Automorphic forms and Galois representations:

F number field

l rational prime

$\overline{Q}_l \cong \mathbb{C}$

Def: ① A cuspidal autom. rep. π of $\text{GL}_n(A_F)$ is algebraic
if $\text{H}_c(\pi_{\infty})$ lies in \(\left(\mathbb{Z}^n/S_n \right)^\text{Hom}(F, \mathbb{C}) \subset \left(\mathbb{C}^n/S_n \right)^\text{Hom}(F, \mathbb{C}) \).

② $\chi_{\overline{r}}: \text{Gal}(\overline{F}/F) = G_F \rightarrow \text{GL}_n(\overline{Q}_l)$ is a cont. ss.
rep. (l-adic rep.) we call r algebraic if

a) r is unramified a.e.

b) $\forall v \nmid l$, $r|_v$ is deRham

\[\text{dim}_{\overline{Q}_l} (r \otimes \overline{r}_v (\text{cyclo})) \overset{G_F}{\longrightarrow} \text{mult. of } j \text{ in } HT(r)_v. \]

Example: X/F smooth proj. variety.

$r = H^i(X \times F, \overline{Q}_l)$ is algebraic

\[\text{mult. of } j \text{ in } HT(r)_F = \text{dim}_{\mathbb{C}} H^i_{\text{ét}}(X_{\overline{F}_v}, \mathbb{C}_{\overline{F}_v}). \]

Conjecture: (Langlands- Clozel- Fontaine- Mazur) There is

a bijection

\[\begin{aligned}
&\{ \text{alg. cusp. auto} \} & \leftrightarrow & \{ \text{irred alg. } l\text{-adic rep.} \} \\
&\{ \text{reps of } \text{GL}_n(A_F) \} & \leftrightarrow & \{ G_F \rightarrow \text{GL}_n(\overline{Q}_l) \}
\end{aligned} \]
s.t. 1) $HC(\pi_{a0}) = HT(r_\lambda(\pi_{a0}))$.

2) A prime $\nu = \nu F_r$, $WD(r_{\nu}(\psi)) \rightarrow REC_{F_r} (\psi_{\nu})$.

3) REC_{F_r} local Langlands, $\sigma \rightarrow Fr_{F_r}(\psi_{\nu})$.

4) $Fr_{F_r}(\psi_{\nu}) \leftrightarrow$ semi-simplify.

$Sp_2 : W_{F_r} \rightarrow SL_2(C)$ indecomposable

$\sigma \rightarrow \left(\begin{array}{cc} e^{\frac{1}{2} \psi_{\nu}} & * \\ 0 & e^{-\frac{1}{2} \psi_{\nu}} \end{array} \right)$

$(id, Sp_2) = j_{\nu} : W_{F_r} \rightarrow W_{F_r} \times SL_2(C)$

$v \times \lambda \begin{array}{c} r_\lambda(\psi) |_{W_{F_r}} \simeq WD(r_{\nu}(\psi)) \end{array}_{F_r} = j_{\nu}$.

n=1 this case is true. This is essentially class field theory.

Past n=2 one must impose some restrictions to get any

Theorems.

(1) Regularity

π is called regular if $HC(\pi_{a0})$ consist of n
distinct integers $\lambda \in \I$.

r is called regular if $HT(r_{\nu})$ consist of n distinct
integers $\lambda \in \I$.

If \(\pi \) is \textit{polarizable}

1. \(F \) is CM or totally real, \(F^+ \) maximal real subfield.
2. \(\exists \chi : \text{AF}^+/(F^+)^* \rightarrow \mathbb{C} \) s.t.

\[
\pi^c \cong \pi^c \otimes (\chi \circ N_{F/F^+}) \text{ det}
\]

and \(\chi_v(-1) \) is indep. of \(v \).

If \(\pi \) is \textit{polarizable} if

- \(F \) is totally real, \(r : G_F \rightarrow \text{GO}_n(\mathbb{Q}_2) \)

 multiplier totally even

 \(\mult(r)(c_v) = 2 \forall v \nmid \infty \)

 \(F \) is totally real, \(r : G_F \rightarrow \text{GSp}_n(\mathbb{Q}_2) \)

 multiplier totally odd

 \(\mult(r)(c_v) = 1 \forall v \nmid \infty \)

- \(F \) is imaginary, \(\exists \) a symm pairing \(\langle \cdot, \cdot \rangle \) s.t.

\[
\langle r(\sigma)x, r(\sigma \text{ conj} y) \rangle = X(\sigma) \langle x, y \rangle
\]

where \(X : G_{F^+} \rightarrow \mathbb{Q}_2^* \)

\(X(\mathfrak{c}_v) \) indep. of \(v \).

\textit{Theorem}: \(\chi \pi \) is a polarizable, res, alg, cusp. auto. rep.

of \(\text{GL}_n(\text{AF}) \), then \(\exists \) a polarizable, res, alg, \(\text{L} \)-adic rep. \(r_x(\pi) : G_F \rightarrow \text{GL}_n(\mathbb{Q}_2) \) s.t.

1. \(HT(r_x(\pi)) = HC(\pi^{\text{sm}}) \)

2. \(WD(r_x(\pi)|_{G_F}) F^{ss} = \text{rec}_{F_v}(\pi_v) \forall v \)

Moreover \(\pi_v \) is tempered \(V_v \).
This theorem is due to Shin, Chemerin - Harish, Caroaimi, etc.

Shin regular case:
\[r_2(\mathbb{R}) \subset \text{coh. of } Y_{\text{Shimura variety}} \leftrightarrow G \]
\[G(\mathbb{R}) \cong G(U(n-1,1) \times U(n)) \]
\[G(U(n,1) \times U(n+1,1)) \text{ if even.} \]

Other cases: \(r_2(\mathbb{Q}) \) is an \(l \)-adic limit and \(r_2(\mathbb{Q}) \otimes \mathbb{Q}_l \rightarrow G(U(n-1,1) \times U(n)) \)

Theorem: Suppose \(r \) is a polarizable regular alg. \(l \)-adic rep. \(r : G_F \rightarrow GL(n, \overline{\mathbb{Q}}_l) \). Assume further

a) \(I > \mathbb{Z}(n+1), \quad \mathbb{Z}(n+1) \notin F \).

b) \(\overline{r} = (r \text{ mod } I) \) irreducible in \(G_F/I \).

c) \(I \) unramified in \(F \), \(r|_{I^0} \) is crystalline.

\[\forall \psi \in \mathcal{A} \text{ and } MT(r) \in \left((\mathbb{Z}[0,1,2])^n/S_n \right)^{\text{Hom}(F, \overline{\mathbb{Q}}_l)} \]
then \(I \) a finite Galois \(E/F \) extension \(F/E \) and

a polarizable, crys, alg. cupro auto rep. \(r' \) of \(GL_n(M_{\mathbb{Q}_l}) \)

with \(r|_{I^0} \cong r'_{|_{I^0}} \).

Conditions a) - c) are true for most \(I \) in an ined. family.

Theorem due to Baneret - Larche, Gee, Geraghty, T.

Note one requires a finite base change \(F'/E \). However, for
Applications this is usually enough.

\[\Rightarrow r \text{ pure} \]

\[\Rightarrow r \text{ is part of a family as } l \text{-variety} \]

\[L(r, s) = \prod \det (1 - r^{1/n} (Fract))^\# \text{ converges on some right half-plane, has meromorphic cont. to } \mathbf{C}^* \text{ and satisfies expected functional equation.} \]

\[\Rightarrow \text{Sym}^{r-1}(H(E, \overline{\mathbf{Q}})) \]

\[E/\mathbb{Q} \text{ elliptic curve} \]

\[\Rightarrow 1 + p - \# E(F_p) \in [-2, 2] \]

\[\frac{1}{\sqrt{p}} \text{ equidistributed wrt } \frac{1}{2\pi} \sqrt{4-2^2} dt \text{ (Sato-Tate)} \]

On the Galois side regular seems very restrictive, but on the automorphic side it seems to be very common.

Theorem: (Harris, Lan, T., Thorne) Suppose \(F \) is CM on \(\mathbb{R} \), real, and \(\pi \) is a regular alg. rep. of \(GL_n(\mathbb{R}) \).

Then \(\pi \) is a \(l \)-adic rep.

\[\rho_{l}(\pi): G_F \to GL_n(\overline{\mathbf{Q}}_l) \]

s.t. for all but finitely many \(\nu \)

\[\text{WD}(\rho_{l}(\pi)|_{F_\nu}) \equiv \text{rec}_{F_\nu} (\pi_\nu). \]

(This is most constructed in ch. 6 Shimura variety, but as a limit, etc it is believed they do most exist in coh. of Shimura variety!)}