S\}$, where c_v is a s.-s. conjugacy class LG.
- S denotes any finite set of primes p and ∞.
- $c(S) := \{c_v \mid v \notin S\}$, where c_v is a s.-s. conjugacy class $^L G$.
- $c(S) \equiv c'(S')$ if they are the same at almost all v.
- $\mathcal{C}(G)$: the equivalence classes of all such sets $c(S)$.
Automorphic Representations

- S denotes any finite set of primes p and ∞.
- $c(S) := \{c_v \mid v \not\in S\}$, where c_v is a s.-s. conjugacy class $^L G$.
- $c(S) \equiv c'(S')$ if they are the same at almost all v.
- $\mathcal{C}(G)$: the equivalence classes of all such sets $c(S)$.
- $\Pi^a(G)$: the set of equivalence classes of irreducible automorphic representations of $G(\mathbb{A})$.

Dihua Jiang University of Minnesota
Constructions of Automorphic Forms
Automorphic Representations

- S denotes any finite set of primes p and ∞.
- $c(S) := \{c_v \mid v \not\in S\}$, where c_v is a s.-s. conjugacy class $^L G$.
- $c(S) \equiv c'(S')$ if they are the same at almost all v.
- $\mathcal{C}(G)$: the equivalence classes of all such sets $c(S)$.
- $\Pi^a(G)$: the set of equivalence classes of irreducible automorphic representations of $G(\mathbb{A})$.
- $\pi = \bigotimes_v \pi_v \in \Pi^a(G) \longrightarrow c(S_\pi)$ for some finite set S_π of places.
- \exists a map $c : \pi \mapsto c(\pi)$ from $\Pi^a(G)$ to $\mathcal{C}(G)$.
- The fiber $\Pi_{c(\pi)}$ is the nearly equivalence classes of π.

Problems:

1. The image $c(\Pi^a(G))$ in $\mathcal{C}(G)$ (Ramanujan Conjecture).
2. The fiber $\Pi_{c(\pi)}$ (refined structures of global packets).
Automorphic Representations

- S denotes any finite set of primes p and ∞.
- $c(S) := \{c_\nu \mid \nu \not\in S\}$, where c_ν is a s.-s. conjugacy class $^L G$.
- $c(S) \equiv c'(S')$ if they are the same at almost all ν.
- $\mathcal{C}(G)$: the equivalence classes of all such sets $c(S)$.
- $\Pi^a(G)$: the set of equivalence classes of irreducible automorphic representations of $G(\mathbb{A})$.
- $\pi = \bigotimes_\nu \pi_\nu \in \Pi^a(G) \implies c(S_\pi)$ for some finite set S_π of places.
- \exists a map $c : \pi \mapsto c(\pi)$ from $\Pi^a(G)$ to $\mathcal{C}(G)$.
- The fiber $\Pi_{c(\pi)}$ is the nearly equivalence classes of π.

Problems:
- (1) The image $c(\Pi^a(G))$ in $\mathcal{C}(G)$ (Ramanujan Conjecture).
- (2) The fiber $\Pi_{c(\pi)}$ (refined structures of global packets).
Langlands Functoriality

Langlands Functoriality Conjecture consists of Two Parts:

▶ **Transfer:** G, H reductive algebraic \mathbb{Q}-groups and a group homomorphism

$$\rho : \mathbb{L}H \rightarrow \mathbb{L}G,$$

which is compatible with the action of $\Gamma_{\mathbb{Q}}$. For any $\sigma \in \Pi^a(H)$, \exists a $\pi \in \Pi^a(G)$ s.t.

$$c(\rho^a(\sigma)) = c(\pi)$$

as conjugacy classes in $\mathbb{L}G$, where $c(\rho^a(\sigma)) = \{\rho(c(\sigma_v))\}$.

▶ **Thickness:** For each tempered $\pi \in \Pi^a(G)$, \exists an H; a thick $\sigma \in \Pi^a(H)$, s.t. π is a Langlands functorial transfer of σ.

The thickness of σ is defined in terms of invariant theory of $\mathbb{L}H$ and analytic properties of automorphic \mathbb{L}-functions attached to σ, and was first introduced by Langlands in his Shaw prize lecture (2007, Shahidi’s volume 2011).
Langlands Functoriality

Langlands Functoriality Conjecture consists of Two Parts:

- **Transfer:** \(G, H \) reductive algebraic \(\mathbb{Q} \)-groups and a group homomorphism

 \[\rho : L H \rightarrow L G, \]

 which is compatible with the action of \(\Gamma_{\mathbb{Q}} \). For any \(\sigma \in \Pi^a(H) \), \(\exists \) a \(\pi \in \Pi^a(G) \) s.t.

 \[c(\rho^a(\sigma)) = c(\pi) \]

 as conjugacy classes in \(L G \), where \(c(\rho^a(\sigma)) = \{ \rho(c(\sigma_v)) \} \).

- **Thickness:** For each tempered \(\pi \in \Pi^a(G) \), \(\exists \) an \(H \); a **thick** \(\sigma \in \Pi^a(H) \), s.t. \(\pi \) is a Langlands functorial transfer of \(\sigma \).
Langlands Functoriality

Langlands Functoriality Conjecture consists of Two Parts:

▶ Transfer: G, H reductive algebraic \mathbb{Q}-groups and a group homomorphism

$$\rho : L H \to L G,$$

which is compatible with the action of $\Gamma_{\mathbb{Q}}$. For any $\sigma \in \Pi^a(H)$, \exists a $\pi \in \Pi^a(G)$ s.t.

$$c(\rho^a(\sigma)) = c(\pi)$$

as conjugacy classes in $L G$, where $c(\rho^a(\sigma)) = \{\rho(c(\sigma_v))\}$.

▶ Thickness: For each tempered $\pi \in \Pi^a(G)$, \exists an H; a thick $\sigma \in \Pi^a(H)$, s.t. π is a Langlands functorial transfer of σ.

▶ The thickness of σ is defined in terms of invariant theory of $L H$ and analytic properties of automorphic L-functions attached to σ, and was first introduced by Langlands in his Shaw prize lecture (2007, Shahidi’s volume 2011).
Example: Theta Correspondence

- \(O_{2m} \times \text{Sp}_{2n} \to \text{Sp}_{4mn} \), via the tensor product, forms a reductive dual pair in \(\text{Sp}_{4mn} \) in the sense of R. Howe.
Example: Theta Correspondence

- $O_{2m} \times Sp_{2n} \rightarrow Sp_{4mn}$, via the tensor product, forms a reductive dual pair in Sp_{4mn} in the sense of R. Howe.

- ψ: a nontrivial character of $F \backslash \mathbb{A}$; ω_ψ: the Weil representation on the space $S(\mathbb{A}^{2mn})$ of all Schwartz-Bruhat functions.
Example: Theta Correspondence

- $O_{2m} \times \text{Sp}_{2n} \rightarrow \text{Sp}_{4mn}$, via the tensor product, forms a reductive dual pair in Sp_{4mn} in the sense of R. Howe.

- ψ: a nontrivial character of $F \backslash \mathbb{A}$; ω_ψ: the Weil representation on the space $S(\mathbb{A}^{2mn})$ of all Schwartz-Bruhat functions.

- For $\Phi \in S(\mathbb{A}^{2mn})$, $\Theta_\psi^\psi(x) := \sum_{\xi \in F^{2mn}} \omega_\psi(x) \Phi(\xi)$ is an automorphic (theta) function on $\tilde{\text{Sp}}_{4mn}(\mathbb{A})$.

This leads to an explicit construction of the classical Shimura correspondence, which was the starting point of the classical theory of modular forms of half-integral weight.
Example: Theta Correspondence

- $O_{2m} \times \text{Sp}_{2n} \to \text{Sp}_{4mn}$, via the tensor product, forms a reductive dual pair in Sp_{4mn} in the sense of R. Howe.

- ψ: a nontrivial character of $F \backslash \mathbb{A}$; ω_ψ: the Weil representation on the space $S(\mathbb{A}^{2mn})$ of all Schwartz-Bruhat functions.

- For $\Phi \in S(\mathbb{A}^{2mn})$, $\Theta^\psi_\Phi(x) := \sum_{\xi \in F^{2mn}} \omega_\psi(x) \Phi(\xi)$ is an automorphic (theta) function on $\widetilde{\text{Sp}}_{4mn}(\mathbb{A})$.

- The theta correspondence is given by

\[
\int_{[O_{2m}] \times [\text{Sp}_{2n}]} \Theta^\psi_\Phi(g, h) \phi(g) \varphi(h) \, dg \, dh
\]

where $\phi \in \mathcal{A}(O_{2m})$ and $\varphi \in \mathcal{A}(\text{Sp}_{2n})$.

This leads an explicit construction of the classical Shimura correspondence, which was the starting point of the classical theory of modular forms of half-integral weight.

Dihua Jiang
University of Minnesota
Constructions of Automorphic Forms
Example: Theta Correspondence

- $O_{2m} \times \text{Sp}_{2n} \to \text{Sp}_{4mn}$, via the tensor product, forms a reductive dual pair in Sp_{4mn} in the sense of R. Howe.

- ψ: a nontrivial character of $F \backslash \mathbb{A}$; ω_ψ: the Weil representation on the space $S(\mathbb{A}^{2mn})$ of all Schwartz-Bruhat functions.

- For $\Phi \in S(\mathbb{A}^{2mn})$, $\Theta^\psi_\Phi(x) := \sum_{\xi \in F^{2mn}} \omega_\psi(x) \Phi(\xi)$ is an automorphic (theta) function on $\tilde{\text{Sp}}_{4mn}(\mathbb{A})$.

- The theta correspondence is given by

$$\int_{[O_{2m}] \times [\text{Sp}_{2n}]} \Theta^\psi_\Phi(g, h) \phi(g) \varphi(h) dg dh$$

(2)

where $\phi \in \mathcal{A}(O_{2m})$ and $\varphi \in \mathcal{A}($Sp$_{2n})$.

- This leads an explicit construction of the classical Shimura correspondence, which was the starting point of the classical theory of modular forms of half-integral weight.
The theta correspondence may be formulated as

\[\vdots \quad \vdots \]

\[\text{Sp}_6 \quad \Pi^a(\text{Sp}_6) \]

\[\uparrow \quad \uparrow \]

\[\Pi^a(\text{SO}_{2m}) \quad \text{SO}_{2m} \quad \rightarrow \quad \text{Sp}_4 \quad \Pi^a(\text{Sp}_4) \]

\[\downarrow \quad \uparrow \]

\[\text{Sp}_2 \quad \Pi^a(\text{Sp}_2) \]

Questions: What is the structure of the first occurrence?
Example: Theta Correspondence–Properties

- J.-P. Waldspurger, 1980, the representation-theoretic approach to investigate the **Shimura correspondence**.

- S. Rallis, in 1982, the relation of the local Satake parameters of π and σ in terms of the Langlands functoriality.

- S. Rallis, in 1984, the **Tower Properties**. That is, the first occurrence is always cuspidal, and after that the theta correspondences are always nonzero, but noncuspidal.

- S. Kudla, in 1986, the local version of the **Tower Properties**.

- J. Adams, in 1989, formulated a conjecture (over \mathbb{R}) claiming that if (2) is nonzero for (π, σ), then π and σ are related in terms of Arthur transfer, instead of the Langlands transfer.

- C. Moeglin, in 2011, discussed the relation of theta correspondence, Adams’s Conjecture, and Arthur’s Conjecture on the discrete spectrum of automorphic forms.
Example: Theta Correspondence–Properties

- J.-P. Waldspurger, 1980, the representation-theoretic approach to investigate the **Shimura correspondence**.
- S. Rallis, in 1982, the relation of the local Satake parameters of π and σ in terms of the Langlands functoriality.

▶ S. Kudla, in 1986, the **Tower Properties**. That is, the first occurrence is always cuspidal, and after that the theta correspondences are always nonzero, but noncuspidal.

▶ J. Adams, in 1989, formulated a conjecture (over \mathbb{R}) claiming that if (2) is nonzero for (π, σ), then π and σ are related in terms of Arthur transfer, instead of the Langlands transfer.

▶ C. Moeglin, in 2011, discussed the relation of theta correspondence, Adams’s Conjecture, and Arthur’s Conjecture on the discrete spectrum of automorphic forms.
Example: Theta Correspondence—Properties

- J.-P. Waldspurger, 1980, the representation-theoretic approach to investigate the Shimura correspondence.
- S. Rallis, in 1982, the relation of the local Satake parameters of π and σ in terms of the Langlands functoriality.
- S. Rallis, in 1984, the Tower Properties. That is, the first occurrence is always cuspidal, and after that the theta correspondences are always nonzero, but noncuspidal.
Example: Theta Correspondence–Properties

- J.-P. Waldspurger, 1980, the representation-theoretic approach to investigate the Shimura correspondence.
- S. Rallis, in 1982, the relation of the local Satake parameters of π and σ in terms of the Langlands functoriality.
- S. Rallis, in 1984, the **Tower Properties**. That is, the first occurrence is always cuspidal, and after that the theta correspondences are always nonzero, but noncuspidal.
- S. Kudla, in 1986, the local version of the **Tower Properties**.
Example: Theta Correspondence–Properties

- J.-P. Waldspurger, 1980, the representation-theoretic approach to investigate the **Shimura correspondence**.
- S. Rallis, in 1982, the relation of the local Satake parameters of π and σ in terms of the Langlands functoriality.
- S. Rallis, in 1984, the **Tower Properties**. That is, the first occurrence is always cuspidal, and after that the theta correspondences are always nonzero, but noncuspidal.
- S. Kudla, in 1986, the local version of the **Tower Properties**.
- J. Adams, in 1989, formulated a conjecture (over \mathbb{R}) claiming that if (2) is nonzero for (π, σ), then π and σ are related in terms of Arthur transfer, instead of the Langlands transfer.
Example: Theta Correspondence–Properties

- J.-P. Waldspurger, 1980, the representation-theoretic approach to investigate the Shimura correspondence.
- S. Rallis, in 1982, the relation of the local Satake parameters of π and σ in terms of the Langlands functoriality.
- S. Rallis, in 1984, the Tower Properties. That is, the first occurrence is always cuspidal, and after that the theta correspondences are always nonzero, but noncuspidal.
- S. Kudla, in 1986, the local version of the Tower Properties.
- J. Adams, in 1989, formulated a conjecture (over \mathbb{R}) claiming that if (2) is nonzero for (π, σ), then π and σ are related in terms of Arthur transfer, instead of the Langlands transfer.
- C. Moeglin, in 2011, discussed the relation of theta correspondence, Adams’s Conjecture, and Arthur’s Conjecture on the discrete spectrum of automorphic forms.
Kudla-Rallis (1994) characterize the first occurrence in terms of the location of poles of the standard L-functions of Sp_{2n}.
Example: Theta Correspondence–Properties

- Kudla-Rallis (1994) characterize the first occurrence in terms of the location of poles of the standard L-functions of Sp_{2n}.
- Moeglin (1997) characterizes the first occurrence in terms of the location of poles of certain Eisenstein series.
Kudla-Rallis (1994) characterize the first occurrence in terms of the location of poles of the standard L-functions of Sp_{2n}.

Moeglin (1997) characterizes the first occurrence in terms of the location of poles of certain Eisenstein series.

Moeglin (1997); J.-Soudry (2007) proved the irreducibility of the first occurrence.

One of the main problems is the compatibility of local-global first occurrences (Yamana 2011).

Interesting applications:
1. Counter-examples of the generalized Ramanujan conjecture;
2. Arithmeticity of special values of L-functions;
3. Nonvanishing of cohomology groups of certain degree over Shimura varieties;
4. Kudla’s program on special cycles and generalized Gross-Zagier formula.
Example: Theta Correspondence–Properties

► Kudla-Rallis (1994) characterize the first occurrence in terms of the location of poles of the standard L-functions of Sp_{2n}.
► Moeglin (1997) characterizes the first occurrence in terms of the location of poles of certain Eisenstein series.
► Moeglin (1997); J.-Soudry (2007) proved the irreducibility of the first occurrence.
► Ginzburg-J.-Soudry (2009); Gan-Takeda (2009) extend the work of Kudla and Rallis to O_m.

One of the main problems is the compatibility of local-global first occurrences (Yamana 2011).

Interesting applications:
1. Counter-examples of the generalized Ramanujan conjecture;
2. Arithmeticity of special values of L-functions;
3. Nonvanishing of cohomology groups of certain degree over Shimura varieties;
4. Kudla's program on special cycles and generalized Gross-Zagier formula.
Example: Theta Correspondence–Properties

- Kudla-Rallis (1994) characterize the first occurrence in terms of the location of poles of the standard L-functions of Sp_{2n}.
- Moeglin (1997) characterizes the first occurrence in terms of the location of poles of certain Eisenstein series.
- Moeglin (1997); J.-Soudry (2007) proved the irreducibility of the first occurrence.
- Ginzburg-J.-Soudry (2009); Gan-Takeda (2009) extend the work of Kudla and Rallis to O_m.
- One of the main problems is the compatibility of local-global first occurrences (Yamana 2011).
Example: Theta Correspondence–Properties

- Kudla-Rallis (1994) characterize the first occurrence in terms of the location of poles of the standard L-functions of Sp_{2n}.
- Moeglin (1997) characterizes the first occurrence in terms of the location of poles of certain Eisenstein series.
- Moeglin (1997); J.-Soudry (2007) proved the irreducibility of the first occurrence.
- Ginzburg-J.-Soudry (2009); Gan-Takeda (2009) extend the work of Kudla and Rallis to O_m.
- One of the main problems is the compatibility of local-global first occurrences (Yamana 2011)
- **Interesting applications:** (1) Counter-examples of the generalized Ramanujan conjecture; (2) Arithmeticity of special values of L-functions; (3) Nonvanishing of cohomology groups of certain degree over Shimura varieties; (4) Kudla’s program on special cycles and generalized Gross-Zagier formula.
More Examples: Extended Theta Correspondences

- Replace the theta function $\Theta_\psi(x)$ by the automorphic function Θ of reductive group $G(\mathbb{A})$ attached to the minimal unipotent orbit of G and consider the extended Theta correspondence:

$$\int_{[G] \times [H]} \Theta(g,h)\phi(g)\varphi(h)dgdh$$ \hspace{1cm} (3)

where $\phi \in A(G)$ and $\varphi \in A(H)$, and (G, H) forms a commuting pair in G.

The names contributed to both local and global theories of the extended theta correspondences are: Kazhdan, Savin, Rubenthaler, Ginzburg, Rallis, Soudry, J.-S. Li, Gross, Jiang, Gan, Gurevich, and others.

Important applications were obtained, including the work of Gross and Savin on the existence of motives whose Galois group is the exceptional group of type G_2.

Dihua Jiang University of Minnesota
Constructions of Automorphic Forms
More Examples: Extended Theta Correspondences

- Replace the theta function $\Theta_\psi(x)$ by the automorphic function Θ of reductive group $\mathbb{G}(\mathbb{A})$ attached to the minimal unipotent orbit of G and consider the extended Theta correspondence:

$$
\int_{[G] \times [H]} \Theta(g, h) \phi(g) \varphi(h) dg \, dh \tag{3}
$$

where $\phi \in \mathcal{A}(G)$ and $\varphi \in \mathcal{A}(H)$, and (G, H) forms a commuting pair in \mathbb{G}.

- The names contributed to both local and global theories of the extended theta correspondences are: Kazhdan, Savin, Rubenthaler, Ginzburg, Rallis, Soudry, J.-S. Li, Gross, Jiang, Gan, Gurevich, and others.
More Examples: Extended Theta Correspondences

- Replace the theta function $\Theta_{\psi}(x)$ by the automorphic function Θ of reductive group $G(\mathbb{A})$ attached to the minimal unipotent orbit of G and consider the extended Theta correspondence:

$$
\int_{[G] \times [H]} \Theta(g, h) \phi(g) \varphi(h) dg dh
$$

(3)

where $\phi \in A(G)$ and $\varphi \in A(H)$, and (G, H) forms a commuting pair in G.

- The names contributed to both local and global theories of the extended theta correspondences are: Kazhdan, Savin, Rubenthaler, Ginzburg, Rallis, Soudry, J.-S. Li, Gross, Jiang, Gan, Gurevich, and others.

- Important applications were obtained, including the work of Gross and Savin on the existence of motives whose Galois group is the exceptional group of type G_2.
Consider certain residue $\theta_{\omega,n+1}$ of the Siegel Eisenstein series on Sp_{2n+2}.
Consider certain residue $\theta_{\omega,n+1}$ of the Siegel Eisenstein series on Sp_{2n+2}.

Take $\pi \in \Pi^a(\text{GL}_{2n})$ and $\tau \in \Pi^a(\text{GL}_2)$ and consider

$$\int_{[(\text{GL}_2 \times \text{GSp}_{2n})^\circ]} \varphi_\tau(g) \varphi_\pi(h) \theta_{\omega,n+1}(g,h) dgdh$$ \hspace{1cm} (4)

Conjecture of Ginzburg-J.-Soudry (IMRN2011):
If integral (4) is nonzero for some φ_τ and φ_π, then the representation τ is the automorphic induction from $O_{2,\omega}(A)$, and further π is the tensor product transfer from $\text{GL}_2 \times \text{GL}_n$.

This is the first conjecture on special case of the important conjecture of Langlands tensor product transfer from $\text{GL}_m \times \text{GL}_n$ to GL_{mn}. Some preliminary discussions have been made in our recent paper in IMRN (2011).

The transfers from $\text{GL}_2 \times \text{GL}_n$ to GL_{2n} is known for $n = 2$ (Ramakrishnan, 2000) and $n = 3$ (Kim-Shahidi, 2002).
Consider certain residue $\theta_{\omega,n+1}$ of the Siegel Eisenstein series on Sp_{2n+2}.

Take $\pi \in \Pi^a(\text{GL}_{2n})$ and $\tau \in \Pi^a(\text{GL}_2)$ and consider

$$\int \varphi_{\tau}(g)\varphi_{\pi}(h)\theta_{\omega,n+1}(g,h)dgdh \quad (4)$$

[(\text{GL}_2 \times \text{GSp}_{2n})^\circ]

Conjecture of Ginzburg-J.-Soudry (IMRN2011): If integral (4) is nonzero for some φ_{τ} and φ_{π}, then the representation τ is the automorphic induction from $O_{2,\omega}(\mathbb{A})$, and further π is the tensor product transfer from $\text{GL}_2 \times \text{GL}_n$.
More Examples: Partial Descents of Ginzburg-J.-Soudry

Consider certain residue $\theta_{\omega,n+1}$ of the Siegel Eisenstein series on Sp_{2n+2}.

Take $\pi \in \Pi^a(\text{GL}_{2n})$ and $\tau \in \Pi^a(\text{GL}_2)$ and consider

$$\int [(\text{GL}_2 \times \text{GSp}_{2n})^\circ] \varphi_\tau(g) \varphi_\pi(h) \theta_{\omega,n+1}(g, h) dg \, dh$$ \hspace{1cm} (4)

Conjecture of Ginzburg-J.-Soudry (IMRN2011): If integral (4) is nonzero for some φ_τ and φ_π, then the representation τ is the automorphic induction from $O_{2,\omega}(\mathbb{A})$, and further π is the tensor product transfer from $\text{GL}_2 \times \text{GL}_n$

This is the first conjecture on special case of the important conjecture of Langlands tensor product transfer from $\text{GL}_m \times \text{GL}_n$ to GL_{mn}. Some preliminary discussions have been made in our recent paper in IMRN (2011).
More Examples: Partial Descents of Ginzburg-J.-Soudry

- Consider certain residue $\theta_{\omega,n+1}$ of the Siegel Eisenstein series on Sp_{2n+2}.
- Take $\pi \in \Pi^a(\text{GL}_{2n})$ and $\tau \in \Pi^a(\text{GL}_2)$ and consider

$$\int [\text{(GL}_2 \times \text{GSp}_{2n})^\circ] \varphi_\tau(g) \varphi_\pi(h) \theta_{\omega,n+1}(g, h) dgdh$$

(4)

- **Conjecture of Ginzburg-J.-Soudry (IMRN2011):** If integral (4) is nonzero for some φ_τ and φ_π, then the representation τ is the automorphic induction from $O_{2,\omega}(\mathbb{A})$, and further π is the tensor product transfer from $\text{GL}_2 \times \text{GL}_n$

- This is the first conjecture on special case of the important conjecture of Langlands tensor product transfer from $\text{GL}_m \times \text{GL}_n$ to GL_{mn}. Some preliminary discussions have been made in our recent paper in IMRN (2011).

- The transfers from $\text{GL}_2 \times \text{GL}_n$ to GL_{2n} is known for $n = 2$ (Ramakrishnan, 2000) and $n = 3$ (Kim-Shahidi, 2002).
Theorem of Cogdell, Kim, Piatetski-Shapiro and Shahidi: Every irreducible generic cuspidal automorphic representation π of SO_{2n+1} has a Langlands functorial transfer to GL_{2n}, whose image is an irreducible automorphic representation τ.

The above work for all classical groups (CKPSS(2004) and the book of Ginzburg-Rallis (2011)).
Automorphic Descents of Ginzburg-Rallis-Soudry

- **Theorem of Cogdell, Kim, Piatetski-Shapiro and Shahidi:** Every irreducible generic cuspidal automorphic representation π of SO_{2n+1} has a Langlands functorial transfer to GL_{2n}, whose image is an irreducible automorphic representation τ.

- **Theorem of Ginzburg-Rallis-Soudry:** For such a τ, there exists a residue E_τ of Eisenstein series on SO_{4n} such that certain Fourier coefficient of E_τ recovers π of SO_{2n+1}:

$$
\begin{align*}
&\tau \quad GL_{2n} \\
&\downarrow FC \\
&LFT \\
&RES \\
&SO_{4n} \quad E_\tau \\
&\downarrow FC \\
&SO_{2n+1} \quad \pi
\end{align*}
$$
Theorem of Cogdell, Kim, Piatetski-Shapiro and Shahidi: Every irreducible generic cuspidal automorphic representation π of SO_{2n+1} has a Langlands functorial transfer to GL_{2n}, whose image is an irreducible automorphic representation τ.

Theorem of Ginzburg-Rallis-Soudry: For such a τ, there exists a residue E_{τ} of Eisenstein series on SO_{4n} such that certain Fourier coefficient of E_{τ} recovers π of SO_{2n+1}:

$$SO_{4n} \xrightarrow{RES} \tau \xrightarrow{GL_{2n}} \downarrow FC \xleftarrow{LFT} SO_{2n+1} \xleftarrow{LFT} \pi$$

The above work for all classical groups (CKPSS(2004) and the book of Ginzburg-Rallis-Soudry (2011)).
With the recent progress on the Fundamental Lemma and its variants by Ngo (and Waldspurger, Laumon-Ngo, ...), the **stable trace formula** of Arthur is able to prove the following key theorem, which was announced in Arthur’s 2005 Clay lecture notes and forthcoming book 2011.

Theorem of Arthur:

Let G be a symplectic or orthogonal group. Then

\[L^2(X_G) = \bigoplus_{\psi \in \Psi^2(G)} m_{\psi}(\bigoplus_{\pi \in \Pi(\psi)} m_{\pi} V_{\pi}) \]

with the multiplicity m_{π} is 1 or 2.

$\Psi^2(G)$ is the set of global Arthur parameters of G.

$\Pi(\psi)$ is the global Arthur packet attached to ψ.

For unitary groups and exceptional groups, it still needs to be worked out.
With the recent progress on the Fundamental Lemma and its variants by Ngo (and Waldspurger, Laumon-Ngo, ...), the stable trace formula of Arthur is able to prove the following key theorem, which was announced in Arthur’s 2005 Clay lecture notes and forthcoming book 2011.

Theorem of Arthur: Let G be a symplectic or orthogonal group. Then

$$L_d^2(X_G) = \bigoplus_{\psi \in \Psi_2(G)} m_d(\psi) \left(\bigoplus_{\pi \in \Pi(\psi), m_d(\pi) \neq 0} V_\pi \right)$$

with the multiplicity $m_d(\pi)$ is 1 or 2.

- $\Psi_2(G)$ is the set of global Arthur parameters of G.
- $\Pi(\psi)$ is the global Arthur packet attached to ψ.

For unitary groups and exceptional groups, it still needs to be worked out.
With the recent progress on the Fundamental Lemma and its variants by Ngo (and Waldspurger, Laumon-Ngo, ...), the **stable trace formula** of Arthur is able to prove the following key theorem, which was announced in Arthur’s 2005 Clay lecture notes and forthcoming book 2011.

Theorem of Arthur: Let G be a symplectic or orthogonal group. Then

$$L^2_d(X_G) = \bigoplus_{\psi \in \Psi_2(G)} m_d(\psi) \left(\bigoplus_{\pi \in \Pi(\psi), m_d(\pi) \neq 0} V_{\pi} \right)$$

with the multiplicity $m_d(\pi)$ is 1 or 2.

- $\Psi_2(G)$ is the set of global Arthur parameters of G.
- $\Pi(\psi)$ is the global Arthur packet attached to ψ.
- For unitary groups and exceptional groups, it still needs to be worked out.
With the Langlands theory of Eisenstein series, the Arthur’s theorem has following consequence to the **Langlands Functorial Transfer Conjecture** for classical groups G.

$$\Psi_2(G)$$

ψ\hline

ATF \hookleftarrow \hline

LES $\overrightarrow{}$

$L^2_d(X_G) \ \Pi(\psi) \quad \rightarrow \quad E(\psi) \ \Pi^a(GL)$
Arthur’s Theorem and Langlands Functoriality

With the Langlands theory of Eisenstein series, the Arthur’s theorem has following consequence to the **Langlands Functorial Transfer Conjecture** for classical groups G.

\[
\Psi_2(G) \\
\psi \\
\downarrow \\
\downarrow \text{LES} \\
L^2_d(X_G) \quad \Pi(\psi) \quad \rightarrow \\
E(\psi) \quad \Pi^a(\text{GL})
\]

- $\psi \mapsto \Pi(\psi)$ is given by Arthur stable trace formula.
- $\psi \mapsto E(\psi)$ is given by Langlands theory of Eisenstein series.
- $\Pi(\psi) \mapsto E(\psi)$ gives the existence of the Langlands transfer.
Two Problems Remain

Problems:

▶ (A) Refine the weak transfer $\Pi(\psi) \mapsto E(\psi)$ from classical group G to general linear group GL to the Langlands functorial transfer at all local places.

Possible Approach:

▶ (A) This is a deep arithmetic problem. At least, one needs the full theory of certain local L-functions and γ-factors. Also there is a serious problem with $E(\psi)$.
Two Problems Remain

Problems:

▶ (A) Refine the weak transfer $\Pi(\psi) \mapsto E(\psi)$ from classical group G to general linear group GL to the Langlands functorial transfer at all local places.

▶ (B) Construct explicitly members in the Arthur packet $\Pi(\psi)$.

Possible Approach:

▶ (A) This is a deep arithmetic problem. At least, one needs the full theory of certain local L-functions and γ-factors. Also there is a serious problem with $E(\psi)$.

▶ (B) We discuss recent progress of Ginzburg-J.-Soudry on construction of members in $\Pi(\psi)$, which is a generalization and combination of the theta liftings and the automorphic descents introduced by Ginzburg-Rallis-Soudry in 1998.
Global Arthur Parameters: $\Psi_2(G)$

- Take $G = \text{SO}_{2n+1}$, then $G^\vee(\mathbb{C}) = \text{Sp}_{2n}(\mathbb{C})$.

Global Arthur Parameters: $Ψ_2(G)$

- Take $G = SO_{2n+1}$, then $G^\vee(\mathbb{C}) = Sp_{2n}(\mathbb{C})$.
- Each $\psi \in Ψ_2(SO_{2n+1})$ (Arthur parameters) is written as a formal sum of stable Arthur parameters:

$$\psi = ψ_1 ⊙ ψ_2 ⊙ \cdots ⊙ ψ_r$$

where $ψ_i = (τ_i, b_i)$, with $τ_i \in Π_{u,c,a}^{u}(GL_{a_i})$ and $a_i, b_i ≥ 1$.
Global Arthur Parameters: $\Psi_2(G)$

- Take $G = \text{SO}_{2n+1}$, then $G^\vee(\mathbb{C}) = \text{Sp}_{2n}(\mathbb{C})$.
- Each $\psi \in \Psi_2(\text{SO}_{2n+1})$ (Arthur parameters) is written as a formal sum of stable Arthur parameters:

$$
\psi = \psi_1 \boxplus \psi_2 \boxplus \cdots \boxplus \psi_r
$$

where $\psi_i = (\tau_i, b_i)$, with $\tau_i \in \Pi^{u,c,a}(\text{GL}_{a_i})$ and $a_i, b_i \geq 1$.

- If $i \neq j$, either $\tau_i \not\sim \tau_j$ or $b_i \neq b_j$.
- a_i and b_j have to be in a certain parity, so that $a_i \cdot b_i$ is even and $\psi_i \in \Psi_2(\text{SO}_{a_i \cdot b_i+1})$.

Conjectural Endoscopy Structure:

$$
\sum_{i=1}^{r} a_i \cdot b_i = \text{SO}_{\sum_{i=1}^{r} a_i \cdot b_i+1} \prod \Pi(\psi_1) \otimes \cdots \otimes \Pi(\psi_r)
$$

For other classical groups, the description of ψ is similar.
Global Arthur Parameters: $\Psi_2(G)$

- Take $G = \text{SO}_{2n+1}$, then $G^\vee(\mathbb{C}) = \text{Sp}_{2n}(\mathbb{C})$.
- Each $\psi \in \Psi_2(\text{SO}_{2n+1})$ (Arthur parameters) is written as a formal sum of stable Arthur parameters:

$$\psi = \psi_1 \boxplus \psi_2 \boxplus \cdots \boxplus \psi_r$$

where $\psi_i = (\tau_i, b_i)$, with $\tau_i \in \prod^{u,c,a}(\text{GL}_{a_i})$ and $a_i, b_i \geq 1$.
- If $i \neq j$, either $\tau_i \not\sim \tau_j$ or $b_i \neq b_j$.
- a_i and b_j have to be in a certain parity, so that $a_i \cdot b_i$ is even and $\psi_i \in \Psi_2(\text{SO}_{a_i \cdot b_i+1})$.
- **Conjectural Endoscopy Structure:** $2n = \sum_{i=1}^r a_i \cdot b_i$,

$$\text{SO}_{a_1 \cdot b_1+1} \times \cdots \times \text{SO}_{a_r \cdot b_r+1} \implies \text{SO}_{2n+1}$$

$$\prod(\psi_1) \otimes \cdots \otimes \prod(\psi_r) \implies \prod(\psi)$$

For other classical groups, the description of ψ is similar.
Global Arthur Parameters: $\Psi_2(G)$

- Take $G = \text{SO}_{2n+1}$, then $G^\vee(\mathbb{C}) = \text{Sp}_{2n}(\mathbb{C})$.
- Each $\psi \in \Psi_2(\text{SO}_{2n+1})$ (Arthur parameters) is written as a formal sum of stable Arthur parameters:

$$\psi = \psi_1 \boxplus \psi_2 \boxplus \cdots \boxplus \psi_r$$

where $\psi_i = (\tau_i, b_i)$, with $\tau_i \in \Pi_{u,c,a}(\text{GL}_{a_i})$ and $a_i, b_i \geq 1$.
- If $i \neq j$, either $\tau_i \not\sim \tau_j$ or $b_i \neq b_j$.
- a_i and b_j have to be in a certain parity, so that $a_i \cdot b_i$ is even and $\psi_i \in \Psi_2(\text{SO}_{a_i \cdot b_i+1})$.
- **Conjectural Endoscopy Structure:**

$$2n = \sum_{i=1}^r a_i \cdot b_i,$$

$$\text{SO}_{a_1 \cdot b_1+1} \times \cdots \times \text{SO}_{a_r \cdot b_r+1} \implies \text{SO}_{2n+1}$$

$$\Pi(\psi_1) \otimes \cdots \otimes \Pi(\psi_r) \implies \Pi(\psi)$$

- For other classical groups, the description of ψ is similar.
Simple Arthur Parameter $\psi = (\tau, b)$

- The simple Arthur parameters $\psi = (\tau, b)$ ($\tau \in \Pi^{u,c,a}(GL_a)$) are the building blocks of general Arthur parameters.
Simple Arthur Parameter $\psi = (\tau, b)$

- The simple Arthur parameters $\psi = (\tau, b)$ ($\tau \in \Pi^{u, c, a}(GL_a)$) are the building blocks of general Arthur parameters.
- $\psi = (\tau, b)$ is self-dual iff τ is self-dual. Hence τ is either of symplectic type ($L^S(1, \tau, \wedge^2) = \infty$) or of orthogonal type ($L^S(1, \tau, \vee^2) = \infty$).
The simple Arthur parameters $\psi = (\tau, b)$ ($\tau \in \Pi^{u,c,a}(GL_a)$) are the building blocks of general Arthur parameters.

$\psi = (\tau, b)$ is self-dual iff τ is self-dual. Hence τ is either of symplectic type ($L^S(1, \tau, \wedge^2) = \infty$) or of orthogonal type ($L^S(1, \tau, \vee^2) = \infty$).

If τ is of symplectic type (a is even), then

$$(\tau, b) \text{ is } \begin{cases} \text{of symplectic type} & \text{if } b = 2l + 1; \\ \text{of orthogonal type} & \text{if } b = 2l. \end{cases}$$
The simple Arthur parameters $\psi = (\tau, b)$ ($\tau \in \Pi_{u,c,a}^L(\text{GL}_a)$) are the building blocks of general Arthur parameters.

$\psi = (\tau, b)$ is self-dual iff τ is self-dual. Hence τ is either of \textbf{symplectic} type ($L^S(1, \tau, \wedge^2) = \infty$) or of \textbf{orthogonal} type ($L^S(1, \tau, \vee^2) = \infty$).

If τ is of symplectic type (a is even), then

\[
(\tau, b) \text{ is } \begin{cases}
\text{of symplectic type} & \text{if } b = 2l + 1; \\
\text{of orthogonal type} & \text{if } b = 2l.
\end{cases}
\]

If τ is of orthogonal type, then

\[
(\tau, b) \text{ is } \begin{cases}
\text{of symplectic type} & \text{if } b = 2l; \\
\text{of orthogonal type} & \text{if } b = 2l + 1.
\end{cases}
\]
Simple $\psi = (\tau, b)$-Tower with τ symplectic

$$
\begin{align*}
&\uparrow \\
(\tau, 2m - 1) &\quad SO_{4nm-2n+1} \\
&\uparrow \\
&\quad SO_{4nm-4n} (\tau, 2m - 2) \\
&\uparrow \\
(\tau, 3) &\quad SO_{6n+1} \\
&\uparrow \\
&\quad SO_{4n} (\tau, 2) \\
(\tau, 1) &\quad SO_{2n+1}
\end{align*}
$$

Dihua Jiang
University of Minnesota
Constructions of Automorphic Forms
Simple $\psi = (\tau, b)$-Tower with τ symplectic, $L(\frac{1}{2}, \tau) \neq 0$
The first floor of the $\psi = (\tau, b)$-Tower is

\[
\begin{array}{ccc}
SO_{4n} & \overset{tc}{\leftrightarrow} & Sp_{4n} \\
\overset{lq}{\leftarrow} & \ & \overset{lq}{\rightarrow} \\
gg \downarrow & GL_{2n} & \downarrow fj \\
\overset{lt}{\rightarrow} & \ & \overset{lt}{\leftarrow} \\
SO_{2n+1} & \overset{tc}{\leftrightarrow} & \tilde{Sp}_{2n}
\end{array}
\]

For the p-adic case, see Ginzburg-Rallis-Soudry (1999), J.-Soudry (2003), and J.-Nien-Qin (2010).
\(\psi = (\tau, b) \)-Tower with \(\tau \) symplectic, \(\mathbb{L}(\frac{1}{2}, \tau) \neq 0 \)

The \(m = (2l - 1) \)-th floor of the \(\psi = (\tau, b) \)-Theta Tower is

\[
\begin{align*}
SO_{2nm+2n} & \leftrightarrow_{\text{tc}} & Sp_{2nm+2n} \\
& \leftarrow lq & \rightarrow lq \\
gg & \downarrow & GL_{2nm} & \downarrow fj \\
& \uparrow lt & \downarrow lt \\
SO_{2nm+1} & \leftrightarrow_{\text{tc}} & \tilde{Sp}_{2nm}
\end{align*}
\]
Consider the simple parameter $\psi = (\tau, b)$ with τ symplectic and $L(\frac{1}{2}, \tau) \neq 0$, and the following two basic triangles:

\begin{align*}
(\tau, 2m + 1) &\xrightarrow{\text{Sp}_{4nm+4n}} (\tau, 2m + 2) \\
&\downarrow \quad \uparrow \\
&\downarrow \quad \uparrow \\
&\text{Sp}_{4nm} \quad (\tau, 2m) \\
&\downarrow \quad \uparrow \\
&\text{Sp}_{4nm} \quad (\tau, 2m - 1)
\end{align*}

and

\begin{align*}
(\tau, 2m + 1) &\xrightarrow{\text{Sp}_{4nm+2n}} \\
&\uparrow \\
&\downarrow \\
&\text{Sp}_{4nm} \quad (\tau, 2m) \\
&\downarrow \\
&\text{Sp}_{4nm} \quad (\tau, 2m - 1)
\end{align*}
Basic Triangles in a $\psi = (\tau, b)$-Tower

Define $G_b(\mathbb{A})$ by

$$G_b(\mathbb{A}) = \begin{cases} \widetilde{Sp}_{4nm+2n}(\mathbb{A}) & \text{if } b = 2m + 1; \\ Sp_{4nm}(\mathbb{A}) & \text{if } b = 2m. \end{cases}$$

Then $G_b(\mathbb{A})$ has a standard parabolic subgroup

$$P_1^n = (GL_1^\times)^n \times G_{b-1})U_1^n.$$
Basic Triangles in a $\psi = (\tau, b)$-Tower

- Define $G_b(\mathbb{A})$ by

$$G_b(\mathbb{A}) = \begin{cases} \widetilde{Sp}_{4nm+2n}(\mathbb{A}) & \text{if } b = 2m + 1; \\ Sp_{4nm}(\mathbb{A}) & \text{if } b = 2m. \end{cases}$$

Then $G_b(\mathbb{A})$ has a standard parabolic subgroup

$$P_{1^n} = (GL_1^\times n \times G_{b-1}) U_{1^n}.$$

- Consider the Fourier-Jacobi coefficient along the unipotent radical of P_{1^n}: φ_b automorphic form on $G_b(\mathbb{A})$,

$$FJ_{b-1}^b(\varphi_b, \psi)(h) := \int_{U_{1^n}(\mathbb{Q}) \backslash U_{1^n}(\mathbb{A})} \varphi_b(uh) \tilde{\theta}^\psi(uh) \psi U_{1^n}(u) du.$$

It is an automorphic form on $G_{b-1}(\mathbb{A})$.

Dihua Jiang University of Minnesota
Constructions of Automorphic Forms
Basic Triangles in a $\psi = (\tau, b)$-Tower

- Take $\pi_b \in \Pi^a(G_b)$.

- Res is to take certain residue of Eisenstein series attached to the datum $\tau | \cdot |_s \otimes \pi_b$.

In general, this triangle is NOT commutative, and has no meaning related to Functoriality.
Basic Triangles in a $\psi = (\tau, b)$-Tower

- Take $\pi_b \in \Pi^a(G_b)$.
- Denote by $\mathcal{D}_{b-1, \psi}^b(\pi_b)$ the space generated by all Fourier-Jacobi coefficients $FJ_{b-1}^b(\varphi_b, \psi)$ with all $\varphi_b \in \pi_b$.

Res is to take certain residue of Eisenstein series attached to the datum $\tau | \cdot |^{-s} \otimes \pi_b$.

In general, this triangle is NOT commutative, and has no meaning related to Functoriality.
Basic Triangles in a $\psi = (\tau, b)$-Tower

- Take $\pi_b \in \Pi^a(G_b)$.
- Denote by $\mathcal{D}^b_{b-1,\psi}(\pi_b)$ the space generated by all Fourier-Jacobi coefficients $FJ^b_{b-1}(\varphi_b, \psi)$ with all $\varphi_b \in \pi_b$.
- We obtain

\[
\begin{array}{c}
\xymatrix{
G_{b+2}(\mathbb{A}) & D_{b+2,\psi} \\
G_{b+1}(\mathbb{A}) \\
G_b(\mathbb{A})}
\end{array}
\]

Res is to take certain residue of Eisenstein series attached to the datum $\tau |\cdot|_s \otimes \pi_b$.

In general, this triangle is NOT commutative, and has no meaning related to Functoriality.
Basic Triangles in a $\psi = (\tau, b)$-Tower

- Take $\pi_b \in \Pi^a(G_b)$.
- Denote by $\mathcal{D}^b_{b-1,\psi}(\pi_b)$ the space generated by all Fourier-Jacobi coefficients $FJ^b_{b-1}(\varphi_b, \psi)$ with all $\varphi_b \in \pi_b$.
- We obtain

\[\begin{align*}
\mathcal{D}^{b+2}_{b+1,\psi} & \hookleftarrow G_{b+2}(\mathbb{A}) \\
G_{b+1}(\mathbb{A}) & \uparrow \text{Res} \\
\mathcal{D}^{b+1}_{b,\psi-1} & \hookrightarrow G_b(\mathbb{A})
\end{align*} \]

- Res is to take certain residue of Eisenstein series attached to the datum $\tau| \cdot |^s \otimes \pi_b$.

Dihua Jiang University of Minnesota
Constructions of Automorphic Forms
Basic Triangles in a $\psi = (\tau, b)$-Tower

- Take $\pi_b \in \Pi^a(G_b)$.
- Denote by $D_{b-1,\psi}(\pi_b)$ the space generated by all Fourier-Jacobi coefficients $FJ_{b-1}(\varphi_b, \psi)$ with all $\varphi_b \in \pi_b$.
- We obtain

\[
\begin{array}{c}
G_{b+2}(\mathbb{A}) \\
D_{b+2}^{b+1, \psi} \\
G_{b+1}(\mathbb{A}) \\
D_{b, \psi-1}^{b+1} \\
G_b(\mathbb{A})
\end{array}
\]

- Res is to take certain residue of Eisenstein series attached to the datum $\tau| \cdot |^s \otimes \pi_b$.
- In general, this triangle is NOT commutative, and has no meaning related to Functoriality.
Theorem (Ginzburg-J.-Soudry(2011))

Let π_b be the residual representation of $G_b(\mathbb{A})$ with Arthur parameter (τ, b), τ symplectic and $L(\frac{1}{2}, \tau) \neq 0$. Then $\text{Res}(\pi_b)$ is the residual representation of $G_{b+2}(\mathbb{A})$ with Arthur parameter $(\tau, b + 2)$, and $D_{b+1, \psi}(\text{Res}(\pi_b))$ is the residual representation of $G_{b+1}(\mathbb{A})$ with Arthur parameter $(\tau, b + 1)$. Moreover, the basic triangle is a commutative diagram:

$$
\begin{array}{ccc}
G_{b+2}(\mathbb{A}) & (\tau, b + 2) \\
\downarrow \text{Res} & & \\
G_{b+1}(\mathbb{A}) & (\tau, b + 1) \\
\downarrow D_{b+1, \psi} & & \\
G_{b}(\mathbb{A}) & (\tau, b) \\
\end{array}
$$
Basic Triangles in a $\psi = (\tau, b)$-Tower

When $b = 1$, we have the following triangle

$$(\tau, 3) \xrightarrow{\text{Sp}_{6n}} \text{Sp}_{4n} (\tau, 2) \xleftarrow{\text{N}_{\text{Sp}_{4n}}(\tau, \psi)} (\tau, 1) \xleftarrow{\text{Sp}_{2n}} \text{N}_{\text{Sp}_{2n}}(\tau, \psi)$$
Basic Triangles in a $\psi = (\tau, b)$-Tower

- When $b = 1$, we have the following triangle

$$
\begin{align*}
(\tau, 3) & \xrightarrow{\widetilde{Sp}_{6n}} \leftarrow \uparrow \leftarrow \widetilde{Sp}_{4n} (\tau, 2) \xrightarrow{\mathcal{N}_{Sp_{4n}}(\tau, \psi)} \\
\mathcal{N}_{\widetilde{Sp}_{2n}}(\tau, \psi) & \leftarrow (\tau, 1) \xleftarrow{\widetilde{Sp}_{2n}}
\end{align*}
$$

- $\mathcal{N}_{\widetilde{Sp}_{2n}}(\tau, \psi)$ is the set of all irreducible, genuine, cuspidal automorphic representations of $\widetilde{Sp}_{2n}(\mathbb{A})$, which have τ as the ψ-weak Langlands transfer to $GL_{2n}(\mathbb{A})$.
Basic Triangles in a $\psi = (\tau, b)$-Tower

- When $b = 1$, we have the following triangle

\[
\begin{array}{cccc}
(\tau, 3) & \tilde{\text{Sp}}_{6n} & \downarrow & (\tau, 2) \\
& & \uparrow & \mathcal{N}_{\text{Sp}_{4n}}(\tau, \psi) \\
\mathcal{N}_{\tilde{\text{Sp}}_{2n}}(\tau, \psi) & (\tau, 1) & \tilde{\text{Sp}}_{2n} & \mathcal{N}_{\text{Sp}_{4n}}(\tau, \psi)
\end{array}
\]

- $\mathcal{N}_{\tilde{\text{Sp}}_{2n}}(\tau, \psi)$ is the set of all irreducible, genuine, cuspidal automorphic representations of $\tilde{\text{Sp}}_{2n}(\mathbb{A})$, which have τ as the ψ-weak Langlands transfer to $\text{GL}_{2n}(\mathbb{A})$.

- $\mathcal{N}_{\text{Sp}_{4n}}(\tau, \psi)$ is the set of all irreducible automorphic representations π of $\text{Sp}_{4n}(\mathbb{A})$, which occur in the discrete spectrum of $\text{Sp}_{4n}(\mathbb{A})$, have the Arthur parameter $(\tau, 2)$, and with nonzero Fourier-Jacobi $FJ^2_1(\varphi_\pi, \psi)$.
Basic Triangles in a $\psi = (\tau, b)$-Tower

Theorem of Ginzburg-J.-Soudry (2011): Put \(\Phi := D_{2,\psi^{-1}} \circ \text{Res} \) and \(\Psi := D_{1,\psi} \). Under a mild assumption, \(\Phi \) and \(\Psi \) are bijections between \(\mathcal{N}_{\widetilde{\text{Sp}}_{2n}}(\tau, \psi) \) and \(\mathcal{N}_{\text{Sp}_{4n}}(\tau, \psi) \).
Theorem of Ginzburg-J.-Soudry (2011): Put $\Phi := D_{2,\psi}^3 \circ \text{Res}$ and $\Psi := D_{1,\psi}^2$. Under a mild assumption, Φ and Ψ are bijections between $\widetilde{\mathcal{N}}_{\text{Sp}_{2n}}(\tau, \psi)$ and $\mathcal{N}_{\text{Sp}_{4n}}(\tau, \psi)$.

It is the first result which gives one-to-one relation between the set $\widetilde{\mathcal{N}}_{\text{Sp}_{2n}}(\tau, \psi)$ of tempered cuspidal automorphic representations (assuming the generalized Ramanujan conjecture) and the set $\mathcal{N}_{\text{Sp}_{4n}}(\tau, \psi)$ of non-tempered automorphic representations.
\[\Phi := D_{2,\psi^{-1}}^3 \circ \text{Res} \quad \text{and} \quad \Psi := D_{1,\psi}^2. \]
Under a mild assumption, \(\Phi \) and \(\Psi \) are bijections between \(\mathcal{N}_{\tilde{\text{Sp}}_{2n}}(\tau, \psi) \) and \(\mathcal{N}_{\text{Sp}_{4n}}(\tau, \psi) \).

It is the first result which gives one-to-one relation between
the set \(\mathcal{N}_{\tilde{\text{Sp}}_{2n}}(\tau, \psi) \) of tempered cuspidal automorphic representations (assuming the generalized Ramanujan conjecture) and the set \(\mathcal{N}_{\text{Sp}_{4n}}(\tau, \psi) \) of non-tempered automorphic representations.

This is extension and refinement of the pioneer work of
Piatetski- Shapiro, of Maass-Zagier, and of Andrianov on the
Saito-Kurokawa conjecture (See also Ikeda 2006).
Theorem of Ginzburg-J.-Soudry (2011): Put $\Phi := D_{2,\psi}^3 \circ \text{Res}$ and $\Psi := D_{1,\psi}^2$. Under a mild assumption, Φ and Ψ are bijections between $\mathcal{N}_{\tilde{\text{Sp}}_{2n}}(\tau, \psi)$ and $\mathcal{N}_{\text{Sp}_{4n}}(\tau, \psi)$.

It is the first result which gives one-to-one relation between the set $\mathcal{N}_{\tilde{\text{Sp}}_{2n}}(\tau, \psi)$ of tempered cuspidal automorphic representations (assuming the generalized Ramanujan conjecture) and the set $\mathcal{N}_{\text{Sp}_{4n}}(\tau, \psi)$ of non-tempered automorphic representations.

This is extension and refinement of the pioneer work of Piatetski-Shapiro, of Maass-Zagier, and of Andrianov on the Saito-Kurokawa conjecture (See also Ikeda 2006).

This, combining with a work of Ginzburg-Rallis-Soudry (2005), proves the generalization of Duke-Imamoglu-Ikeda lifting, which constructs a non-tempered cuspidal automorphic forms of Sp_{2m} in terms of that of GL_2.
The proof of the theorem uses the commutativity of the whole diagram:

\[\begin{array}{c}
(\tau, 3) \xrightarrow{\tilde{S}p_{6n}} (\tau, 4) \\
\downarrow \\
(\tau, 2) \xleftarrow{\tilde{S}p_{4n}} \\
\uparrow \\
(\tau, 1) \xleftarrow{\tilde{S}p_{2n}} \\
\end{array} \]
The proof of the theorem uses the commutativity of the whole diagram:

\[
\text{Sp}_8 (\tau, 4) \quad \text{Sp}_4 (\tau, 2) \quad \text{Sp}_2 (\tau, 1) \quad \text{Sp}_6 (\tau, 3)
\]

It is highly nontrivial to show that for \(\varphi \in \mathcal{N}_{\text{Sp}_4} (\tau, \psi) \), the following

\[
\text{Res} \circ D^2_{1, \psi}(\varphi) = D^4_{3, \psi} \circ \text{Res}(\varphi)
\]

hold as residual automorphic forms for some choice of data.
Basic Triangles in a $\psi = (\tau, b)$-Tower

The proof of the theorem uses the commutativity of the whole diagram:

$$
\begin{array}{c}
\text{Sp}_{8n} \quad (\tau, 4) \\
\downarrow \\
(\tau, 3) \quad \tilde{\text{Sp}}_{6n} \\
\uparrow \\
\downarrow \\
\text{Sp}_{4n} \quad (\tau, 2) \\
\uparrow \\
(\tau, 1) \quad \tilde{\text{Sp}}_{2n}
\end{array}
$$

It is highly nontrivial to show that for $\varphi \in \mathcal{N}_{\text{Sp}_{4n}}(\tau, \psi)$, the following

$$
\text{Res} \circ D_{1,\psi}^2(\varphi) = D_{3,\psi}^4 \circ \text{Res}(\varphi)
$$

hold as residual automorphic forms for some choice of data.

The idea and the method are expected to work for $\psi = (\tau, b)$-towers of other classical groups.
Write a global Arthur parameter $\psi = (\tau, b) \boxplus \psi'$ with
- $(\tau, b) \in \Psi_2(\text{SO}_{2kb+1})$ ($\tau \in \mathcal{A}_u^c(\text{GL}_{2k})$, $b = 2m + 1$);
- $\psi' \in \Psi_2(\text{SO}_{2l+1})$.

Look for an endoscopy structure $\text{SO}_{2kb+1} \times \text{SO}_{2l+1} \to \text{SO}_{2kb+2l+1}$.

Find an automorphic form $\theta_{\tau; k, b, l}$ on the product $\text{SO}_{2l+1}(A) \times \text{SO}_{2kb+2l+1}(A)$.

For $\varphi \in \mathcal{A}(\text{SO}_{2l+1})$, $\phi \in \mathcal{A}(\text{SO}_{2kb+2l+1})$, if
$$\int \theta_{\tau; k, b, l}(g, h) \varphi(g) \phi(h) dgdh \neq 0 \quad (6)$$
then φ and ϕ are endoscopically related in terms of τ.

$\theta_{\tau; k, b, l}$ is a Fourier coefficient $E_{\psi V \tau}$ of a residue E_{τ} of certain Eisenstein series on $\text{SO}_{2k}(2l+b+1)$, and the Fourier coefficient has stabilizer isomorphic to $\text{SO}_{2l+1} \times \text{SO}_{2l+2kb+1}$.

Dihua Jiang University of Minnesota
Constructions of Automorphic Forms
General Constructions of Ginzburg-J.-Soudry

- Write a global Arthur parameter \(\psi = (\tau, b) \boxtimes \psi' \) with
 - \((\tau, b) \in \Psi_2(SO_{2kb+1}) (\tau \in A^{u,c}(GL_{2k}), b = 2m + 1);\)
 - \(\psi' \in \Psi_2(SO_{2l+1}).\)

- Look for an endoscopy structure

\[
SO_{2kb+1} \times SO_{2l+1} \rightarrow SO_{2kb+2l+1}
\]
Write a global Arthur parameter $\psi = (\tau, b) \boxplus \psi'$ with
- $(\tau, b) \in \Psi_2(\text{SO}_{2kb+1})$ ($\tau \in A^{u,c}(\text{GL}_{2k})$, $b = 2m + 1$);
- $\psi' \in \Psi_2(\text{SO}_{2l+1})$.

Look for an endoscopy structure

\[\text{SO}_{2kb+1} \times \text{SO}_{2l+1} \rightarrow \text{SO}_{2kb+2l+1} \]

Find an automorphic form $\theta_{\tau; k, b, l}$ on the product

\[\text{SO}_{2l+1}(\mathbb{A}) \times \text{SO}_{2l+2kb+1}(\mathbb{A}). \]
Write a global Arthur parameter \(\psi = (\tau, b) \boxplus \psi' \) with
\begin{itemize}
 \item \((\tau, b) \in \Psi_2(\text{SO}_{2kb+1}) \quad (\tau \in A_u^\nu,(\text{GL}_{2k}), \ b = 2m + 1)\);
 \item \(\psi' \in \Psi_2(\text{SO}_{2l+1})\).
\end{itemize}
Look for an endoscopy structure
\[
\text{SO}_{2kb+1} \times \text{SO}_{2l+1} \rightarrow \text{SO}_{2kb+2l+1}
\]
Find an automorphic form \(\theta_{\tau;k,b,l} \) on the product
\[
\text{SO}_{2l+1}(\mathbb{A}) \times \text{SO}_{2l+2kb+1}(\mathbb{A}).
\]
For \(\phi \in A(\text{SO}_{2l+1}), \varphi \in A(\text{SO}_{2l+2kb+1}) \), if
\[
\int \theta_{\tau;k,b,l}(g, h)\phi(g)\overline{\varphi(h)}\,dg\,dh \neq 0 \tag{6}
\]
then \(\phi \) and \(\varphi \) are endoscopically related in terms of \(\tau \).
Write a global Arthur parameter $\psi = (\tau, b) \boxplus \psi'$ with
- $(\tau, b) \in \Psi_2(\text{SO}_{2kb+1})$ ($\tau \in A^{u,c}(\text{GL}_{2k}), \ b = 2m + 1$);
- $\psi' \in \Psi_2(\text{SO}_{2l+1})$.

Look for an endoscopy structure

$$\text{SO}_{2kb+1} \times \text{SO}_{2l+1} \rightarrow \text{SO}_{2kb+2l+1}$$

Find an automorphic form $\theta_{\tau;k,b,l}$ on the product

$$\text{SO}_{2l+1}(\mathbb{A}) \times \text{SO}_{2l+2kb+1}(\mathbb{A})$$

For $\phi \in A(\text{SO}_{2l+1}), \varphi \in A(\text{SO}_{2l+2kb+1}),$ if

$$\int \theta_{\tau;k,b,l}(g, h)\phi(g)\overline{\varphi(h)} \,dg \,dh \neq 0$$

then ϕ and φ are endoscopically related in terms of τ.

$\theta_{\tau;k,b,l}$ is a Fourier coefficient $E_{\tau}^{\psi \psi'}$ of a residue E_{τ} of certain Eisenstein series on $\text{SO}_{2k(2l+b+1)}$, and the Fourier coefficient has stabilizer isomorphic to $\text{SO}_{2l+1} \times \text{SO}_{2l+2kb+1}$.

Dihua Jiang
University of Minnesota

Constructions of Automorphic Forms
The above construction is given by the following diagram.

\[
\begin{array}{ccc}
\text{SO}_{2k(2l+b+1)} & \stackrel{\uparrow}{\longrightarrow} & \text{GL}_{2k} \\
\downarrow & & \downarrow \theta_{\tau;k,b,l} \\
\text{SO}_{2kb+1} \times \text{SO}_{2l+1} & \overset{\leftrightarrow}{\longrightarrow} & \text{SO}_{2l+2kb+1} \\
\Pi((\tau, b)) & & \Pi(\psi') \\
\end{array}
\]

For general classical groups, such a construction can be formulated in a similar way.
The above construction is given by the following diagram.

\[
\begin{align*}
\text{SO}_{2k(2l+b+1)} & \hspace{1cm} \text{GL}_{2k} \hspace{1cm} \theta_{\tau;k,b,l} \\
\downarrow & \hspace{1cm} \downarrow \\
\text{SO}_{2kb+1} \times \text{SO}_{2l+1} & \hspace{1cm} \leftrightarrow \hspace{1cm} \text{SO}_{2l+2kb+1} \\
\Pi((\tau, b)) & \hspace{1cm} \Pi(\psi') & \hspace{1cm} \Pi(\psi)
\end{align*}
\]

- For general classical groups, such a construction can be formulated in a similar way.
When τ is symplectic, b is odd; when τ is orthogonal, b is even.

\[
\begin{align*}
\Pi(\psi_{SO_{2l+1}} \boxtimes (\tau, b + 2)) & \rightarrow \Pi(\psi_{SO_{2l+1}} \boxtimes (\tau, b)) \\
\Pi(\psi_{SO_{2l+1}}) & \rightarrow \Pi(\psi_{SO_{2l+1}}) \\
SO_{2l+1+2k(b+2)} & \rightarrow SO_{2l+1+2kb} \\
SO_{2l+1+2k(b-2)} & \rightarrow SO_{2l+1+2kb}
\end{align*}
\]
(GL\(_{2k}\), \(\tau\))-Tower (Orthogonal Type)

When \(\tau\) is symplectic, \(b\) is even; when \(\tau\) is orthogonal, \(b\) is odd.

\[
\begin{array}{c}
\vdots \\
\text{Sp}_{2l+2k(b+2)} & \Pi(\psi_{SO_{2l}} \boxtimes (\tau, b+2)) \\
\uparrow \\
\Pi(\psi_{SO_{2l}}) & \text{SO}_{2l} \\
\rightarrow & \text{Sp}_{2l+2kb} & \Pi(\psi_{SO_{2l}} \boxtimes (\tau, b)) \\
\downarrow & \uparrow \\
\text{Sp}_{2l+2k(b-2)} & \Pi(\psi_{SO_{2l}} \boxtimes (\tau, b-2)) \\
\vdots & \\
\end{array}
\]
The dual diagram can be formulated, just like the theta correspondences for reductive dual pairs, by using the metaplectic double cover \(\widetilde{Sp}_{2l} \).
The dual diagram can be formulated, just like the theta correspondences for reductive dual pairs, by using the metaplectic double cover \widetilde{Sp}_{2l}.

Expect the **first occurrence property** hold.
(GL_m, \tau)-Towers

- The dual diagram can be formulated, just like the theta correspondences for reductive dual pairs, by using the metaplectic double cover \(\widetilde{Sp}_{2l} \).
- Expect the **first occurrence property** hold.
- The compatibility of the \((GL_m, \tau)\)-towers with the **Arthur conjecture** generalizes the **Adams conjecture**, and the work of Moeglin as mentioned above.

- The local theory extends the **Howe duality principle**. Some work has been done through the work on the local descent by J.-Soudry (2003), J.-Nien-Qin (2010), and J.-Soudry (2011).
The dual diagram can be formulated, just like the theta correspondences for reductive dual pairs, by using the metaplectic double cover \widetilde{Sp}_{2l}.

Expect the first occurrence property hold.

The compatibility of the (GL_m, τ)-towers with the Arthur conjecture generalizes the Adams conjecture, and the work of Moeglin as mentioned above.

Expect that (GL_m, τ)-towers and the first occurrences are essentially related to the location of poles of the tensor product L-functions of classical group times a general linear group, as the theory of Kudla, Piatetski-Shapiro, and Rallis.
The dual diagram can be formulated, just like the theta correspondences for reductive dual pairs, by using the metaplectic double cover \(\widetilde{Sp}_{2l} \).

Expect the first occurrence property hold.

The compatibility of the \((\text{GL}_m, \tau)\)-towers with the Arthur conjecture generalizes the Adams conjecture, and the work of Moeglin as mentioned above.

Expect that \((\text{GL}_m, \tau)\)-towers and the first occurrences are essentially related to the location of poles of the tensor product \(L \)-functions of classical group times a general linear group, as the theory of Kudla, Piatetski-Shapiro, and Rallis.

The local theory extends the Howe duality principle. Some work has been done through the work on the local descent by J.-Soudry (2003), J.-Nien-Qin (2010), and J.-Soudry (2011).
A tempered Arthur parameter $\psi \in \Psi_2(G)$ has form

$$\psi = (\tau_1, 1) \boxplus \cdots \boxplus (\tau_r, 1) = (\tau_1, 1) \boxplus \psi_2.$$

Then there exists an endoscopy group $H_1 \times H_2$ of G, such that $\psi_1 = (\tau_1, 1) \in \Psi_2(H_1)$ and $\psi_2 \in \Psi_2(H_2)$.

Theorem (Ginzburg (2008) and GJS (in progress))

Let π_1 be a generic member in $\Pi(\psi_1)$, π_2 be a generic member in $\Pi(\psi_2)$, and π be a generic member in $\Pi(\psi)$.

A tempered Arthur parameter $\psi \in \Psi_2(G)$ has form

$$\psi = (\tau_1, 1) \boxplus \cdots \boxplus (\tau_r, 1) = (\tau_1, 1) \boxplus \psi_2.$$

Then there exists an endoscopy group $H_1 \times H_2$ of G, such that $\psi_1 = (\tau_1, 1) \in \Psi_2(H_1)$ and $\psi_2 \in \Psi_2(H_2)$.

Theorem (Ginzburg (2008) and GJS (in progress))

Let π_1 be a generic member in $\Pi(\psi_1)$, π_2 be a generic member in $\Pi(\psi_2)$, and π be a generic member in $\Pi(\psi)$.

- The constructed integral operator gives an endoscopy transfer from $H_1 \times H_2$ to G taking (π_1, π_2) to a generic member in $\Pi(\psi)$.

A tempered Arthur parameter $\psi \in \Psi_2(G)$ has form

$$\psi = (\tau_1, 1) \boxplus \cdots \boxplus (\tau_r, 1) = (\tau_1, 1) \boxplus \psi_2.$$

Then there exists an endoscopy group $H_1 \times H_2$ of G, such that $\psi_1 = (\tau_1, 1) \in \Psi_2(H_1)$ and $\psi_2 \in \Psi_2(H_2)$.

Theorem (Ginzburg (2008) and GJS (in progress))

Let π_1 be a generic member in $\Pi(\psi_1)$, π_2 be a generic member in $\Pi(\psi_2)$, and π be a generic member in $\Pi(\psi)$.

- The constructed integral operator gives an endoscopy transfer from $H_1 \times H_2$ to G taking (π_1, π_2) to a generic member in $\Pi(\psi)$.
- The integral operator determines a descent from π to a generic member in $\Pi(\psi_2)$ by means of π_1.
This theorem was first formulated by Ginzburg in 2008 Duke Math. J. and the odd orthogonal case was discussed there.

The general theorem including unitary groups was stated by Ginzburg-J.-Soudry (2010). The proof for the general classical groups involves some technical issues related to the certain properties in the relevant simple towers as discussed above and is our current work in progress.

Some special cases of non-tempered cases were also proved by Ginzburg-J.-Soudry (2011 preprints).

It remains mostly open for exceptional groups.

The explicit formula arose from such constructions has applications to other important problems, such as periods of automorphic forms, special values of L-functions, and so on.

It is very interesting to find such constructions for Langlands functorial transfers which are NOT of endoscopy type.
Remarks

- This theorem was first formulated by Ginzburg in 2008 Duke Math. J. and the odd orthogonal case was discussed there.
- The general theorem including unitary groups was stated by Ginzburg-J.-Soudry (2010). The proof for the general classical groups involves some technical issues related to the certain properties in the relevant simple towers as discussed above and is our current work in progress.
- Some special cases of non-tempered cases were also proved by Ginzburg-J.-Soudry (2011 preprints).
- It remains mostly open for exceptional groups.
- The explicit formula arose from such constructions has applications to other important problems, such as periods of automorphic forms, special values of L-functions, and so on.
- It is very interesting to find such constructions for Langlands functorial transfers which are NOT of endoscopy type.
Remarks

- This theorem was first formulated by Ginzburg in 2008 Duke Math. J. and the odd orthogonal case was discussed there.
- The general theorem including unitary groups was stated by Ginzburg-J.-Soudry (2010). The proof for the general classical groups involves some technical issues related to the certain properties in the relevant simple towers as discussed above and is our current work in progress.
- Some special cases of non-tempered cases were also proved by Ginzburg-J.-Soudry (2011 preprints).
- It remains mostly open for exceptional groups.
- The explicit formula arose from such constructions has applications to other important problems, such as periods of automorphic forms, special values of L-functions, and so on.
- It is very interesting to find such constructions for Langlands functorial transfers which are NOT of endoscopy type.
Remarks

- This theorem was first formulated by Ginzburg in 2008 Duke Math. J. and the odd orthogonal case was discussed there.
- The general theorem including unitary groups was stated by Ginzburg-J.-Soudry (2010). The proof for the general classical groups involves some technical issues related to the certain properties in the relevant simple towers as discussed above and is our current work in progress.
- Some special cases of non-tempered cases were also proved by Ginzburg-J.-Soudry (2011 preprints).
- It remains mostly open for exceptional groups.
Remarks

- This theorem was first formulated by Ginzburg in 2008 Duke Math. J. and the odd orthogonal case was discussed there.
- The general theorem including unitary groups was stated by Ginzburg-J.-Soudry (2010). The proof for the general classical groups involves some technical issues related to the certain properties in the relevant simple towers as discussed above and is our current work in progress.
- Some special cases of non-tempered cases were also proved by Ginzburg-J.-Soudry (2011 preprints).
- It remains mostly open for exceptional groups.
- The explicit formula arose from such constructions has applications to other important problems, such as periods of automorphic forms, special values of L-functions, and so on.
Remarks

- This theorem was first formulated by Ginzburg in 2008 Duke Math. J. and the odd orthogonal case was discussed there.
- The general theorem including unitary groups was stated by Ginzburg-J.-Soudry (2010). The proof for the general classical groups involves some technical issues related to the certain properties in the relevant simple towers as discussed above and is our current work in progress.
- Some special cases of non-tempered cases were also proved by Ginzburg-J.-Soudry (2011 preprints).
- It remains mostly open for exceptional groups.
- The explicit formula arose from such constructions has applications to other important problems, such as periods of automorphic forms, special values of L-functions, and so on.
- It is very interesting to find such constructions for Langlands functorial transfers which are **NOT** of endoscopy type.