Math 852 Homework 13

1. Let K_1 and K_2 be purely inseparable extensions of a field F with K_1 and K_2 contained in a large field. Show that K_1K_2 is purely inseparable over F.

2. Let S_1 and S_2 be two transcendence bases of K/F. Prove that S_1 and S_2 have the same cardinality. (Hint: Look back at how we showed two bases of a vector space had the same cardinality and use this replacement method to prove this result.)

3. Let p be prime and let $K = \mathbb{F}_p(x, y)$ with x and y independent transcendentals over \mathbb{F}_p. Let $F = \mathbb{F}_p(x^p - x, y^p - x)$.

 (a) Prove that $[K : F] = p^2$ and the separable degree and inseparable degree of K/F are both equal to p.

 (b) Prove that there is a subfield E of K containing F which is purely inseparable over F of degree p, so then K is a separable extension of E of degree p. (Hint: Let $s = x^p - x \in F$ and $t = y^p - x \in F$ and consider $s - t$.)

4. Let F be a field of characteristic p and K a finite extension of F. Suppose that $[K : F]$ is relatively prime to p. Show that the extension K/F is separable.

5. (a) Let $E = F(x)$ with x transcendental over F. Let K be a proper subfield of E containing F. Show that x is algebraic over K.

 (b) Let $E = F(x)$ with x transcendental over F. Set $y = f(x)/g(x)$ with $f, g \in F[x]$ and $\gcd(f, g) = 1$. Let $n = \max(\deg f, \deg g)$ and suppose $n \geq 1$. Prove that $[F(x) : F(y)] = n$.

6. Let k be a field with 4 elements, t a transcendental over k, $F = k(t^4 + t)$, and $K = k(t)$.

 (a) Show that $[K : F] = 4$.

 (b) Show that K is separable over F.

 (c) Show that K is Galois over F.
(d) Describe the lattice of subgroups of the Galois group and the corresponding lattice of subfields of K, giving each subfield in the form $k(r)$ for some rational function r.

7. (a) Find the splitting field of $f(x) = x^4 - 2$ over \mathbb{Q}. Call the splitting field K.

(b) Prove that $[K : \mathbb{Q}] = 8$. You may use this to conclude that $\text{Gal}(K/\mathbb{Q})$ has order 8 as well. (We may not have stated the Fundamental Theorem of Galois Theory yet, so just use it here.)

(c) Prove that there exists $\sigma \in \text{Gal}(K/\mathbb{Q})$ so that $\sigma(\sqrt[4]{2}) = i\sqrt[4]{2}$ and $\sigma(i) = i$. What is the order of σ?

(d) Let τ be restriction of complex conjugation to K. Show that $\tau \in \text{Gal}(K/\mathbb{Q})$. Show that

$$\text{Gal}(K/\mathbb{Q}) = \{\text{id}, \sigma, \sigma^2, \sigma^3, \tau, \tau\sigma, \sigma^2\tau, \sigma^3\tau\}.$$

What familiar group is this?

(e) Determine the fixed field of $\langle \sigma^2 \tau \rangle$.

(f) Let $E = \mathbb{Q}(\sqrt{2}, i)$. What is $\text{Gal}(K/E)$?

(g) Draw the subgroup and subfield diagrams for K/\mathbb{Q} and $\text{Gal}(K/\mathbb{Q})$ as was done in class. You don’t need to justify all the containments, but label the degrees!