L-functions, p-adic L-factors, and rational points:

Known: When analytic rank \(\leq 2 \)

Theorem (Green-Zagier): When analytic rank = 2 = alg. rank \(\geq 2 \)

Use an auxiliary imag. quad. field \(K \rightarrow \mathbb{P}_K \subseteq E(K) \)

\[
L_K(E, s) = L(E, s) \cdot L(E, 2s, s)
\]

Choose \(K \) so \(s \) is odd

\[
\frac{L'(E, s)}{L(E, s)} \left(\begin{array}{c}
\frac{L(E, s) L(E, 2s, s)}{L(E, 2s) L(E, s, s)}
\end{array} \right)_{s=1}^{\infty}
\]

(see section below)

\[
\frac{L'(E, 1)}{L(E, 2, 1)} = \frac{\mathcal{O}}{O}
\]

\[
= \mathcal{P}_K \subseteq E(Q)
\]

\(\mathcal{H} = \) Hilbert class field of \(K \)

\[
X: \text{Gal}(K/\mathbb{Q}) \rightarrow \mathbb{C}^x
\]

\[
\Theta_{\mathcal{O}} = \sum_{\mathcal{O}(\mathfrak{P})} x(\mathfrak{p}) e^{2\pi i (\mathfrak{P}\cdot \mathfrak{M}) n} \quad \text{modular form of wt 2.}
\]

\[
L'(E \otimes \Theta_{x}, s)_{s=1} = \langle \mathcal{P}^x, \mathcal{P}^x \rangle
\]

\[
\mathcal{P}^x \in (E(H) \otimes \mathcal{O})^x \quad \text{if } x = 2
\]
Generalizations:

(a) Zhang: \(f \) modular form \(\omega \) wt \(k \). (even \(k \)). \(\text{Centr.} = k/2 \)
\[K, \ x : \text{Gal}(H/k) \rightarrow C^\times \]
\[L(f \circ \Theta^x, s) \]
\[s = k/2 \]
"Heegner hypothesis" \(\Phi_{3k} = -1 \)

(b) Perrin-Riou: \(p \)-adic equivariant
\[E/k \]
\[\text{P-adic } L\text{-function} \]
\[L(E, x, s) \]
interpolates \(x \) of finite order \(\ell \)

2 p-adic L-function
interpolates "Hecke trace" in a certain range \(\ell \)
Theorem (Perrin-Riou): \(\mathcal{O}_k^{(a)} \xrightarrow{\psi} \langle P, P_c \rangle \text{ pro-i} \).

(it remains an anti-cycl. var) This \(L \)-fct has 2 ramified, or for our \(Z_p \)-est.

Question: What if \(\chi \) is a Hecke character of \(K \)?

\[\chi: K^*_{\mathfrak{m}} \rightarrow \mathcal{O}_k^* \] \(\chi \) has \(\psi \) and \(\chi |_{\mathcal{O}_k} = N^{-1} \chi \).

\[\chi(x \mathfrak{m}) = \chi(x) x^{-\mathfrak{m}} \]

\(\chi \) has

\[\chi: \mathfrak{m} \rightarrow \mathcal{O}_k^* \]

\[\mathfrak{m} \rightarrow \mathfrak{m}^* \]

\[\text{Hecke char. of } K \rightarrow \mathfrak{m} \]

\[\psi((\mathfrak{m})) = \psi \chi((\mathfrak{m})) \text{ Hecke char. of } K \rightarrow \mathfrak{m} \]

\[\chi \] has \(\psi \) and \(\chi |_{\mathcal{O}_k} = N^{-1} \chi \).

\[\psi((\mathfrak{m})) = \psi \chi((\mathfrak{m})) \text{ Hecke char. of } K \rightarrow \mathfrak{m} \]

\[\mathfrak{m} \rightarrow \mathfrak{m}^* \]

\[\text{Hecke char. of } K \rightarrow \mathfrak{m} \]

\[\chi \] has \(\psi \) and \(\chi |_{\mathcal{O}_k} = N^{-1} \chi \).

\[\psi((\mathfrak{m})) = \psi \chi((\mathfrak{m})) \text{ Hecke char. of } K \rightarrow \mathfrak{m} \]

\[\mathfrak{m} \rightarrow \mathfrak{m}^* \]

\[\text{Hecke char. of } K \rightarrow \mathfrak{m} \]

\[\chi \] has \(\psi \) and \(\chi |_{\mathcal{O}_k} = N^{-1} \chi \).

\[\psi((\mathfrak{m})) = \psi \chi((\mathfrak{m})) \text{ Hecke char. of } K \rightarrow \mathfrak{m} \]

\[\mathfrak{m} \rightarrow \mathfrak{m}^* \]

\[\text{Hecke char. of } K \rightarrow \mathfrak{m} \]

\[\chi \] has \(\psi \) and \(\chi |_{\mathcal{O}_k} = N^{-1} \chi \).

\[\psi((\mathfrak{m})) = \psi \chi((\mathfrak{m})) \text{ Hecke char. of } K \rightarrow \mathfrak{m} \]

\[\mathfrak{m} \rightarrow \mathfrak{m}^* \]

\[\text{Hecke char. of } K \rightarrow \mathfrak{m} \]

\[\chi \] has \(\psi \) and \(\chi |_{\mathcal{O}_k} = N^{-1} \chi \).

\[\psi((\mathfrak{m})) = \psi \chi((\mathfrak{m})) \text{ Hecke char. of } K \rightarrow \mathfrak{m} \]

\[\mathfrak{m} \rightarrow \mathfrak{m}^* \]

\[\text{Hecke char. of } K \rightarrow \mathfrak{m} \]

\[\chi \] has \(\psi \) and \(\chi |_{\mathcal{O}_k} = N^{-1} \chi \).

\[\psi((\mathfrak{m})) = \psi \chi((\mathfrak{m})) \text{ Hecke char. of } K \rightarrow \mathfrak{m} \]

\[\mathfrak{m} \rightarrow \mathfrak{m}^* \]

\[\text{Hecke char. of } K \rightarrow \mathfrak{m} \]

\[\chi \] has \(\psi \) and \(\chi |_{\mathcal{O}_k} = N^{-1} \chi \).

\[\psi((\mathfrak{m})) = \psi \chi((\mathfrak{m})) \text{ Hecke char. of } K \rightarrow \mathfrak{m} \]

\[\mathfrak{m} \rightarrow \mathfrak{m}^* \]

\[\text{Hecke char. of } K \rightarrow \mathfrak{m} \]

\[\chi \] has \(\psi \) and \(\chi |_{\mathcal{O}_k} = N^{-1} \chi \).

\[\psi((\mathfrak{m})) = \psi \chi((\mathfrak{m})) \text{ Hecke char. of } K \rightarrow \mathfrak{m} \]

\[\mathfrak{m} \rightarrow \mathfrak{m}^* \]

\[\text{Hecke char. of } K \rightarrow \mathfrak{m} \]

\[\chi \] has \(\psi \) and \(\chi |_{\mathcal{O}_k} = N^{-1} \chi \).

\[\psi((\mathfrak{m})) = \psi \chi((\mathfrak{m})) \text{ Hecke char. of } K \rightarrow \mathfrak{m} \]

\[\mathfrak{m} \rightarrow \mathfrak{m}^* \]

\[\text{Hecke char. of } K \rightarrow \mathfrak{m} \]

\[\chi \] has \(\psi \) and \(\chi |_{\mathcal{O}_k} = N^{-1} \chi \).

\[\psi((\mathfrak{m})) = \psi \chi((\mathfrak{m})) \text{ Hecke char. of } K \rightarrow \mathfrak{m} \]

\[\mathfrak{m} \rightarrow \mathfrak{m}^* \]

\[\text{Hecke char. of } K \rightarrow \mathfrak{m} \]
Let \(z \) be a unique fixed point of \(\mathcal{K}^z \) on \(S \).

\[
S \rightarrow \frac{S}{\mathcal{K}^z} \sim \gamma_1(N)
\]

\(z \) \(\rightarrow \) \[\mathcal{K} \in \gamma_0(N)(H) \]

\[
[z] \sim 100 \in \operatorname{Div}(X_0(N)) \stackrel{\text{Artin-Schreier map}}{\rightarrow} J_0(N)(H)
\]

\((a) \) If \(h \) and \(z \) \(\leftrightarrow \) \(E \) \(\quad \) \(\text{send} \quad J_0(N)(H) \rightarrow E(H) \)

Call the point \(v \in E(H) \) \(\gamma_1 \) \(\rightarrow \) \(P_z \).

\[
P^x = \sum_{\sigma \in \operatorname{Gal}(H/k)} x^{\sigma} \cdot P_z \in (E(H) \otimes \mathbb{C})^x
\]

\(\gamma : \operatorname{Gal}(H/k) \rightarrow \mathbb{C}^x \)

\(\chi = 1 : E(H) \rightarrow E(K) \otimes \mathbb{C} \)

\[
(L(E), L(E,H)) \rightarrow \langle P \cdot P \rangle
\]

\(+ \) \(\rightarrow P \in E(K) \quad \text{cc. act by } -1 \)

\(- \) \(\rightarrow P \in E(H) \)

This defines the "point \(\gamma_1 \), move to \(H \)."

\((b) \) Zhang:

\(f \) \(\text{has wt} \ k = 2j \), \(x \) \(\text{finite order} \)

\(x \) \(\text{a \mathbb{Q} \text{-linear automorphism of } } X \)

\(x \) \(\text{a \mathbb{Q} \text{-linear automorphism of } } X \)

\(\text{by Deligne-Serre} \)

\(\mathcal{K} \rightarrow \mathbb{C} \)
\(f \) \& \(k \), \(x \) \& \(l \).

\[(3a) \quad l \leq k \quad \text{and} \quad \text{Sign} = -1.\]

Pick \(A = \text{CM}(l, k) \).

Elliptic curve:

\(f \mapsto (A \times W)^n \rightarrow A^t(A^t)^r \)

\(X_1(N) \)

\(\text{Hodge-Tate formula} \):

\[L_X(F^2) = 1 \quad \text{for CM points twisted by } x. \]

Use Shimura-Maass operator to decay up the \(N \) \text{th} \& \(x \) \text{th}
ψ \text{ held at } 1 \text{ at } K

\chi = \psi_c

f = \Theta_{\psi c}

(f \circ \Theta, s) = L(\varphi_{\psi c}, s) \cdot L(\varphi, s\cdot r)