Algebraicity of L-functions for GL_2:

Goal: $f \in S_k \left(\Gamma_1(N), \chi \right)_{new}$ (k even)

There exist period $\Omega_f \in \mathbb{C}$ such that the following holds:

If η is a Dirichlet character of cond. M with $\eta(-1) = (-1)^k$ then

$$\Omega_f \sum_{n=1}^{\infty} \frac{a_n \eta(n)}{n^s} \chi(n)$$

with $0 \leq j \leq k-2$, and $\Omega_f(n) = \sum_{d|n} \frac{\chi(d)}{d}$.

$$f = \sum a_n q^n$$

$$L(f, \eta, s) = \sum_{n=1}^{\infty} a_n \eta(n) n^{-s} \text{ for } \text{Re}(s) \text{ large}.$$ Note this does not converge in the range $1 \leq s \leq k-1$. As $L(f, \eta, s)$ is defined by analytic continuation.

Key formula:

$$\Gamma(s) L(f, s) = \int_0^\infty \int_0^\infty f(y) y^s \frac{dy}{y} \quad \text{for } \text{Re}(s) \text{ large}.$$
\[\sum \int_0^\infty a_n e^{-\pi n y (iy)^{s-1}} \, dy \]

\[= \sum a_n \int_0^\infty e^{-\pi n y y^{s-1}} \, dy \]

\[= \ldots \text{ gives a nice formula for Re}(s) \text{ large.} \]

One still must deal with \(\int_0^1 \) when \(\text{Re}(s) \) is not necessarily large.

Key point: \(\int_0^1 f(z) \, dz \leftrightarrow \int_0^\infty g(z) \, dz \quad g(z) = f \left(\frac{1}{z} \right) \).

\[\text{converge for all } s. \]

Main point: Get an expression for \(\frac{\Gamma(s)L(f,s)}{(2\pi)^s} \) that is valid for all \(s \), via this trick. This gives a formula for \(L(f,s) \) with \(s \) in the range of interest.

Interpretation: Replace the upper half-plane integral \(\int_0^\infty \), look at the integral on \(\Gamma_i(\mathbb{N}) \), \(y = f(z) \, dz \).

(Assume \(k = 1 \) for this part...)

\[\frac{L(f,s)}{2\pi i} = \int Y f(z) \, dz \]

where \(Y \) is the image in \(\Gamma_i(\mathbb{N}) \) of path from 0 to \(1 \).

This integral actually converges. The integral \(\int_Y \) evaluates \(L(f,s) \) at the point of interest.

For twisted \(L \)-function:
Replace the path from 0 to i∞ by a sum of such paths:

\[\sum_{a=1}^{n} \left\{ \frac{a}{n} \to i\infty \right\} \eta(a) \to \text{project to } \Gamma_1(n) \text{ to path from } \frac{a}{n} \to i\infty \int \text{ integrate w.r.t.} \]

Summary: For each \(\eta \) we get a path \(X(\eta) \) in the upper half plane as above, project to \(\Gamma_1(n) \) and get a compact path \(Y(\eta) \) on the modular curve. Integrate w.r.t. to get the \(L \)-value. To do higher weight the differential form must be modified.

Remark: In general, if \(a, b \) are elements in \(\mathbb{P}^1(\mathbb{Q}) \) one can make the same recipe with a path from \(a \to b \) in \(\mathbb{A} \). This is usually called the modular symbol \([a, b] \). One can then integrate w.r.t. on the image of this path in \(X_1(N) \).

Observe: Given any differential \(\omega \in H^0(X_1(N), \Omega^1) \), we can integrate \(\int_{Y(\eta)} \omega \)

get a functional on \(H^0(X_1(N), \Omega^1) \). This defines \(Y(\eta) \) as an element of \(H_1(X_1(N), \mathbb{Q}) \).

Elementary Hodge theory: Each \([a, b] \to \eta(a, b) \) defines an element of \(H_1(X_1(N), \mathbb{R}) \) (\(\mathbb{R} \)-dual of \(H^0(X, \Omega^1) \)).
Theorem (Manin-Drinfeld): \(\gamma(a,b) \) lies in \(H_1(X_1(N), \mathbb{Q}) \).

Assume this for now and show how this implies the main theorem \((K=\mathbb{Q})\).

Example: \(N = 11 \)

\(X_0(11) \) has genus \(2 \) with two cusps \(0, \infty \).

\[
H_1(X_0(11)) = \mathbb{Z} \oplus \mathbb{Z}
\]

\[
H_1(X_0(11), \mathbb{Q}) = \mathbb{Q} \oplus \mathbb{Q}.
\]

Pick this decomposition according to the \(\pm \) eigenspaces of complex conjugation. Pick generators \(\gamma^\pm \) of each eigenspace.

\[
\begin{align*}
\gamma_+ & = \gamma_+^1 \oplus \gamma_+^2 \\
\gamma_0, \gamma_\infty & = \gamma_0^- \oplus \gamma_\infty^-
\end{align*}
\]

Utilize the unique \(\Phi \) from \(\Phi^+ \) on \(\gamma^\pm \mapsto \Phi^\pm \in \mathbb{C}^\times \).

For any other element \(\gamma \in H_1(X_0(11), \mathbb{Q}) \) have

\[
\gamma = \gamma^+ \oplus \gamma^- = c^+ \gamma^+ \oplus c^- \gamma^-
\]

with \(c^\pm \in \mathbb{Q} \).

Now \(\int \omega \gamma = c^\pm \int \omega \gamma^\pm = c^\pm \int \frac{\gamma^\pm}{\gamma^\pm} \).

Apply this to image of \(\gamma(\eta) \in H_1(X_1(N), \mathbb{Q}) \) we get that

\[
\int \omega_\gamma = c^+(\eta) \delta^+ + c^-(-\eta) \delta^-
\]

\(\gamma(\eta) \)

with \(c^\pm(\eta) \in \mathbb{Q} \).