Modularity of Galois representations over imaginary quadratic fields

Krzysztof Klosin
(joint with T. Berger)

City University of New York

December 3, 2011
\begin{itemize}
 \item $F =$ im. quadr. field, $p \nmid \# \text{Cl}_F \, d_K$, fix $p \mid p$
\end{itemize}
• $F = \text{im. quadr. field, } p \nmid \# \text{Cl}_F \ d_K$, fix $p \mid p$

• $\Sigma = \text{finite set of finite places of } F$, $p, \overline{p} \in \Sigma$, $G_\Sigma = \text{Gal}(F_\Sigma/F)$;
Notation

- $F = \text{im. quadr. field}$, $p \nmid \# \text{Cl}_F d_K$, $\text{fix } p | p$
- $\Sigma =$ finite set of finite places of F, $p, \overline{p} \in \Sigma$, $G_\Sigma = \text{Gal}(F_\Sigma / F)$;
- $\mathcal{O} =$ ring of integers in a finite extension of \mathbb{Q}_p,
 $\varpi =$ uniformizer, $\mathcal{F} = \mathcal{O} / \varpi$;
Notation

- $F = \text{im. quadr. field, } p \nmid \# \text{Cl}_F d_K, \text{ fix } p \mid p$
- $\Sigma = \text{finite set of finite places of } F, \, p, \, \overline{p} \in \Sigma, \, G_\Sigma = \text{Gal}(F_\Sigma/F)$;
- $\mathcal{O} = \text{ring of integers in a finite extension of } \mathbb{Q}_p, \, \mathcal{O} = \mathcal{O}/\wp$
- $\wp = \text{uniformizer, } F = \mathcal{O}/\wp$
- $\Psi = (\text{unramified}) \text{ Hecke character of } \infty\text{-type } \overline{\mathbb{Z}}$, $\Psi_p : G_\Sigma \to \mathcal{O}^\times$ the associated Galois character, $\chi_0 = \Psi_p \pmod{\wp}$
Main Theorem

Theorem (Berger-K., 2011)

Suppose that $\dim_F \Ext^1_{F[G_{\Sigma}]}(\chi_0, 1) = 1$. Let $\rho: G_{\Sigma} \to \GL_2(\mathbb{Q}_p)$ be continuous and irreducible. Suppose that:

- $\det \rho = \Psi_p \rho_{ss} = 1 \oplus \chi_0$,
- ρ is crystalline (or ordinary if p splits),
- ρ is minimally ramified.

Then ρ is modular, i.e., $L(\rho \otimes \gamma, s) = L(s, \pi)$ for some automorphic representation π of $\GL_2(A_F)$.

Krzysztof Klosin (joint with T. Berger)

Modularity of Galois representations
Main Theorem

Theorem (Berger-K., 2011)

Suppose that \(\dim \mathbf{F} \operatorname{Ext}^{1}_{\mathbf{F}[G_{\Sigma}]}(\chi_{0}, 1) = 1 \). Let \(\rho : G_{\Sigma} \rightarrow \text{GL}_{2}(\overline{\mathbf{Q}}_{p}) \) be continuous and irreducible. Suppose that:

\(\det \rho = \Psi_{p} \rho \) is crystalline (or ordinary if \(p \) splits)

\(\rho \) is minimally ramified.

Then \(\rho \) is modular, i.e.,

\[L(\rho \otimes \gamma, s) = L(s, \pi) \]

for some automorphic representation \(\pi \) of \(\text{GL}_{2}(A_{\mathbf{F}}) \).
Main Theorem

Theorem (Berger-K., 2011)

Suppose that \(\dim_F \Ext^1_{F[G_\Sigma]}(\chi_0, 1) = 1 \). Let \(\rho : G_\Sigma \to \GL_2(\overline{\Q}_p) \) be continuous and irreducible. Suppose that:

- \(\det \rho = \Psi_p \)
Main Theorem

Theorem (Berger-K., 2011)

Suppose that $\dim_{\mathbb{F}} \text{Ext}^1_{\mathbb{F}[G_{\Sigma}]}(\chi_0, 1) = 1$. Let $\rho : G_{\Sigma} \to \text{GL}_2(\overline{\mathbb{Q}}_p)$ be continuous and irreducible. Suppose that:

- $\det \rho = \Psi_p$
- $\overline{\rho}^{ss} = 1 \oplus \chi_0$

Then ρ is modular, i.e., $L(\rho \otimes \gamma, s) = L(s, \pi)$ for some automorphic representation π of $\text{GL}_2(\mathbb{A}_{\mathbb{F}})$.

Krzysztof Klosin (joint with T. Berger) Modularity of Galois representations
Main Theorem

Theorem (Berger-K., 2011)

Suppose that $\dim_F \Ext^1_{F[G_\Sigma]}(\chi_0, 1) = 1$. Let $\rho : G_\Sigma \rightarrow \GL_2(\overline{\mathbb{Q}}_p)$ be continuous and irreducible. Suppose that:

- $\det \rho = \Psi_p$
- $\overline{\rho}^{ss} = 1 \oplus \chi_0$
- ρ is crystalline (or ordinary if p splits)
- ρ is minimally ramified.

Then ρ is modular, i.e., $L(\rho \otimes \gamma, s) = L(s, \pi)$ for some automorphic representation π of $\GL_2(\mathbb{A}_F)$.

Krzysztof Klosin (joint with T. Berger)
Main Theorem

Theorem (Berger-K., 2011)

Suppose that \(\dim_{F} \text{Ext}_{F[G_{\Sigma}]}^{1}(\chi_{0}, 1) = 1 \). Let \(\rho : G_{\Sigma} \to \text{GL}_{2}(\overline{Q}_{p}) \) be continuous and irreducible. Suppose that:

- \(\det \rho = \Psi_{p} \)
- \(\overline{\rho}^{ss} = 1 \oplus \chi_{0} \)
- \(\rho \) is crystalline (or ordinary if \(p \) splits)
- \(\rho \) is minimally ramified.

Then \(\rho \) is modular, i.e.,

\[
L(\rho \otimes \gamma, s) = L(s, \pi)
\]

for some automorphic representation \(\pi \) of \(\text{GL}_{2}(A_{F}) \).
At the moment this is the only known modularity result for an imaginary quadratic field.
At the moment this is the only known modularity result for an imaginary quadratic field.

This is similar to a result of Skinner and Wiles which applies to \mathbb{Q} or a totally real field, but their method fails for $F=$imaginary quadratic. An important step in their method is the existence of an ordinary, minimal deformation

$$\rho = \begin{bmatrix} * & * \\ 0 & * \end{bmatrix} : G_{\mathbb{Q}} \to GL_2(\mathcal{O})$$

of the residual representation

$$\rho_0 = \begin{bmatrix} 1 & * \\ 0 & \chi_0 \end{bmatrix} \not\sim 1 \oplus \chi_0$$

(uses Kummer theory).
At the moment this is the only known modularity result for an imaginary quadratic field.

This is similar to a result of Skinner and Wiles which applies to \mathbb{Q} or a totally real field, but their method fails for $F=$imaginary quadratic. An important step in their method is the existence of an ordinary, minimal deformation

$$\rho = \begin{bmatrix} * & * \\ 0 & * \end{bmatrix} : G_\mathbb{Q} \to GL_2(\mathcal{O})$$

of the residual representation

$$\rho_0 = \begin{bmatrix} 1 & * \\ 0 & \chi_0 \end{bmatrix} \not\simeq 1 \oplus \chi_0$$

(uses Kummer theory). But

Theorem (Berger-K.)

*No such deformation ρ exists for F.***
Remarks to the Main Theorem

- We do not follow [SW]-strategy. Instead we develop a commutative algebra criterion that allows one to reduce the problem of modularity of all deformations of ρ_0 to that of modularity of the *reducible* deformations of ρ_0.

The condition $\dim_{F} \text{Ext}_{F}^{1}(G, \Sigma)(\chi_{0}, 1) = 1$ is (probably) essential (work in progress).

The unramifiedness of Ψ-condition can be replaced by demanding that $H^{2}_{c}(S, K_{f}, \mathbb{Z}_p)$ tors $= 0$.

Krzysztof Klosin (joint with T. Berger)
Modularity of Galois representations
Remarks to the Main Theorem

- We do not follow [SW]-strategy. Instead we develop a commutative algebra criterion that allows one to reduce the problem of modularity of all deformations of ρ_0 to that of modularity of the reducible deformations of ρ_0.
- The condition $\dim_F \text{Ext}^1_{F[G_{\Sigma}]}(\chi_0, 1) = 1$ is (probably) essential (work in progress).
We do not follow [SW]-strategy. Instead we develop a commutative algebra criterion that allows one to reduce the problem of modularity of all deformations of ρ_0 to that of modularity of the reducible deformations of ρ_0.

The condition $\dim_F \Ext^1_{F[G_\Sigma]}(\chi_0, 1) = 1$ is (probably) essential (work in progress).

The unramifiedness of Ψ-condition can be replaced by demanding that $H^2_{c}(S_{K_f}, \mathbb{Z}_p)^{\text{tors}} = 0$.

Krzysztof Klosin (joint with T. Berger)
Modularity of Galois representations
Let $\rho_0 = \begin{bmatrix} 1 & \ast \\ 0 & \chi_0 \end{bmatrix} : G_\Sigma \rightarrow \text{GL}_2(F)$ be a non-semisimple residual representation.
Let $\rho_0 = \begin{bmatrix} 1 & \ast \\ 0 & \chi_0 \end{bmatrix} : G_\Sigma \to \text{GL}_2(\mathbf{F})$ be a non-semisimple residual representation.

We study the crystalline (or ordinary if p splits) deformations of ρ_0.

There exists a universal couple $(R_\Sigma, \rho_\Sigma : G_\Sigma \to \text{GL}_2(\mathbf{F}))$.

One gets a surjection $\phi : R_\Sigma \twoheadrightarrow T_\Sigma$.

Goal: Show that ϕ is an isomorphism.
Let \(\rho_0 = \begin{bmatrix} 1 & \ast \\ 0 & \chi_0 \end{bmatrix} : G_\Sigma \to \text{GL}_2(F) \) be a non-semisimple residual representation.

We study the crystalline (or ordinary if \(p \) splits) deformations of \(\rho_0 \).

There exists a universal couple \((R_\Sigma, \rho_\Sigma : G_\Sigma \to \text{GL}_2(R_\Sigma))\).
Let $\rho_0 = \begin{bmatrix} 1 & * \\ 0 & \chi_0 \end{bmatrix} : G_\Sigma \to \text{GL}_2(\mathbb{F})$ be a non-semisimple residual representation.

We study the crystalline (or ordinary if p splits) deformations of ρ_0.

There exists a universal couple $(R_\Sigma, \rho_\Sigma : G_\Sigma \to \text{GL}_2(R_\Sigma))$.

One gets a surjection $\phi : R_\Sigma \to T_\Sigma$.

Krzysztof Klosin (joint with T. Berger) Modularity of Galois representations
Method

Let \(\rho_0 = \begin{bmatrix} 1 & * \\ 0 & \chi_0 \end{bmatrix} : G_\Sigma \to \text{GL}_2(\mathbb{F}) \) be a non-semisimple residual representation.

We study the crystalline (or ordinary if \(p \) splits) deformations of \(\rho_0 \).

There exists a universal couple \((R_\Sigma, \rho_\Sigma : G_\Sigma \to \text{GL}_2(R_\Sigma))\)

One gets a surjection \(\phi : R_\Sigma \to T_\Sigma \)

Goal: Show that \(\phi \) is an isomorphism.
Ideal of reducibility

\[l_{\text{re}} := \text{the smallest ideal } l \text{ of } R_{\Sigma} \text{ such that} \]

\[\text{tr} \rho_{\Sigma} = \chi_1 + \chi_2 \pmod{l} \]

for \(\chi_1, \chi_2 \) characters.
Ideal of reducibility

\(I_{re} \) := the smallest ideal \(I \) of \(R_\Sigma \) such that

\[
\text{tr} \rho_\Sigma = \chi_1 + \chi_2 \pmod{I}
\]

for \(\chi_1, \chi_2 \) characters.

\(R_\Sigma/I_{re} \) controls the reducible deformations

Key idea: Reduce the problem to that of modularity of reducible lifts.
Commutative algebra criterion

Theorem (Berger-K.)

Let R, S be commutative rings. Choose $r \in R$ such that \(\bigcap_n r^n R = 0 \). Let A be a domain and suppose that S is a finitely generated free module over A. Suppose we have a commutative diagrams of ring maps:

\[
\begin{array}{ccc}
R & \xrightarrow{\phi} & S \\
\downarrow & & \downarrow \\
R/rR & \xrightarrow{\overline{\phi}} & S/\phi(r)S.
\end{array}
\]

If $\text{rk}_A S/\phi(r)S = 0$, then ϕ is an isomorphism.

The rank condition can be replaced by a condition $rR \sim R/r$ and then the theorem gives an alternative to the criterion of Wiles and Lenstra.
Theorem (Berger-K.)

Let R, S be commutative rings. Choose $r \in R$ such that $\bigcap_n r^n R = 0$. Let A be a domain and suppose that S is a finitely generated free module over A. Suppose we have a commutative diagrams of ring maps:

$$
\begin{array}{ccc}
R & \xrightarrow{\phi} & S \\
\downarrow & & \downarrow \\
R/rR & \xrightarrow{\overline{\phi}} & S/\phi(r)S.
\end{array}
$$

If $\text{rk}_A S/\phi(r)S = 0$, then ϕ is an isomorphism.
Theorem (Berger-K.)

Let R, S be commutative rings. Choose $r \in R$ such that $\bigcap_n r^n R = 0$. Let A be a domain and suppose that S is a finitely generated free module over A. Suppose we have a commutative diagrams of ring maps:

\[
\begin{array}{ccc}
R & \xrightarrow{\phi} & S \\
\downarrow & & \downarrow \\
R/rR & \xrightarrow{\phi} & S/\phi(r)S.
\end{array}
\]

If $\text{rk}_A S/\phi(r)S = 0$, then ϕ is an isomorphism.

The rank condition can be replaced by a condition $\frac{rR}{r^2 R} \cong \frac{\phi(r)S}{\phi(r)^2 S}$ and then the theorem gives an alternative to the criterion of Wiles and Lenstra.

Krzysztof Klosin (joint with T. Berger) Modularity of Galois representations
Applying the commutative algebra criterion

Corollary

Set $S = T_\Sigma$, $R = R_\Sigma$.

Suppose $I_{re} = rR$ and

If the map $\phi: R_\Sigma \twoheadrightarrow T_\Sigma$ induces an isomorphism $R_\Sigma/I_{re} \sim = T_\Sigma/\phi(I_{re})$,

then ϕ is an isomorphism.

Upshot:

To show $R_\Sigma = T_\Sigma$, it suffices to prove:

I_{re} is principal, $R_\Sigma/I_{re} \sim = T_\Sigma/\phi(I_{re})$, i.e., that every reducible deformation of ρ^0 is modular.

Remark: The criterion removes the condition $p || B_2, \omega_k - 2$ from a modularity result for residually reducible Galois representations over \mathbb{Q} due to Calegari.
Applying the commutative algebra criterion

Corollary

Set $S = T_\Sigma$, $R = R_\Sigma$. Suppose $I_{re} = rR$ and $\# T_\Sigma / \phi(I_{re}) T_\Sigma < \infty$. If the map $\phi: R_\Sigma \rightarrow T_\Sigma$ induces an isomorphism $R_\Sigma / I_{re} \cong T_\Sigma / \phi(I_{re})$, then ϕ is an isomorphism.

Upshot: To show $R_\Sigma = T_\Sigma$ it suffices to prove:

- I_{re} is principal,
- $R_\Sigma / I_{re} \cong T_\Sigma / \phi(I_{re})$, i.e., that every reducible deformation of ρ_0 is modular.

Remark: The criterion removes the condition $p || B_{\omega k} - 2$ from a modularity result for residually reducible Galois representations over \mathbb{Q} due to Calegari.
Applying the commutative algebra criterion

Corollary

Set $S = T_\Sigma$, $R = R_\Sigma$. Suppose $l_{re} = rR$ and $\#T_\Sigma/\phi(l_{re})T_\Sigma < \infty$. If the map $\phi : R_\Sigma \rightarrow T_\Sigma$ induces an isomorphism

$$R_\Sigma/l_{re} \cong T_\Sigma/\phi(l_{re}),$$

then ϕ is an isomorphism.
Applying the commutative algebra criterion

Corollary

Set $S = T_\Sigma$, $R = R_\Sigma$. Suppose $l_{\text{re}} = rR$ and $\# T_\Sigma / \phi(l_{\text{re}}) T_\Sigma < \infty$. If the map $\phi : R_\Sigma \to T_\Sigma$ induces an isomorphism

$$R_\Sigma / l_{\text{re}} \cong T_\Sigma / \phi(l_{\text{re}}),$$

then ϕ is an isomorphism.

Upshot: To show $R_\Sigma = T_\Sigma$ it suffices to prove:
Applying the commutative algebra criterion

Corollary

Set $S = T_\Sigma$, $R = R_\Sigma$. Suppose $I_{re} = rR$ and $\#T_\Sigma / \phi(I_{re})T_\Sigma < \infty$. If the map $\phi: R_\Sigma \to T_\Sigma$ induces an isomorphism

$$R_\Sigma / I_{re} \cong T_\Sigma / \phi(I_{re}),$$

then ϕ is an isomorphism.

Upshot: To show $R_\Sigma = T_\Sigma$ it suffices to prove:
- I_{re} is principal,
Corollary

Set $S = T_\Sigma$, $R = R_\Sigma$. Suppose $l_{\text{re}} = rR$ and $\#T_\Sigma/\phi(l_{\text{re}})T_\Sigma < \infty$. If the map $\phi : R_\Sigma \to T_\Sigma$ induces an isomorphism

$$R_\Sigma/l_{\text{re}} \cong T_\Sigma/\phi(l_{\text{re}}),$$

then ϕ is an isomorphism.

Upshot: To show $R_\Sigma = T_\Sigma$ it suffices to prove:

- l_{re} is principal,
- $R_\Sigma/l_{\text{re}} \cong T_\Sigma/\phi(l_{\text{re}})$, i.e., that every reducible deformation of ρ_0 is modular.
Corollary

Set \(S = T_\Sigma \), \(R = R_\Sigma \). Suppose \(I_{re} = rR \) and \(\#T_\Sigma / \phi(I_{re})T_\Sigma < \infty \). If the map \(\phi : R_\Sigma \to T_\Sigma \) induces an isomorphism

\[
R_\Sigma / I_{re} \cong T_\Sigma / \phi(I_{re}),
\]

then \(\phi \) is an isomorphism.

Upshot: To show \(R_\Sigma = T_\Sigma \) it suffices to prove:

- \(I_{re} \) is principal,
- \(R_\Sigma / I_{re} \cong T_\Sigma / \phi(I_{re}) \), i.e., that every *reducible* deformation of \(\rho_0 \) is modular.

Remark: The criterion removes the condition \(p \parallel B_{2, \omega^{k-2}} \) from a modularity result for residually reducible Galois representations over \(\mathbb{Q} \) due to Calegari.
Theorem (Bellaïche-Chenevier, Calegari)

If
\[\dim F \Ext^1_{F[G\Sigma]}(\chi_0, 1) = \dim F \Ext^1_{F[G\Sigma]}(1, \chi_0) = 1, \]
then \(I_{\text{re}} \) is principal.
Theorem (Bellaïche-Chenevier, Calegari)

If
\[\dim_F \text{Ext}^1_{F[G_\Sigma]}(\chi_0, 1) = \dim_F \text{Ext}^1_{F[G_\Sigma]}(1, \chi_0) = 1, \]
then \(I_{\text{re}} \) is principal.

Theorem (Berger-K.)

Let \(A \) be a Noetherian local ring with \(2 \in A^\times \). Set \(S = A[G_\Sigma] \). Let \(\rho : S \to M_2(A) \) be an \(A \)-algebra map with \(\rho = \rho_0 \mod \mathfrak{m}_A \).
Theorem (Bellaïche-Chenevier, Calegari)

If
\[\dim_F \Ext^1_{F[G_\Sigma]}(\chi_0, 1) = \dim_F \Ext^1_{F[G_\Sigma]}(1, \chi_0) = 1, \]
then \(l_{re} \) is principal.

Theorem (Berger-K.)

Let \(A \) be a Noetherian local ring with \(2 \in A^\times \). Set \(S = A[G_\Sigma] \). Let \(\rho : S \to M_2(A) \) be an \(A \)-algebra map with \(\rho = \rho_0 \mod m_A \).

If \(A \) is reduced, infinite, but \(\#A/l_{re,A} < \infty \), then \(l_{re,A} \) is principal.
Goal is to show that $\phi : R_\Sigma/I_{re} \to T_\Sigma/\phi(I_{re})$ is an isomorphism.
Goal is to show that \(\overline{\phi} : R_\Sigma / I_{re} \to T_\Sigma / \phi(I_{re}) \) is an isomorphism.

Two steps:

- Show \(\# R_\Sigma / I_{re} \leq \# \mathcal{O} / L \) – value (Iwasawa Main Conjecture - Rubin).
Goal is to show that \(\overline{\phi} : R_{\Sigma}/I_{\text{re}} \rightarrow T_{\Sigma}/\phi(I_{\text{re}}) \) is an isomorphism.

Two steps:

- Show \(\# R_{\Sigma}/I_{\text{re}} \leq \# \mathcal{O}/L \) – value (Iwasawa Main Conjecture - Rubin).
- Show \(\# T_{\Sigma}/\phi(I_{\text{re}}) \geq \# \mathcal{O}/L \) – value (congruences - Berger).
Let

1. F be a number field, $G_{\Sigma} = \text{Gal}(F_{\Sigma}/F)$;

Then I_{re} is principal for essentially self-dual deformations (Berger-K., 2011); Commutative algebra criterion still works;

Krzysztof Klosin (joint with T. Berger)
Let

- F be a number field, $G_\Sigma = \text{Gal}(F_\Sigma/F)$;
- $\tau_j : G_\Sigma \to \text{GL}_{n_j}(F)$ be absolutely irreducible;
Let

- F be a number field, $G_{\Sigma} = \text{Gal}(F_{\Sigma}/F)$;
- $\tau_j : G_{\Sigma} \to \text{GL}_{n_j}(F)$ be absolutely irreducible;
- $\rho_0 = \begin{bmatrix} \tau_1 & * \\ 0 & \tau_2 \end{bmatrix} : G_{\Sigma} \to \text{GL}_{n_1+n_2}(F)$ be non-semisimple.

Study crystalline deformations of ρ_0, get $(R_{\Sigma},\rho_{\Sigma})$.

Then I_{re} is principal for essentially self-dual deformations (Berger-K., 2011); Commutative algebra criterion still works;
Let

- F be a number field, $G_\Sigma = \text{Gal}(F_\Sigma/F)$;
- $\tau_j : G_\Sigma \rightarrow \text{GL}_{n_j}(F)$ be absolutely irreducible;
- $\rho_0 = \begin{bmatrix} \tau_1 & * \\ 0 & \tau_2 \end{bmatrix} : G_\Sigma \rightarrow \text{GL}_{n_1+n_2}(F)$ be non-semisimple.

- Study crystalline deformations of ρ_0, get (R_Σ, ρ_Σ).
Let

- F be a number field, $G_\Sigma = \text{Gal}(F_\Sigma/F)$;
- $\tau_j : G_\Sigma \to \text{GL}_{n_j}(F)$ be absolutely irreducible;
- $\rho_0 = \begin{bmatrix} \tau_1 & \ast \\ 0 & \tau_2 \end{bmatrix} : G_\Sigma \to \text{GL}_{n_1+n_2}(F)$ be non-semisimple.
- Study crystalline deformations of ρ_0, get $(R_{\Sigma}, \rho_{\Sigma})$.

Then

- l_{re} is principal for essentially self-dual deformations (Berger-K., 2011);
Let
- F be a number field, $G_\Sigma = \text{Gal}(F_\Sigma/F)$;
- $\tau_j : G_\Sigma \rightarrow \text{GL}_{n_j}(F)$ be absolutely irreducible;
- $\rho_0 = \begin{bmatrix} \tau_1 & * \\ 0 & \tau_2 \end{bmatrix} : G_\Sigma \rightarrow \text{GL}_{n_1+n_2}(F)$ be non-semisimple.
- Study crystalline deformations of ρ_0, get (R_Σ, ρ_Σ).

Then
- l_{re} is principal for essentially self-dual deformations (Berger-K., 2011);
- Commutative algebra criterion still works;
Higher-dimensional context

One needs to prove $R_{\Sigma}/l_{\text{re}} = T_{\Sigma}/\phi(l_{\text{re}})$.

Krzysztof Klosin (joint with T. Berger) Modularity of Galois representations
One needs to prove $R_{\Sigma}/I_{\text{re}} = T_{\Sigma}/\phi(I_{\text{re}})$. This uses

- the Bloch-Kato conjecture for the module $\text{Hom}(\tilde{\tau}_2, \tilde{\tau}_1)$, where $\tilde{\tau}_j$ are the unique lifts of τ_j to O,
One needs to prove $R_\Sigma / I_{\text{re}} = T_\Sigma / \phi(I_{\text{re}})$. This uses

- the Bloch-Kato conjecture for the module $\text{Hom}(\tilde{\tau}_2, \tilde{\tau}_1)$, where $\tilde{\tau}_j$ are the unique lifts of τ_j to \mathcal{O},
- Congruences among automorphic forms on higher-rank groups (results of Agarwal, Böcherer, Dummcigan, Schulze-Pillot and K. on congruences to the Yoshida lifts on Sp_4 allow us to prove that certain 4-dimensional Galois representations arise from Siegel modular forms.)
Another modularity result

\(N = \text{square-free}, \ k = \text{even}, \ p > k \geq 4, \ F = \mathbb{Q}. \) Assume that every prime \(l \mid N \) satisfies \(l \not\equiv 1 \mod p. \) Let \(f \in S_2(N), g \in S_k(N), \) \(\Sigma = \{l \mid N, p\}. \) Assume that \(\bar{\rho}_f \) and \(\bar{\rho}_g \) are absolutely irreducible.

Theorem (Berger-K.)

Suppose:
- \(\dim_F H^1_\Sigma(\mathbb{Q}, \text{Hom}(\bar{\rho}_g, \bar{\rho}_f(k/2 - 1))) = 1; \)
- \(R_{\bar{\rho}_f(k/2-1)} = R_{\bar{\rho}_g} = \mathcal{O}; \)
- the B-K conjecture holds for \(H^1_\Sigma(\mathbb{Q}, \text{Hom}(\rho_g, \rho_f(k/2 - 1)))). \)

Let \(\rho : G_{\mathbb{Q}, \Sigma} \to \text{GL}_4(\mathbb{Q}_p) \) be continuous, irreducible and such that:
- \(\bar{\rho}^{ss} \cong \bar{\rho}_f(k/2 - 1) \oplus \bar{\rho}_g; \)
- \(\rho \) is crystalline at \(p \) and essentially self-dual.

Then \(\rho \) is modular. More precisely, there exists a Siegel modular form of weight \(k/2 + 1, \) level \(\Gamma_0(N) \) and trivial character such that \(\rho \cong \rho_F. \)
Thank you.

For papers and preprints visit www.math.utah.edu/~klosin