Basic Chat:

We will use elementary complex analytic methods to study complex projective curves. Basically we will take whatever road is easier, not worrying about being "pure".

Elliptic Functions: (Ref: Ahlfors Ch 7)

Fix \(\lambda_1, \lambda_2 \in \mathbb{C} \) that are linearly independent over \(\mathbb{R} \). \(\Lambda = \Lambda(\lambda_1, \lambda_2) = \mathbb{Z} \lambda_1 + \mathbb{Z} \lambda_2 \)

This gives us a lattice, a discrete subgroup of \(\mathbb{C} \).

Def: An elliptic function (wrt \(\Lambda \)) is a meromorphic function \(f(z) \) on \(\mathbb{C} \) which is periodic wrt to \(\Lambda \),

ie. \(f(z + \lambda) = f(z) \), \(\forall \lambda \in \Lambda \), \(z \in \mathbb{C} \).

Goal: Understand the existence and properties of elliptic functions.

Remark: \(\{ \text{elliptic functions} \} \subset \{ \text{meromorphic on } \mathbb{C}/\Lambda \} \)

Prop: The only analytic elliptic functions are constant.

Notation: Denote by \(\mathcal{P} \subset \mathbb{C} \) the closed region spanned by \(\lambda_1, \lambda_2, \lambda_1 + \lambda_2 \).

\[P_a = P + a \quad : \text{translate of } P \text{ by } a \text{ for } a \in \mathbb{C}. \]
Proof (Prop): Any \(f(z) \) is an entire \(\Lambda \)-periodic function.

If \(|f(z)| \) is bounded on \(\Lambda \) since \(\Lambda \) is compact. Now by
periodicity, it is everywhere bounded. Hence constant by
Jouwville's Thm.

Now assume \(f(z) \) meromorphic (always \(\Lambda \)-periodic).

Fix \(a \in \mathbb{C} \) s.t. \(f(z) \) has no zeroes or poles on \(\partial \Lambda_a \).

Thm (Residue Thm): The sum of the residues of \(f(z) \) inside \(\Lambda_a \)
is 0.

Proof: By the classical Residue Thm,

\[
\sum \text{res of } f(z) \text{ in } \Lambda_a = \frac{1}{2\pi i} \int_{\partial \Lambda_a} f(z) \, dz.
\]

By periodicity,

\[
\int_{\Lambda} = \int_{\Lambda'}, \quad \int_{\Pi} = \int_{\Pi'}, \quad \text{As we get}
\]

\[
\frac{1}{2\pi i} \int_{\partial \Lambda_a} f(z) \, dz = 0.
\]

Coroll: A nonzero constant elliptic function has the same number of
zeroes as zeroes (counting multiplicity) inside \(\Lambda_a \).

Proof: Consider the elliptic function \(\frac{f'(z)}{f(z)} \).

\[
\text{res}_{b} \left(\frac{f'(z)}{f(z)} \right) = \text{ord}_{b} (f(z))
\]

Use \(\sum \text{res} \left(\frac{f'}{f} \right) = 0 \), so \(\sum_{b \in \Lambda_a} \text{ord}_{b} (f) = 0 \).
Theorem ("First half of Ahlfors' Thm"): Let \(f(z) \) be a non-constant elliptic function. Let \(P_1, \ldots, P_r, q_1, \ldots, q_r \) be the zeroes and poles of \(f(z) \) inside \(P_a \), repeated according to their multiplicity. Then \(\sum p_i \equiv \sum q_i \pmod{\Delta} \).

Corollary: There is no elliptic function \(f(z) \) having a simple pole in \(P_a \).

Proof (Thm): By the classical Riemann Thm,
\[
\sum p_i - \sum q_i = \frac{-1}{2\pi i} \int_{\partial P_a} z \frac{f'(z)}{f(z)} \, dz
\]

As before,
\[
\int_{\partial P_a} z \frac{f'(z)}{f(z)} \, dz = \int_{\partial I} z \frac{f'(z)}{f(z)} \, dz + \sum_{\lambda \in \Lambda} z \frac{f'(z)}{f(z)} \int_{\partial I + \lambda z} z \frac{f'(z)}{f(z)} \, dz
\]

Recall \(\frac{1}{2\pi i} \int_{\partial I} z \frac{f'(z)}{f(z)} \, dz = \text{winding number of } f(\lambda) \text{ around the origin} \in \mathbb{Z} \).

\[
\int_{\partial P_a} z \frac{f'(z)}{f(z)} \, dz \in \lambda \mathbb{Z} \subseteq \Delta
\]

Similarly, for \(\int_{\partial P_a} z \frac{f'(z)}{f(z)} \, dz \). And so we get the result.
Proof (cont.): Note that if such a function exists, then there is exactly one zero as well. Since they are congruent, they must be equal. \(\therefore \)
Weierstrass \wp-form:

Define $\wp(z) = \frac{1}{z^2} + \sum_{\lambda \in \Lambda, \lambda \neq 0} \left(\frac{1}{(z-\lambda)^2} - \frac{1}{\lambda^2} \right)$

(*)

Thm: RHS of (*) converges uniformly on compact subset of $\mathbb{C} \setminus \Lambda$, to a meromorphic function having poles of order 2 and zero residues at each $\lambda \in \Lambda$, and no other singularities. $\wp(z)$ is even and elliptic w.r.t Λ.

Proof: For convergence, see Ahlfors Chapt 7.5.3.1.

The statement about the singularities and the statement that $\wp(z)$ is even are clear.

Need to show $\wp(z)$ is actually Λ-periodic.

Consider:

$$\wp'(z) = -\frac{3}{z^2} + \sum_{\lambda \in \Lambda, \lambda \neq 0} \frac{2}{(z-\lambda)^3}$$

This is clearly periodic w.r.t Λ because we can move summation etc.

Fix $\lambda \in \Lambda$.

$$(\wp(z + \lambda) - \wp(z))' = \wp'(z + \lambda) - \wp'(z) = 0.$$

As for each $\lambda \in \Lambda$, there is $C = C_{\lambda}$ s.t.

$$\wp(z + \lambda) - \wp(z) = C_{\lambda}.$$

Take $\lambda = \lambda_1$, $z = -\frac{\lambda_1}{3}$. So we get:

$$\wp\left(\frac{\lambda_1}{3} \right) - \wp\left(-\frac{\lambda_1}{3} \right) = C_{\lambda_1}.$$

But $\wp\left(\frac{\lambda_1}{3} \right) - \wp\left(-\frac{\lambda_1}{3} \right) = 0$ because \wp is even. Thus $C_{\lambda_1} = 0$.

Similarly, $\wp(z + \lambda_3) = \wp(z)$.
So our two "basic" elliptic functions are:

\[g(\tau) = \frac{1}{\tau^2} + \sum_{\lambda \neq 0} \left(\frac{1}{(\tau - \lambda)^2} - \frac{1}{\lambda^2} \right) \]

\[g'(\tau) = -2\sum_{\lambda} \frac{1}{(\tau - \lambda)^3}. \]

Prop: Laurent series for \(g \) is

\[g(\tau) = \frac{1}{\tau^2} + \sum_{k \geq 1} (2k+1) G_{2k+2} \tau^{2k} \]

where \(G_{2m} = \sum_{\lambda \neq 0} \lambda^{-2m} \) (converge for \(m \geq 1 \)).

Proof: (sketch)

For \(m \geq 1 \), recall \(\frac{1}{(1-r)^2} = 1 + 2r + 3r^2 + \cdots \).

\[\frac{1}{(\tau - \lambda)^2} - \frac{1}{\lambda^2} = \lambda^{-2} \left(\left(1 - \frac{\tau}{\lambda} \right)^{-2} - 1 \right) \]

\[= \lambda^{-2} \left(2 \frac{\tau}{\lambda} + 3 \left(\frac{\tau}{\lambda} \right)^2 \cdots \right) \quad \text{for } |\tau| < |\lambda| \]

Now plug into the formula for \(g(\tau) \) and rearrange.

\[\Box \]

Thm: (assert) \(g \) and \(g' \) generate the field of all elliptic functions

wrt \(\Lambda \), i.e.,

\[\left\{ \text{elliptic forms} \right\} = \mathcal{O}(g, g') \]

"field"

Next: We want to show \(g, g' \) satisfy some polynomial equation,

i.e., \(g \) satisfies some differential equation.

Def: Given \(k \geq 0 \), define

\[V_k = \left\{ \text{all elliptic forms } | \text{f has poles of order } \leq k \text{ on } \Lambda, \text{analytic on } \mathbb{C} \setminus \Lambda \right\} \]
V_k is a C-vector space.

$V_0 = C$

$V_0 \subseteq V_1 \subseteq V_2 \subseteq V_3 \subseteq \cdots$

Claim 1: $\dim V_k - \dim V_{k-1} \geq 1$

Proof: Let $K > 2$, then we can write $K = 3m + 3n$ some $m, n \geq 0$.

Then $g^m(p')^n \in V_k \setminus V_{k-1}$.

Claim 2: $\dim V_k - \dim V_{k-1} \leq 1$

Proof: Take $f, g \in V_k \setminus V_{k-1}$. So we need to show f, g are linearly dependent (not V_{k-1}). By the Laurent series are:

$f = a_0 + \cdots$

$g = b_0 + \cdots$

Then $bf - ag$ has a pole of order at most $K - 1$, i.e.,

$bf - ag \in V_{k-1}$.

Now we write down elements of these vector spaces:

$V_0 = V_1 \subseteq V_2 \subseteq V_3 \subseteq V_4 \subseteq V_5 \subseteq V_6$

$1 \quad g \quad g' \quad g'' \quad g''' \quad g'''' \quad g^{\text{triple}}$

As we have 7 elements in V_6, which has dim 6. A there is some C-linear combination that is zero.
Corl: The 7 indicated functions are linearly dependent over \(\mathbb{C} \).

ie, \(\exists \) poly relation:

\[
(g^3)'^2 = a g^3 + b g^3 g = \cdots + e g + f
\]

where \(a, \ldots, f \in \mathbb{C} \).

Thus, there is some differential equation that \(g \) satisfies.

Thm: \(\ln \)身份,

\[
(g^3)'^2 = 4 g^3 + 6 g^3 g + 14 g^3.
\]

Let \(g_2 = 6 g \), \(g_3 = 14 g \), then we have:

\[
(g^3)'^2 = 4 g^3 + g_2 g + g_3.
\]

Remark: Formally, \(w = g(z) \), then

\[
\frac{d w}{d z} = \sqrt{4 w^3 + g_2 w + g_3}.
\]

So, \(\frac{d w}{\sqrt{4 w^3 + g_2 w + g_3}} = d z \).

ie, \(z = \int \frac{d w}{\sqrt{4 w^3 + g_2 w + g_3}} \).

This is an elliptic integral.

ie,

\[
Z - Z_0 = \int \frac{g(z)'}{\sqrt{4 g^3 + g_2 g + g_3}}
\]

Can see Ahlfors pg 368, chap 5 & 6 to see the details.
Complex Manifolds:

Def (informal): A complex manifold of complex dimension m is a 2nd countable Hausdorff space X, with a covering by open sets $\{ U_\alpha \}$ together with homeomorphisms $c_{\alpha\beta} : U_\alpha \rightarrow V_\alpha \subseteq \mathbb{C}^m$

![Diagram of complex manifolds]

Set the transition functions $g_{\alpha\beta} : c_{\alpha}(U \cap U_\beta) \rightarrow c_{\beta}(U \cap U_\alpha)$ where $g_{\alpha\beta} = c_{\beta} \circ c_{\alpha}^{-1}$ are analytic.

Example: $\mathbb{P}^1 = \text{Riemann sphere} = \{ C \cup \{ \infty \} \}$

![Diagram of Riemann sphere]

$\mathbb{P}^1 \setminus \{ \infty \} = \mathbb{C}$

$\omega = \frac{1}{z}$

$\mathbb{P}^1 \setminus \{ 0 \} = \mathbb{C}$

So $g_{1,0}(z) = \frac{1}{\omega}$.

This definition is informal because we should be defining an equivalence relation on the set of coverings of X, etc.
Def: A Riemann surface is a complex manifold of complex dimension 1.

Example: \(\mathbb{P}^n \) : homogeneous coordinates \([T_0 : \cdots : T_n]\)

Chart: \(U_i = \{ T_i \neq 0 \} \ni [T_0, \cdots, T_n] = \left[\frac{T_0}{T_i}, \ldots, 1, \frac{T_n}{T_i} \right] \)

Translation: \(g_{10} : V_0 \to V_1 \) (quotations are because it is not defined in all of \(V_0 \) given the overlap)

\[
\begin{align*}
U_0 & : [z_1, z_2, z_3] = [\frac{1}{z_1}, 1, \frac{z_2}{z_1}, \frac{z_3}{z_1}] \in U_1 \\
g_{10} & : (z_1, z_2, z_3) \to (\frac{1}{z_1}, \frac{z_2}{z_1}, \frac{z_3}{z_1}) \in V_1
\end{align*}
\]

Example: \(\Lambda \subseteq \mathbb{C} \) lattice

\(\begin{array}{c}
\Lambda \subseteq \mathbb{C} \\
= \mathbb{C}/\Lambda \\
\approx S' \times S'
\end{array} \)

Let \(V(a) \) be a connected nbhd of \(a \in \mathbb{C} \) sufficiently small so that two points of \(V(a) \) are congruent modulo \(\Lambda \).

\(\pi: V(a) \to U(a) = \pi(V(a)) \)

So \(\phi^a = (\pi|U(a))^{-1}: V(a) \to U(a) \) is a local coordinate.
The transition functions
\[g_{w_1} : \mathbb{V}(a) \rightarrow \mathbb{V}(b) \]
are
\[\mathbb{Z} \rightarrow \mathbb{Z} + (b-a) \]

Example: (This takes some thought)

A nonsingular, connected, quasi-projective complex variety is a complex manifold. (This is met the Zariski topography, it gets its topology from \(\mathbb{C} \mathbb{P}^n \).

\[\mathbb{Z} = \{ (z,w) \mid f(z,w)=0 \} \leq \mathbb{C}^2 \] is a nonsingular plane curve.

\[V \ni \mathbb{Z}, \quad \frac{\partial f}{\partial z} (p) \neq 0 \text{ or } \frac{\partial f}{\partial w} (p) \neq 0 \]

\[\text{If } \frac{\partial f}{\partial w} (p) \neq 0, \text{ then we can use } z \text{ as a local coordinate.} \]

\[\text{If } \frac{\partial f}{\partial z} (p) \neq 0, \text{ then use } w \text{ as a local coordinate.} \]

Transition functions: implicit function theorem is true for analytic functions. If \(\frac{\partial f}{\partial w} (0) \neq 0 \), then there is an analytic function \(\phi(z) \) s.t. \(\mathbb{Z} \) is locally the graph of \(w = \phi(z) \), i.e., \(\mathbb{Z} \cap \ker \phi = \{(z, \phi(z)) \mid z \in \mathbb{Z} \} \).
Pictorial Example: "The Riemann surface of an analytic function"

\[w^3 - z^2(z-1) = 0 \]

"\[w = \pm \sqrt[3]{z^2(z-1)} \]"

\[\mathbb{X} \subset \mathbb{W} \]
\[\downarrow \]
\[\mathbb{C} \rightarrow \mathbb{Z} \]

This picture is not the Riemann surface because it is singular.

: Pulling points apart.
More formal definition:

\[X = \text{Hausdorff space.} \]

Def: Two charts \(\varphi : U \to V, \varphi' : U' \to V' \) are compatible if
\[\varphi' \circ \varphi : \varphi(U \cap U') \to \varphi'(U \cap U') \] is analytic. (on \(U \cap U' \)).

Def: An atlas on \(X \) is a collection \(\mathcal{A} = \{ \varphi \colon U \to V \} \) of compatible charts whose domains cover \(X \).

Def: Two atlases \(\mathcal{A}, \mathcal{B} \) are equivalent if every chart of \(\mathcal{A} \) is compatible with every chart of \(\mathcal{B} \).

Lemma: Every atlas is contained in a unique maximal atlas.

Def: A complex manifold is a 2nd countable Hausdorff space together with an equivalence class of atlases. (equivalently, a max. atlas).

General Philosophy:

Any "intrinsically defined" analytic notion makes sense on a complex manifold.

Example: \(X \) = complex manifold.

A function \(f : X \to \mathbb{C} \) is holomorphic if \(f \circ \varphi_i^{-1} \) is holomorphic for all charts \(\varphi_i : U_i \to V_i \).

\[X \supseteq U_i \xrightarrow{f} \mathbb{C} \]

\[\varphi_i : \mathbb{C} \to V_i \xrightarrow{f \circ \varphi_i^{-1}} \]

Note that this does not depend on the choice of the chart in the sense that:
\[U_i \subseteq \mathbb{C} \rightarrow U_j \]
\[\varphi_i \downarrow \quad \downarrow \varphi_j \]
\[V_i \xrightarrow{g_{ji}} V_j \]
\[f \circ \varphi_i^{-1} = f \circ \varphi_j^{-1} \circ g_{ji}. \]

Each in holomorphic if the other is. \[g_{ji} \] is biholomorphic.

Similarly for meromorphic functions.

Example: \((\text{mero funs}) \) \(\rightarrow \) \((\text{elliptic funs}) \)

Notation: \(\mathcal{C}(x) = \text{field of meromorphic functions on } \mathbb{C} \).

Def.: A **continuous map** \(f: \mathbb{C} \rightarrow \mathbb{C} \) between complex manifolds \(\mathbb{C}, \mathbb{C} \) is **holomorphic** if it is given in local coordinates by analytic functions, i.e.,
after refinement, look for chart

\[\mathbb{C} \ni U_i \xrightarrow{\varphi_i} V_i \subseteq \mathbb{C} \]
\[\mathbb{C} \ni W_j \xrightarrow{\psi_j} O_j \]

s.t. \(f(U_i) \subseteq W_{ji}; \psi \).

\[\begin{array}{ccc}
\mathbb{C} & \xrightarrow{f} & \mathbb{C} \\
U_i & \xrightarrow{\varphi_i} & W_{ji} \\
\varphi_i \downarrow & & \psi_j \\
V_i & \xrightarrow{\psi_j \circ \varphi_i^{-1}} & V_j \end{array} \]

, \(\psi_j \circ \varphi_i^{-1} \) is holomorphic.
Example: \(\pi : \mathbb{C} \to \mathbb{C}^n \) is analytic.

Example: Fix \(\Lambda \subset \mathbb{C} \) lattice, \(\mathbb{X} = \mathbb{X}_{\Lambda} = \mathbb{C}/\Lambda \).

Define \(\tilde{\varphi} : \mathbb{X} \to \mathbb{P}^2 \) via \(\tilde{\varphi}(z) = [y(z), y'(z), 1] \).

Proof: \((*)\) defines a holomorphic map \(\tilde{\varphi} \) whose image is contained in the algebraic curve \(E = E_{\Lambda} = \{ z \in \mathbb{C}^3 : y^3 - 4x^3 - 9x - g_3 = 0 \} \) if
\[
\left\{ y^3, -14y^2x, -93y, 92x^2, -9, 2 \right\} = 0.
\]

Proof: This just comes down to understanding what \((*)\) means.

First consider
\[
\begin{array}{c}
\mathbb{C} \\
\downarrow
\end{array} \xrightarrow{\varphi} \mathbb{P}^2
\]
\[
\mathbb{X} = \mathbb{C}/\Lambda \xrightarrow{\tilde{\varphi}} \mathbb{P}^2
\]
\[
\tilde{\varphi}(z) = [y(z), y'(z), 1]
\]

\(\tilde{\varphi} \) is analytic map \(\mathbb{C}/\Lambda \to \mathbb{C}' = \mathbb{C} \setminus \{ 0 \} \subset \mathbb{P}^2 \)
\[
\pi \longmapsto (y(z), y'(z)).
\]

This defines an analytic map
\[
\mathbb{X} \setminus 0 \longrightarrow \mathbb{C} \subset \mathbb{P}^2
\]
\[
\mathbb{C} \setminus \pi(\Lambda)
\]

Note: For \(z \neq 0 \), \([y(z), y'(z), 1], [z^3y(z), z^2y'(z), z^3] \)
\[
\lim_{z \to 0} [z^3y(z), z^2y'(z), z^3] = [0, -2, 0] = [0, 1, 0] \text{ in } \mathbb{P}^2.
\]

For \(z \) near \(0 \), \(\tilde{\varphi}(z) = \left(\frac{y(z)}{y'(z)} \right) \subset \mathbb{C}' = \mathbb{C} \setminus \{ 0 \} \subset \mathbb{P}^2 \).

This is analytic for \(z \) near \(0 \) (in any \(\Lambda \)), so define
\[
\tilde{\varphi} : \mathbb{C} \to \mathbb{P}^2
\]
hence $\phi : \mathbb{X} \rightarrow \mathbb{P}^3$

Now, the fact the image lies in the curve is just the differential equation we already derived.

General Principle:

$\mathbb{X} = \{s, \ldots, s \in C(\mathbb{X}) \text{ mon-const. mono func.}\}$

Then $\phi : \mathbb{X} \rightarrow \mathbb{P}^r$

$x \mapsto [1, f_1(x), \ldots, f_r(x)]$

defines a holomorphic map. Moreover, any nonzero holomorphic map like this.

Warning: If \mathbb{X} is a complex manifold of dim 2, then the corresponding statement can fail.

$f_1 = \frac{y}{x}$ on C^2

$[1, \frac{y}{x} = [x, y] \text{ does not define an analytic map from } C^2 \text{ to } \mathbb{P}^1.$

This is because of the origin. Do it at a zero, pole, something else?

For manifolds of dim 1 the zeroes and poles are isolated so this problem doesn't come up.

Thm: Let $\Lambda \subseteq C$ be a lattice, $\mathbb{X} = C/\Lambda$

$g_0, g_1 \in C \text{ constants determined by } \Lambda.$

1. Curve $E = E_\lambda = \{y^2 - 4x^3 - g_2x - g_3 = 0\}$
 is nonsingular, compact, and hence a R.S.

2. Mapping $\phi : \mathbb{X} \rightarrow E \ni ([x(2), y(2), t])$ defines an isomorphism of complex manifolds.
Recall:
\[\Lambda \in \mathbb{C}, \, \mathbb{E} = \mathbb{C}/\Lambda \]
\[g_2, g_3 \in \mathbb{C} \quad \text{constants associated to } \Lambda \]
\[E = E^\Lambda \subseteq \mathbb{P}^3 \quad \ldots \]
\[= \text{cyclic } \, y^3 = 4x^3 + g_2x + g_3 \, \in \mathbb{C}^3 \]

Thm:
1. \(E \) is nonsingular
2. Map
\[\phi : \mathbb{C} \rightarrow E \subseteq \mathbb{P}^3 \quad \text{is an isomorphism.} \]

Proof: One can check that \(y^3 = 4x^3 + g_2x + g_3 \) is nonsingular in all \(\mathbb{C} \setminus \mathbb{P}^3 \) iff poly \(4x^3 + g_2x + g_3 \) has distinct roots.

Let \(\lambda_1, \lambda_2, \lambda_3 \in \Lambda \) be a basis. The three zeroes of \(\phi' \) are
\[\frac{\lambda_1}{2}, \quad \frac{\lambda_2}{2}, \quad \frac{\lambda_3}{2} \]

(in one period parallelogram) This is because \(\phi' \) is odd and so we have:
\[\phi'(-\frac{\lambda_1}{2}) = \phi'\left(-\frac{\lambda_2}{2}\right) \]
\[= \phi'\left(-\frac{\lambda_3}{2}\right) \]
\[= 0 \]

The roots of \(4x^3 + g_2x + g_3 \) are then \(\phi\left(\frac{\lambda_1}{2}\right), \, \phi\left(\frac{\lambda_2}{2}\right), \, \phi\left(\frac{\lambda_3}{2}\right) \).

So we need to show these are all distinct.

Consider \(\phi(2) - \phi\left(\frac{2}{3}\right) \). This vanishes at \(\frac{2}{3} \), even and periodic, so it has a double zero at \(\frac{2}{3} \). So it can't have any other zeros.
in a period parallelogram (only $h=1$), it follows that
\[
\frac{A_2}{\Delta} \quad \text{and} \quad \frac{A_1 \times A_2}{\Delta} \quad \text{can't be roots of} \quad \phi(z) = \phi\left(\frac{A_1}{\Delta}\right).
\]
As the three values are distinct, so E is nonsingular.

(2) **Claim**: $\phi : \mathbb{R} \to E$ is 1-1 and onto.

Proof (surj):

![Diagram](image)

Take $(x, y) \in E$. Consider $\phi(z) - x$. This is a constant
elliptic function, so it has zeros at $z = a, -a$ for some a. Thus $\phi(a) = x$. So then

\[
(\phi'(a))^2 = 4x^3 + 9x + g_3 = y^2.
\]

Thus, either $y = \phi'(a)$ or $y = \phi'(-a)$.

n: Exercise.

To complete the proof, we use the following lemma.

Lemma: A 1-1, surj. holomorphic map $f : \mathbb{C} \to \mathbb{C}$ between
Riemann surfaces is an isomorphism.

Sketch of Proof: Need to show f^{-1} is holomorphic. Let local coordinates,

\[
\begin{align*}
\mathbb{C} & \quad \text{local coord.} \\
\mathbb{C} & \quad \text{local coord.} \\
\varphi(z) & = f(0) = 0
\end{align*}
\]

\[
\mathbb{C} = f(z) = z^e \quad e > 1 \quad (\text{locally!})
\]
$f(z)$ maps \mathbb{C} to \mathbb{C} locally. Now just take e^z of the extra stuff.

Now since f is 1-1 implies $e^1 = f^{-1}$ is analytic. \[\Box\]

Caution: This lemma is NOT true if the curve is 'singular'. Think of \mathbb{A}^1 and a curve by a cauop.

Group Law on E:

One can define a law on E as indicated:

![Diagram of group law on E]

- $[0,1,0]$ - pt at infinity.
- $[1,0,0]$ - origin.
- $P, Q, R, P+Q, R-P.Q$.
- Vertical line passes through P at ∞.

Assuming fact: This addition makes E into an additive group.

Prop: This realizes the natural group structure on $X = \mathbb{C}/\Lambda$

by $X \cong E$.

This basically breaks down to the addition formula for $f(x)$.
If E is defined over \mathbb{Q}, then we get a group $E(\mathbb{Q})$.

Consider the curve $E: y^2 = 4x^3 + 9x + 9$, with RHS having distinct roots. Is E of the form E/Λ for some Λ? The answer is yes, but it isn't necessarily obvious how we get Λ.

Meromorphic Functions on E/Λ:

Let $C(x) = \text{field of meromorphic functions on } E$

- $C(x) = C(g, g')$
- ($C(E) = \text{rational functions on } E$)

(a) $0 \neq f \in C(x)$ has the same $\#$ of zeroes and poles.

Fix $p_1, \ldots, p_r, q_1, \ldots, q_r \in \mathbb{R}$, allowing repetitions.

Theorem (Abel): There exists a meromorphic function $f \in C(x)$

- pole at p_i and zero at q_i iff $\sum p_i = \sum q_i$
- in E/Λ.

Example:

- E
- $P + Q + R = 0$ iff colinear.

Any P, Q, R are colinear. Then we should be able to find
If we take P, Q, R as zeroes and a triple pole at ∞.

$L(x, y)$ is the line that P, Q, R lie on.

Can take this line as the numerator and line at ∞ as the denominator.

We'll introduce a new function in \mathbb{C}, "theta function": Given $\Lambda \subseteq \mathbb{C}$,

$$\sigma(z, \Lambda) = \sigma(z)$$

$$= \prod_{\lambda \in \Lambda} \left(1 - \frac{z}{\lambda}\right)e^{\frac{z}{\lambda} + \frac{\overline{z}}{\lambda}}$$

Prop:

(a) σ converges to an entire function with simple zeroes at lattice pts.

(b) Next time.

(c) For $\lambda \in \Lambda$, \exists $a = a_\lambda$, $b = b_\lambda$ s.t.

$$\sigma(z + \lambda) = e^{az + b} \sigma(z)$$

We will want to look at ratios of the form:

$$\frac{\prod \sigma(z - q_i)}{\prod \sigma(z - p_i)}$$
Theorem (Azumi): Given \(p_1, p_2, \ldots, p_r, q_1, \ldots, q_r \in \mathbb{C}/\Lambda \). Then there exists a meromorphic form \(f \) on \(\mathbb{C} \) with poles at \(p_i \) and zeroes at \(q_i \) iff \(\sum p_i = \sum q_i \) in \(\Lambda \).

Given \(\Lambda \subseteq \mathbb{C} \), define \(\sigma(z) = \prod_{\lambda \in \Lambda} \left(1 - \frac{z}{\lambda} \right) e^{\left(\frac{z^2}{2} \frac{1}{(\lambda)^2} \right)} \).

Proof: (a) Infinite part converges to define entire form \(\sigma(z) \) w/ simple zeroes on \(\Lambda \), modulo Eisen.

(b) \(\frac{d^2}{dz^2} \log \sigma = -\Phi(z) \)

(c) Given \(\lambda \in \Lambda \), \(\exists \ a = a_\lambda, b = b_\lambda \ s.t.

\[\sigma(z + \lambda) = e^{(az + b)} \sigma(z) \]

Proof: (a) see Azumi

(b) \(\log \sigma = \log z + \sum_{\lambda \neq 0} \left[\log \left(1 - \frac{z}{\lambda} \right) + \left(\frac{z^2}{2} \frac{1}{(\lambda)^2} \right) \right] \)

Differentiate twice term by term:

\[\frac{d^2}{dz^2} \log \sigma = -\frac{1}{z^2} + \sum_{\lambda \neq 0} \left[-\frac{1}{(z-\lambda)^2} + \frac{1}{\lambda^2} \right] \]

\[= -\Phi(z) \]

(c) Fix \(\lambda \in \Lambda \). By (b),

\[\frac{d^2}{dz^2} \left(\log \sigma(z + \lambda) - \log \sigma(z) \right) = 0 \quad (\Phi(z + \lambda) = \Phi(z)) \]

And \(\log \sigma(z + \lambda) = \log \sigma(z) + (az + b) \quad (\text{do not edit this is } 0) \)

\[\sigma(z + \lambda) = e^{az + b} \sigma(z) \]
Proof (Wld's Thm): We have already shown $^\exists$.

Fix points $c_1, \ldots, c_n \in \mathbb{C}$, $n_1, \ldots, n_k \in \mathbb{Z}$, look for an elliptic function $f(z)$ s.t. $\text{ord}_c f(z) = n_c$ (no other zeros or poles).

Assume $\sum n_i = 0$, $\sum n_i c_i \equiv 0 \pmod{\Lambda}$. We have just translated the statement into multiplicities.

We can assume wlog that $\sum n_i c_i = 0$.

Consider
\[
f(z) = \prod_{i=1}^{n} (z - c_i)^{n_i}.
\]

This visibly has the right number of zeros and poles.

Fix $\lambda \in \Lambda$. We need $f(z)\lambda$ to be periodic.

\[
f(z + \lambda) = \prod_{i=1}^{n} (z + \lambda - c_i)^{n_i}.
\]

\[
= \prod_{i=1}^{n} \left[\sigma(z - c_i) e^{aq(z-c_i)+b} \right]^{n_i}.
\]

\[
= \prod_{i=1}^{n} f(z) \left[e^{az+b} \cdot e^{aq(c_i)} \right]^{n_i}.
\]

\[
f(z) \sigma(z) (a(z-c_i) + b) \left(\sum n_i \right).
\]

\[
f(z) \sigma \left(\sum n_i (z-c_i) \right) \left(\sum n_i = 0 \right).
\]

\[
f(z) \left(\sum n_i c_i = 0 \right).
\]

\[
\forall \lambda_1, \lambda_2 \in \mathbb{C}, \text{ when is } \mathbb{C}/\Lambda_1 \cong \mathbb{C}/\Lambda_2? \text{ We will come back to this later on in the course.}
\]
Riemann Surfaces:

Let \(X \) = compact, connected R.S.

As \(X \) is a closed, oriented \(2 \)-manifold. (oriented because hole retired present orientation)

Theorem: (Classification of surfaces): \(X \) is diffeomorphic to a sphere \(S^2 \) with \(g \) handles attached.

\[
\begin{align*}
& g=0 & & g=1 \\
& g=2 & & g=3 \\
& \vdots & & \vdots
\end{align*}
\]

\(g \) is called the genus of \(X \) and determines \(X \) up to diffeomorphism.

Remark: It is not true that all Riemann surfaces of given genus \(g \) are isomorphic as Riemann surfaces.

However, genus is still the critical invariant of a R.S.

Prop: \(X \) compact, connected, then any homomorphic fcn on \(X \) is constant.
Proof: Day \(f : \mathbb{R} \to \mathbb{C} \) is holomorphic. Compactness implies
\[f(x) \] attains a max at some \(p \in \mathbb{R} \). Look locally
near \(p \). By the maximum modulus principle given f locally constant near \(p \). Now by connectedness and
\#3 in Huse 2 implies \(f \) is globally constant.

Example: Consider the function \(\mathbb{P}^1 = \mathbb{C} \cup \{ \infty \} \), where we
view \(\mathbb{P}^1 \) as a curve from \(\mathbb{P}^1 \). How do we compute it
residue at the origin?

\[
\text{Res}_0 \left(\frac{1}{z} \right) = \frac{1}{2\pi i} \int_{|z|=1} \frac{1}{z} = -\frac{1}{2\pi i} \int_{|z|=1} \frac{1}{z}
\]

\[
\begin{pmatrix}
1 \\
0
\end{pmatrix}
\]

Where is the mistake?

Functions cannot be integrated on a manifold!

Meromorphic forms on a R.S. don’t have residues!

\[
\begin{bmatrix}
\int_{c} \frac{dz}{z} = \int_{-c} -\frac{dw}{w} \\
\int_{-c} \frac{dw}{w} = \int_{c} -\frac{dz}{z}
\end{bmatrix}
\]

So everything is ok.

As if we want to integrate, we need to use the change of
variables formula, i.e., differential forms.

The things you can integrate on a R.S. are 1-forms.

Similarly, meromorphic 1-forms are what have residues. (can integrate around a circle containing)
Def: A \textit{holomorphic 1-form} on a R.S. \(\mathbb{X} \) is \(C^\infty \)-valued 1-form which in local coordinates can be expressed as \(\omega = f(z) dz \) locally.

\[dz = dx + i dy, \quad f(z) \text{ analytic}. \]

A \textit{meromorphic 1-form} is defined similarly except \(f \) is allowed to be meromorphic.

Note: Check the definition doesn't depend on coordinates:

\[\omega = g(w) \]

\[d\omega = g'(w) dw \]

\[f(z) d\omega = f(z(w)) \cdot g'(w) dw \quad (\text{the LHS holds (meas) iff RHS does}). \]

This also shows how they change coordinates.

Examples: 1 on \(\mathbb{P}^1 \)

\[\frac{dz}{z} \] is a \textit{meromorphic} 1-form.

(in words, \(w = \frac{1}{z} \), centered at \(\infty \), \(\frac{dz}{z} = -\frac{dw}{w} \)).

2 on \(\mathbb{X} = \mathbb{C}/\Lambda \), can write \(d\omega \) so \textit{holo} 1-form.

\[\begin{cases} \mathbb{C} \rightarrow \mathbb{X} = \mathbb{C}/\Lambda, & \text{1 holo 1-form } \omega \text{ on } \mathbb{X} \\ \text{s.t. } \pi^* \omega = d\omega & \end{cases} \]

The transition in this case are \(\omega = e^{i\theta} \), so \(d\omega = d\theta \).

As on \(\mathbb{C}/\Lambda \), there is a natural identification:

\[\{ \text{holo 1-forms} \} \leftrightarrow \{ \text{forms} \} \]
Def: If w is a meromorphic 1-form on R.S. \mathcal{X}, $w = f(z)dz$ locally, then $ord_p(w) = ord_p(f(z))$.

Note: This is well-defined because when we change coordinates, $g'(w) \neq 0$ for all w.

Example: If f is a meromorphic form on \mathcal{X}, df is a meromorphic 1-form:

locally, $df = f'(z)dz$.

If $X \in \mathcal{X}$ is a (reasonable) path, and w is a holomorphic 1-form, then

\[\int_X w \text{ is defined.} \]

The idea is that the change of basis formula is built into these things, so we can integrate locally w/o changing answers.

Prop: A holomorphic 1-form w on R.S. \mathcal{X} is closed, i.e., $dw = 0$.

Proof: Write $z = x + iy$, $w = f(z)dz$ locally. So we have

\[w = (u + iv)(dx + idy) \]

\[= (udx - vdy) + i(vdx +udy) \]

\[dw = (-\frac{2v}{\partial y} - \frac{2x}{\partial x})dx \wedge dy + i(-\frac{2u}{\partial y} + \frac{2v}{\partial x})dx \wedge dy \]

\[= 0 \text{ by Cauchy-Riemann equations.} \]

Warning: Can define holomorphic forms on complex manifolds of dim ≥ 1, but their holomorphic 1-forms need not be closed.

\[w = z dz \text{ on } \mathbb{C}^2 \text{ when coordinates on } \mathbb{C}^2 \text{ are } (z, w). \]
On a smooth projective variety, holomorphic forms are closed for Hodge theoretic global reasons.

Remark: Recall that closed forms determine (delHam) cohomology classes in $H^1(X, \mathbb{C})$.

What are cohomology classes determined by holomorphic \[\text{oriented loop around p.} \]

This is independent of γ since ω is closed. (Stokes Thm).

Thm (Residue Thm): Let ω be a non-zero one-form on a compact R.S. X. Then \[\sum_p \text{Res}_p(\omega) = 0. \]

(Resω=0 if ω is holomorphic).

Proof:

Choose a small open disk around each pole as shown.

Let $M = X \setminus \text{(univ. of disks)}$.

Then $\partial M = \text{univ. of circles surrounding the poles}$.

So \[\sum \text{Res}_p(\omega) = \pm \frac{1}{2\pi i} \int_{\partial M} \omega = \pm \frac{1}{2\pi i} \int_M d\omega = 0. \]
Corl: Let f be a non-zero meromorphic function on a compact R.S. X. Then f has the same number of zeroes and poles (counting multiplicity).

\[\sum_{p \in X} \text{ord}_p(f) = 0. \]

\[\text{Pf:} \] Consider the meromorphic 1-form $\omega = \frac{df}{f}$. Local calculation as before shows that $\text{Res}_p(\omega) = \text{ord}_p(f)$. Now apply the residue thm.

\[\text{Thm:} \] Let ω, η be non-zero meromorphic 1-forms on compact R.S. X.

Then \[\sum_{p \in X} \text{ord}_p(\omega) = \sum_{p \in X} \text{ord}_p(\eta) \]

i.e., $\text{(no. of zeroes - no. of poles)}$ is the same for any two meromorphic 1-forms.

\[\text{Proof:} \] The claim is that we can view $f = \frac{\omega}{\eta}$ as a meromorphic function X.

\[\text{Meaning of} \ \frac{\omega}{\eta} : \text{Locally write} \ \omega = \phi(z)dz, \ \eta = \psi(z)dz. \]

\[\frac{\omega}{\eta} = \frac{\phi(z)}{\psi(z)} \text{ locally.} \]

\[\text{Change coordinates:} \quad z = g(w) \quad dz = g'(w)dw \]

\[\frac{\omega}{\eta} = \frac{g'(w)}{\psi(g(w))} \frac{\psi'(g(w))g'(w)dw}{\eta(g(w))} = \frac{\phi(g(w))dw}{\psi(g(w))} = \frac{\phi(g(w))}{\psi(g(w))} \]

So this is a global meromorphic function.

\[\text{ord}_p\left(\frac{\omega}{\eta} \right) = \text{ord}_p(\omega) - \text{ord}_p(\eta). \]

By previous corl, $\sum \text{ord}_p\left(\frac{\omega}{\eta} \right) = 0$. \[\square \]
Examples: 1. Let ω be any mero 1-form on \mathbb{P}^1. Then

$$\sum_{\text{ord}(\omega)} = -2.$$

So there is no non-zero hole forms on \mathbb{P}^1.

PF: Evaluate for $\frac{dz}{z}$, $-\frac{dz}{z}$.

2. Let ω be any mero 1-form on $\mathbb{X} = \mathbb{C}/\Lambda$. Then

$$\sum_{\text{ord}(\omega)} = 0$$

Consequently, any hole from on \mathbb{X} is $\omega = (\text{const})\, dz$.

PF: Evaluate for $\omega = dz$.

If ω is hole 1-form on $\mathbb{X} = \mathbb{C}/\Lambda$, then

$$\frac{\omega}{dz}$$

is a mero form up one pole, so constant. \[\Box \]
Riemann-Hurwitz and Applications:

\(\mathbb{X}, \mathbb{Y} \) compact R.S.

\[\mathbb{X} \rightarrow \mathbb{Y} \quad \text{holomorphic map.} \]

Riemann-Hurwitz relation \(g(\mathbb{X}) + g(\mathbb{Y}) \) (genus).

Recall:

\[\epsilon(\mathbb{X}) = 2g - \delta \quad \text{# vertices - # edges + # \delta's}. \]

Recall: Local normal form

\[F: \mathbb{X} \rightarrow \mathbb{Y} \quad \text{monic}. \quad \text{Local map deg at } p \in \mathbb{X} = \exists ! m \geq 1 \text{ s.t.} \]

\[\forall \text{ chart } \varphi_2: U_2 \rightarrow V_2 \text{ centered at } F(p_1), \forall \text{ chart } \varphi_1: U_1 \rightarrow V_1 \]

centered at \(p \) s.t. \(\varphi_2(F\varphi_1^{-1}(z)) = z^m \)

Def.

\[m = \text{mult}_p F = \text{mult}_p \varphi_1 F \circ \varphi_2^{-1} \]

\[\text{deg } F = \sum_{p \in F(\mathbb{Y})} \text{mult}_p F \quad \text{for } \mathbb{X} \rightarrow \mathbb{Y}. \]

\(\text{If } \text{mult}_p F > 1, \text{ we call } p \text{ a ramification point.} \)

\(\text{If } y \in \mathbb{Y} \text{ is the image of a ramification point, then } y \)

\(\text{is called a branch point.} \)

Example:

\[\begin{array}{c}
\text{Note: previous or branch pt}
\text{isn't necessarily a ram.}
\text{pt!}
\end{array} \]
Thm: (Riemann-Hurwitz): \(F : \mathbb{X} \rightarrow \mathbb{Y} \) monodromy holomorphic map between compact R.S. Then

\[
2g(\mathbb{X}) - 2 = (2g(\mathbb{Y}) - 2) \deg F + \sum_{p \in \mathbb{X}} [\text{mult}_p F - 1].
\]

Proof: Triangulate \(\mathbb{Y} \) s.t. every branch point is a vertex:

\[
\begin{align*}
\text{Ex:} & \quad d = 3 \\
& \quad \begin{array}{c}
\quad \text{P} \text{ 2\rightarrow 2} \\
\quad \text{X} \\
\quad \text{b}
\end{array}
\end{align*}
\]

Let this triangulation to \(\mathbb{X} \).

\(V_\mathbb{Y} = \# \text{vertices in} \ \mathbb{Y} \quad V_\mathbb{X} = \# \text{vertices in} \ \mathbb{X} \)

\(E_\mathbb{Y} = \# \text{edges in} \ \mathbb{Y} \quad E_\mathbb{X} = \# \text{edges in} \ \mathbb{X} \quad \text{etc.} \)

- Each triangle lifts to precisely \(\deg F \) triangles.

\(t_\mathbb{X} = \deg F t_\mathbb{Y} \)

- Similarly, \(e_\mathbb{X} = \deg F e_\mathbb{Y} \).

The tricky thing is keeping track of the number of vertices.

Take \(q \in \mathbb{Y} \) vertex.

\[
|F'(q)| = \sum_{p \in F(q)} 1 + \deg F - \sum_{p \in F(q)} [\text{mult}_p F]
\]

\[
= \deg F + \sum_{p \in F(q)} [1 - \text{mult}_p F]
\]

\[
V_\mathbb{X} = \sum_{q \in \mathbb{Y}} \left(\deg F + \sum_{p \in F(q)} [1 - \text{mult}_p F] \right)
\]

\[
= V_\mathbb{Y} \deg F + \sum_{p \in \mathbb{X}} [1 - \text{mult}_p F]
\]
\[2g(z) - 2 = -e(z) = -v_x + e_x = l_x \]

\[= -\deg F v_x + \sum_{p \in \mathbb{P}} [\text{mult}_p - 1] + \deg F e_x - \deg F v_y \]

\[= \deg F (\partial g(y) - 2) + \sum_{p \in \mathbb{P}} [\text{mult}_p - 1] \]

Applications:

Hyperelliptic surfaces:

\[\Sigma : y^2 = h(x) \subseteq \mathbb{C}^2 \]

\[h(x) \text{ poly, } \deg h(x) = 2g+1. \]

\[h(x) \text{ has distinct roots (guarantees non-singularity).} \]

We need to compactify \(\Sigma \) to be able to apply R-H.

\[U = \{ (x,y) \in \Sigma \mid x \neq 0 \} \]

\[K(\Sigma) = z^{2g+2} h(\frac{1}{z}). \]

\[\Sigma^0 = U \xrightarrow{\phi} \mathbb{C}^0 \]

\[V = \{ (z, w) \in \Sigma \mid z \neq 0 \} \]

\[\phi : U \rightarrow V, \quad \phi(x,y) = (\frac{1}{y}, \frac{1}{x^{g+1}}) \]

\[\mathbb{Z} = \Sigma \amalg \Sigma^0 \]

Check: \(\mathbb{Z} \) is a compact R.S.

\[\text{cln } U : \]

\[\downarrow \pi \]

\[\times \]

\[\pi : \mathbb{Z} \rightarrow \mathbb{P}^1 \quad (\text{Riemann sphere}) \]

\[\mathbb{C}^\infty \]
Claim: \(g(2) = g. \)

\[\text{Pf: } \quad 2g(2) - 2 = 2(-g) + \sum_{p \in \mathbb{Z}} |\text{mult}_p - 1| \]
\[= -4 + \deg g + \sum_{\text{clg h, has many zeros}} \]
\[= \deg g - 2. \]
\[\Rightarrow g(2) = g. \]

Recall: \(w \) mean 1-form on compact R.S. \(\mathcal{X} \). Then \(\# \text{zeros} - \# \text{poles} = \text{const.} \)

Claim: \(\mathfrak{g} \) compact R.S., \(\mathcal{X} \) has a mean. ftn \(f: \mathcal{X} \to \mathbb{C} \) (by assumption)
and \(f \) is unramified at \(\infty \) (makes \(\infty \) only have to deal w/ 1 case).
Then if \(w \) is a mean 1-form on \(\mathcal{X} \), \(\deg w = \deg g - 2. \)

\[\text{Pf: } \quad f \text{ gives rise to } F: \mathcal{X} \to \mathbb{P}^1: \mathbb{C}^\infty, F \text{ holomorphic.} \]
\[\text{Local coordinate in } \mathbb{C}^\infty \text{ in part that contains } 0. \]
\[w = dz. \text{ } \]w has no zeroes. \(\text{w does have poles, they are at } \infty \). \(\mathcal{X} \to \frac{1}{w} \).
\(\text{In the other coordinate patch, } w = d(z) = \frac{1}{w} \), \(\frac{1}{w} \) has a pole of order 2 at \(\infty \).
\[\text{Pull \ } w \text{ back to } \mathcal{X}: \]
\[\eta = F^* w, \text{ mean 1-form on } \mathcal{X}. \]

\[\text{Count zeros and poles:} \]
\[\text{locally: } \quad \begin{array}{c}
\mathfrak{g} \in \mathcal{X}, \text{ root ramification pt., } \mathfrak{g} \nearrow \infty.
\text{Local coord. } x \text{ centered at } p. \quad F: x \to x = z.
\end{array} \]
\[F^* dx = dx. \text{ No zeros, no poles.} \]
\[\begin{array}{c}
\mathfrak{g} \in \mathcal{X}, \text{ p ram pt. } \mathfrak{g} \nearrow \infty.
\text{Local coord. centered at } p. \quad F: x \to x = -z
\text{for min } m. \quad F^* dx = d(x^m) = m x^{m-1} dx.
\end{array} \]
so we have \(m-1 \) zeros for each ramification pt.

\[m = \text{mult}_p F. \]

\[\text{pt} \in \mathbb{P}^1, \quad \text{pt} \to \infty. \]

\[uw \text{ at } \text{pt}, \quad x \mapsto x = w \quad (\text{by assumption}). \]

\[F'' (-\frac{1}{2} x u) u = -\frac{1}{x^2} dx \]

2 poles for each point \(p \to w \)

\[\# \text{poles} = 2 \deg F. \]

\[\# \text{zeros} - \# \text{poles} = \sum_{p \in \mathbb{P}^1} [\text{mult}_p F - 1] = 2 \deg F \]

\[= 2g - 2 \]

Useful Lemma: Let \(\mathbb{X} \) be a smooth affine curve in the plane defined by \(f(x, y) = 0 \).

Define \(\pi : \mathbb{X} \to \mathbb{C} \) by \(\pi(x, y) = x \). Then \(\pi \) is ramified at \(p \in \mathbb{X} \) iff

\[(\frac{\partial \pi}{\partial y})(p) = 0 \]

Similarly, \(\mathbb{Y} \) is a projective plane curve defined by \(F(x, y, z) = 0 \).

Define \(\pi : \mathbb{Y} \to \mathbb{P}^1 \) by \(\pi(x, y, z) = (x : y) \). Then \(\pi \) is ramified at \(p \in \mathbb{Y} \) iff

\[(\frac{\partial \pi}{\partial z})(p) = 0 \]

Example: Consider the Fermat curve \(x^d + y^d + z^d = 0 \in \mathbb{P}^2 \). Then

\[\frac{\partial \pi}{\partial z} = d \quad \text{at zero if } z = 0, \text{ i.e., } x^d + y^d = 0. \]

Then the pt \([x : y : 0] \) is ramified if \(x^d y^d = 0 \), i.e., the points \([1 : y : 0] \) where \(y^{d+1} = 0 \) are the ramification pts. Then

\[2g(\mathbb{X}) - 2 = (2g(\mathbb{Y}) - 2) \deg \pi + \sum \text{mult}_p F - 2 \]

\[= (2d + 1) - 2d + (d-1) = 2d + d(d-1). \]

ie,

\[g(\mathbb{X}) = \frac{(d-1)(d-2)}{2}. \]
Compute the genus of the curve $y^2 = x^3 + 1$.

Let $F = y^2 z - x^3 - z^3$, $x = (F = 0)$. Then define a map $\pi : \mathbb{A} \to \mathbb{P}^1$ by $[x:y:z] \mapsto [x:y:1]$. Note this is well defined because x and y can't both be zero since $y^2 = x^3 + 1$. The ramification points occur precisely when $\frac{\partial F}{\partial z} = 0$, i.e., when $y^2 - 3xz^2 = 0$. If $z = 0$, then $y = 0 \Rightarrow x = 0$ if we are on x. So $z \neq 0$, so we can set $z = 1$.

Thus the ramification points are when $y^2 = 3$ i.e., $y = \pm \sqrt{3}$.

Hence $3 - 1 = x^3$, i.e., $x = \omega^i \sqrt{3}$, so there are 6 ramification points, each with multiplicity 2 since $\frac{\partial F}{\partial z}$ has degree 2.

Then for any point $[x:y]$, there are 3 points sitting over it, corresponding to the solutions of $y^2 z - x^3 - z^3 = 0$.

Thus deg $\pi = 3$. As R.H. gives,

$$\theta g(\mathbb{A}) - 2 = 3 \cdot (-2) + \sum_{p \mid \mathbb{A}} (2 - 1)$$

$$= -6 + 6 = 0 \Rightarrow$$

$g(\mathbb{A}) = 2$.

Let $F: X \to Y$ be a monomorphism holomorphic between compact R.S.

1. Show that if $Y \cong \mathbb{P}^1$, and F has deg > 1, then F must be ramified.

Pf: \(g(Y) = 0 \), so R.H needs

\[\Sigma g(X) - 2 = (\deg F) (\deg Y - 1) + \Sigma (\text{mult}_F - 1). \]

Suppose F is not ramified, i.e. \(\Sigma (\text{mult}_F - 1) = 0 \).

Then \(\Sigma g(X) - 1 = -\deg F , \) i.e.

\[1 - g(X) = \deg F . \]

because \(\deg F \geq 0 \) and \(g(X) \geq 0 \).

2. Show that if both X and Y are genus 1 then F is unramified.

Pf: R.H needs

\[0 = 0 + \Sigma (\text{mult}_F - 1) \]

Since \(\text{mult}_F \geq 1 \) always, we must have \(\text{mult}_F = 1 \) everywhere.

3. Show that \(g(X) \geq g(Y) \) always.

Pf:

\[\Sigma g(X) - 2 = \deg F (\deg Y - 2) + \Sigma (\text{mult}_F - 1) \]

\[\geq \deg F (\deg Y - 1) \]

\[\geq \deg Y - 2 \quad \text{if} \quad \deg Y - 2 \geq 0 \]

\[\Rightarrow g(X) \geq g(Y) \quad \text{if} \quad g(Y) \geq 1. \]

But if \(g(Y) = 0 \), \(g(X) \geq 0 \) automatically.
Show that if \(g(y) = g(z) \geq 0 \), then \(F \) is an isomorphism.

Proof:

R.H. needs:

\[
2g - 2 = \deg F (2g - 2) + \sum (\text{mult} F - 1).
\]

\[
(2g - 2)(1 - \deg F) = \sum (\text{mult} F - 1).
\]

\[g \geq 0 \Rightarrow 2g - 2 \geq 0 \Rightarrow 1 - \deg F \geq 0\]

\[\Rightarrow \deg F = 1\]

\[\Rightarrow F \text{ is an isomorphism.}\]
Example: Compute the genus g of the Fermat curve $x^d+y^d+z^d=0$.

Let $x^d+y^d+z^d=F$ and $F=0 \implies \mathcal{E}$. Let $\mathcal{Y}=\mathbb{P}^1$ and define

$\pi: \mathcal{E} \to \mathcal{Y}$ by $[x:y:z] \mapsto [x:y]$.

Now $\deg \pi = d$ because $\deg F = d$.

The ramification pts are where $\frac{\partial F}{\partial z} = 0$, i.e. when $z = 0$. So they are the points where $x^d+y^d=0$, i.e., $[1:y:0]$ where $y^d = -1$.

Then these are d ramification points.

To compute the multiplicity write

$[x:y:z] \mapsto [x:y]$.

So there are d points going to each branch point, as the result is d.

Thus, N.H. reads

$2g(\mathcal{E}) - 2 = d(-2) + d(d-1)$

$\therefore \quad g(\mathcal{E}) = \binom{d-1}{2}.$
\text{Last lines:}

\(f(x) \) is represented locally as \(z^k \), we call \((c-1) \) the ramification index \(e_{(x)} \).

\(R = \{ x \mid r(x) \geq 1 \} \) ramif. locus.

\(\mathbb{R} \), \(\mathbb{Y} \) compact. Then \(R, f(R) = \mathbb{B} \) are finite.

Then \(\mathbb{R} \setminus f^{-1}(\mathbb{B}) \to \mathbb{Y} \setminus \mathbb{B} \) is a covering space, and

\[\text{deg } f = \sum_{x \in \mathbb{R}} e_{(x)}. \]

\text{Corollary:} If \(\mathbb{R} \) is a compact R.S which carries a non-constant meromorphic function, then for any meromorphic 1-form \(\omega \) on \(\mathbb{R} \),

\[\sum_{x \in \mathbb{R}} \text{ord}_x (\omega) = 2g - 2, \]

where \(g = g(\mathbb{R}). \)

\text{Holomorphic and Meromorphic 1-forms on Plane Curves:}

Suppose \(\mathbb{R} = \{ f(x, y) = 0 \} \in \mathbb{C}^3 \) is a nonsingular plane curve.

Keep in mind \(x, y \) are holomorphic coordinates, not real and imaginary parts!

\text{Prop:} Consider meromorphic 1-forms \(\frac{dx}{dy}, \frac{dy}{dx} \) on \(\mathbb{C}^2 \). On \(\mathbb{R} \),

\[\left. \frac{dx}{dy} \right|_{\mathbb{R}} = -\frac{\frac{dy}{dx}}{2\frac{\partial f}{\partial x}} \mid_{\mathbb{R}} \] and they are holomorphic on \(\mathbb{R} \).

\text{Proof:} That they are holomorphic follows from \((*)\), since one of \(\frac{dx}{dx}, \frac{dy}{dy} \) is non-vanishing at each point on the curve.
\[
\frac{df}{dx} dx + \frac{df}{dy} dy,
\]
\[
\frac{df}{f(x,y)} = 0 \quad \text{clearly. But} \quad \{ f = 0 \} = \mathbb{R}, \quad \text{so we get the result.}
\]

Goal: More generally, for any poly \(p(x,y), \)

\[
p(x,y) \frac{dx}{dx / dy} = u_p
\]

is a **hole 1-form on \(\mathbb{R} \).**

Classical Example:

\[
\frac{dx}{\sqrt{4x^2 + 9y^2 + 9z^2}} = \frac{dx}{y} \quad \quad y^2 - 4x^3 - 9x - 9z = 0
\]

Now consider the smooth curve \(\mathbb{R} \subseteq \mathbb{R}^3 \)

\[\mathbb{R}_u \subseteq \mathbb{R}^3\]

When do \(u_p \) extend to hole forms on \(\mathbb{R} \)?

Set-up:

Consider \(\mathbb{R} \subseteq \mathbb{R}^3 \) non-sing curve \(x = dy \) e. defined by homy, deg p

\[H(x, y, z) = 0\]

Local coordinates:

\[
x = \frac{X}{2} \quad s = \frac{Y}{X}
\]

\[
y = \frac{Y}{X} \quad t = \frac{Z}{X}
\]
Local Equation for curve:

\[f(x, y) = H(x, y, z) \quad g(s, t) = H(1, s, t) \]

Transitions:

\[s = \frac{x}{2}, \quad t = \frac{1}{x} \]
\[x = \frac{1}{t}, \quad y = \frac{2}{x} \]

\[f(x, y) = H\left(\frac{1}{t}, \frac{2}{x}, z\right) \]
\[= \frac{1}{x} H\left(1, s, t\right) \]
\[= \frac{1}{x} g(s, t) \]

\[g(s, t) = x e g\left(\frac{x}{2}, \frac{t}{x}\right) \]

\[\frac{\partial g}{\partial s} = t e \frac{\partial f}{\partial y}\left(\frac{1}{t}, \frac{2}{x}\right) \]
\[= t e \frac{\partial f}{\partial y}\left(\frac{1}{t}, \frac{3}{x}\right) \]

Start with:

\[\omega_p = p(x, y) \frac{\partial f}{\partial y} \]

and transform into \(s, t \) coordinate.

\[\omega_p = p\left(\frac{1}{t}, \frac{2}{x}\right) \left(-\frac{\partial f}{\partial x}\right) \]
\[= \frac{1}{t e^{-1}} \cdot \frac{\partial g}{\partial s}\left(s, t\right) \]
\[= \left(\frac{1}{x} p\left(\frac{1}{t}, \frac{2}{x}\right) \cdot t e^{-3}\right) \frac{dt}{ds} \]

When is this whole?

Need \(t e^{-3} p\left(\frac{1}{t}, \frac{2}{x}\right) \) to be holomorphic.
It is sufficient that $\deg p \leq e - 3$.

Upshot (modulo checking another coordinate patch):

$W = p(x, y) \frac{dx}{dy}$ extends to a holomorphic form on ν.

$p(x, y) \leq 1$ (deg e) provided that $\deg(p) \leq e - 3$.

Thm: Let $\Sigma \subset \mathbb{P}^2$ be a smooth curve of degree e. Then

- Strong form of?
- $\deg = e - 3$

\[\text{LS}\]

- Poly of degree e?
- $e - 3$ in xy?

\[\xrightarrow{\text{ hole 1-forms?}} \xrightarrow{\text{ on } \Sigma}\]

$p(x, y) \rightarrow \left(p(x, y) \frac{dx}{dy} \right) \{f = 0\}$ every for $\Sigma \subset \mathbb{C}^2$.

This is actually a special case of the "Adjunction Formula" (see Hart).

What about curves w/ singularities?

$\Sigma_0 \subset \mathbb{C}^2$ a possibly singular curve, $\Sigma_0 = \{ f(x, y) = 0 \}$.

Thm: Exists smooth 1-dimensional variety Σ plus a finite birational map $\nu: \Sigma \to \Sigma_0$.

\[\xrightarrow{\nu} \]

\[\Sigma_0 \to \Sigma\]
Let \(w_p = p(x,y) \frac{dx}{dy} \)

Ask: When is \(v^y(w_p) \) held on \(\mathcal{A} \)?

In general, \(p(x,y) \) has to vanish appropriately at singular points of \(\mathcal{A}_0 \) in order to cancel poles from \(\frac{dy}{dx} \).

The vanishing condition on \(p(x,y) \) is a delicate invariant of singularity of \(\mathcal{A}_0 \).

We’ll need the case when \(\mathcal{A}_0 \) has ordinary double points.
Recall: \(\mathbb{A} \subset \mathbb{P}^3 \) is nonsmooth plane curve of degree \(d \),
\[\{ \text{homo. poly. deg-3} \} \longrightarrow \{ \text{holo 1-forms} \} \] on \(\mathbb{P} \).

In affine coordinates,
\[p(x,y) \rightarrow p(x,y) \frac{dx}{\partial x} \]
\[\text{deg} = 3 \]

What is the condition on \(p(x,y) \) in order that \(\psi^\ast (\frac{dx}{\partial y}) \) be holo on \(\mathbb{P} \)?

Special Case:

Any \(\mathbb{A} \) has only ordinary double point at \(p \):

\[\begin{align*}
\infty & \quad \quad \text{X.} \\
\text{locally} : \quad \mathbb{A} &= \{ xy = 0 \}.
\end{align*} \]

Example: \(y^3 - x^7(x+1) = 0 \)

Locally, \(\mathbb{A} \) has two branches:

\[f = xy, \]

\[\begin{array}{c}
V_1 \\
(5,0) \\
V_2 \\
(10,5)
\end{array} \]

\[\psi_p = p(x,y) \frac{dx}{\partial y} = - p(x,y) \frac{dy}{\partial x} \]

\[V_1^\ast (\psi_p) = p(t,0) \frac{dt}{\partial t} \quad \text{Need} \quad p(0,0) = 0. \]

\[V_2^\ast (\psi_p) = - p(0,s) \frac{ds}{\partial s} \]

If \(\mathbb{A} \) has ordinary double point, then \(V^\ast (\psi_p) \) is holo provided that \(p \) vanishes at the double point.
Thm: Let $\overline{X} \subseteq \mathbb{P}^3$ be a curve of degree d with only ordinary double points, $\nu: X \to \overline{X} \subseteq \mathbb{P}^3$ desingularizing. Then

\[
\begin{align*}
\{ \text{homog polynomials} \} & \to \{ \text{holo 1-forms} \} \\
\{ \text{deg} e-3 \text{ vanish at double pts of } \overline{X} \} & \to \{ \text{1-forms on } X \}
\end{align*}
\]

\[
P(x,y) \mapsto \nu^*(\rho \frac{dx}{dt/\partial y}).
\]

Realizing R.S.'s as Plane Curves with Nodes:

Convention: From now on, algebraic curve will mean non-singular complex projective variety of dim 1.

Fact: Any compact R.S. is an alg. curve, and a holomorphic morphism between compact R.S.'s is an algebraic map.

Thm: Let $X \subseteq \mathbb{P}^r$ be a smooth alg. curve.

1. X can be embedded in \mathbb{P}^3.
2. f birational map $\nu: \overline{X} \to X$ of \mathbb{P}^3 from \overline{X} onto a plane curve X having only ordinary double points.

Older Proofs: In each case, map will arise as linear projection w center $L \subseteq \mathbb{P}^r$.

\[
\dim L = \begin{cases}
\frac{r-4}{2} & \text{case 1} \\
\frac{r-3}{2} & \text{case 2}
\end{cases}
\]

\[
\begin{bmatrix}
\{ \text{L} \} = \{ T_0 = \cdots = T_3 = 0 \}.
\end{bmatrix}
\]

\[
\nu_L: \mathbb{P}^r \setminus L \to \mathbb{P}^3
\]

\[
\nu_L([x_0, \ldots, x_r]) = [x_0, \ldots, x_3]
\]
For 0: Starting with curve $X \subseteq \mathbb{P}^r$, we'll argue that for a suff. general choice of L, $\pi_L|_X : X \to \mathbb{P}^3$

Take $X \cap L = \emptyset$, so $\pi_L|_X$ is defined. Then π_L is an embedding iff

* π_L is 1-1

* $d\pi_L|_X$ is 1-1 at every point of X.

Note:

$\pi_L(x) = \pi_L(y)$

iff line \overline{xy} joining x and y meets the center of projection L.

Need to choose L so as to avoid all lines joining all pairs of points of X.

Consider

\[\text{Sec}(X) = \{ \text{Zariski closure of all lines } \overline{xy} \mid x, y \in X, \text{ distinct pts} \} \]

Claim: $\text{Sec}(X)$ is an irreducible variety of dim ≤ 3.

Proof: Locally,

\[\text{Sec}(X) \subseteq X \times X \times \mathbb{P}^1 \]

each piece of X

Upshot: Need to choose $L \cap \text{Sec}(X) = \emptyset$ for $\pi_L|_X$ to be 1-1.

\mathbb{P}^r dim $L = r-4$ so this happens just by counting these dimensions.

Claim: Automatically $\pi_L|_X$ has non-ram deriv.

Since Sec(X) is Zariski closed, it contains the tangent lines (limit of secant lines), so we miss tangent line as well.
Fin 2: Start w/ $X \in \mathbb{P}^3$ (by 0), and project from a point.

- Need to show that a general point in \mathbb{P}^3 lies in only finitely many secant lines. (ok from dim).
- Need to show not every secant line is a tri-secant line, i.e., has curve three times.
- Control tangent lines at secant points.
Bézout's Thm:

Thm: Let $E_1, E_2 \subseteq \mathbb{P}^2$ be curves of degrees d, e defined by homogeneous polynomials F_1, G_2. Assume F_1, G_2 have no common factor. Then $\#(E_1 \cap E_2) < \infty$ and $E_1 \cap E_2$ consists of $d \cdot e$ points counting multiplicities.

Multiplicities:

\[\begin{array}{c}
\chi \\
\gamma
\end{array} \]

Fix $p \in E_1 \cap E_2$. In the local ring $\mathcal{O}_p(\mathbb{P}^2)$, consider local equations $f, g \in \mathcal{O}_p(\mathbb{P}^2)$. Then $i_p(E_1, E_2) = \dim \frac{\mathcal{O}_p(\mathbb{P}^2)}{(f, g)}$.

Thm (restated): In situation of thm, $\sum_p i_p(E_1, E_2) = d \cdot e$.

Example: $f = y$, $g = y - x^n$

\[\frac{\mathbb{C}[x, y]}{(y, y - x^n)} = \frac{\mathbb{C}[x, y]}{(y, x^n)} = \frac{\mathbb{C}[x]}{(x^n)} \quad \text{by dim n.} \]

\[i_p(f, g) = n. \]

Remark: The essential content of the thm is that $\sum_p i_p(E_1, E_2)$ only depends on d, e.
There is a very short proof of this using cohomology.

We'll prove a special case when \(\mathcal{X} \) is smooth.

Lemma: In situation of this, let \(\hat{O}_p(\mathcal{X}) = \hat{O}_p(\mathcal{X}, y) \) be the completion of \(\mathcal{O}_p(\mathcal{X}) \). Let \(\mathcal{O}_p(\mathcal{X})^\omega = \mathcal{O}_p(\mathcal{X}, y) \) be the ring of convergent power series. Let \(\hat{f}, \hat{g} \in \hat{O}_p(\mathcal{X})^\omega \), \(f, g \in \mathcal{O}_p(\mathcal{X})^\omega \) be the corresponding local equations. Then

\[
\hat{f}/(f, g) \cong \mathcal{O}_p/(f, g) \cong \mathcal{O}_p/(f, g)
\]

In particular, have same dimensions as \(\mathcal{O}_p \)-v.s.'s.

Claim: \(\mathcal{I}/m^n \cong \hat{\mathcal{O}}^\omega/m^n \cong \mathcal{O}_p/(x, y)^n \cong \mathcal{O}_p/(x, y)^n \)

By Nullstellensatz, since \(f, g \) contain \(p \) as an isolated intersection point, \(\mathcal{I}/(f, g) = m \Rightarrow m^n \subseteq (f, g) \), similarly in \(\mathcal{O}_p, \mathcal{O}_p/(x, y)^n \).

Lemma: In situation of this, let \(\mathcal{X} \) be non-sing. \(g = \) local eqn for \(\mathcal{X} \) near \(p \). Then

\[
i_p(\mathcal{X}, g) = \text{ord}_p(g|_{\mathcal{X}})
\]

At points \(g\text{-}\text{val} = \text{ht}_m \text{ on } \mathcal{X}\)

(This makes sense since \(\mathcal{X} \) is smooth).

Pf: Choose local analytic parameterization for \(\mathcal{X} \) near \(p \):

\[
\mathcal{X} = \bigsqcup_{\lambda} \bigsqcup_{\beta} x_{\lambda \beta}(z_1 \ldots z_\alpha)
\]
Then \(\frac{\partial^n f}{\partial z^n} \cong c z^2 \int f = ax + by + \text{higher order terms}, \quad b \neq 0, \quad b = 1. \)

\[
\frac{\partial^n f}{f^n} = \frac{C \{ x, y \}}{(y + ax + bxz)} \cong C \{ x \}
\]

\[
\frac{\partial^n f}{f^{n+1} g} = \frac{C \{ z \}}{g(z, \theta z)} \quad \dim = \text{ord}_p (g(z)). \quad \square
\]

Proof: (when \(\mathcal{E} \) is smooth) let \(y, y' \in \mathbb{P}^2 \) be 2 curves \(\mathcal{E} \) of degree \(\delta \),

with equations \(G, G' \) having no common factor \(F \).

By Remark above, it is enough to show

\[
\sum i_p(\mathcal{E}, y) = \sum i_p(\mathcal{E}, y').
\]

To show it actually is true, can just look at branches intersecting. We only need to show it only depends on \(\delta \) and \(\mathcal{E} \).

For this, consider \(\mathcal{G} \mid \mathcal{E} \) a meromorphic map on \(\mathcal{E} \).

By 2nd lemma,

\[
\sum i_p(\mathcal{E}, y) - \sum i_p(\mathcal{E}, y') = \sum \text{ord}_p (g) - \sum \text{ord}_p (g') \quad (9.3', \text{local on } \mathcal{E})
\]

\[
= \sum \text{ord}_p (9g')
\]

\[
= 0 \quad (\text{because maps from have same } \delta)
\]

\[
\mathcal{E}, \mathcal{G}, \mathcal{G}'
\]
Genus Formula:

Thm: Let \(C \) be a smooth plane curve of degree \(d \). Then

\[
g(C) = \binom{d-1}{3} = \frac{(d-1)(d-2)}{2}
\]

\[\iff d-g-2 = d(d-3)\]

<table>
<thead>
<tr>
<th>(d)</th>
<th>(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

This shows you miss a lot of generic using only smooth plane curves.

(No smooth plane curve genus \(\geq 5 \) for example)

Fact 4: \((d=3)\)

Recall:

\[
(d-g-2) = \sum_{p \in C} \text{ord}_p (w), \quad w \text{ a mer 1-form}
\]

Recall: \(Q \) = homog poly of deg \(d-3\)

\[
\text{Hilb 1-form } \frac{Q(x,y)}{w_0} = \frac{q(x,y)}{\partial F/\partial y} \quad \left(F=0 \right) = \mathbb{R}
\]

Claim: \(\text{ord}_p (w_Q) = i_p(\mathbb{R}, \sigma = 0) \).

Sketch: \(\frac{dx}{\partial y} \) is vanishing and \(\text{hull in } \mathbb{R} \).

\(\text{ord} (w_Q) = \text{ord}_p (Q) = i_p(\mathbb{R}, \sigma = 0) \).
Now by Bezout:

\[\sum \phi(\mathfrak{p}, \mathfrak{q}) = d(d-3) \]

\[\phi^2 -a \]

\[\phi \geq 0 \]
Divisors:

Let \(\mathcal{E} \) = compact R.S. (or smooth projective).

Def: A divisor on \(\mathcal{E} \) is a finite formal \(\mathbb{Z} \)-lin combination of \(p \). All such is an additive abelian group \(\text{Div}(\mathcal{E}) \).

Notation: \(D = \sum n_p \cdot p \), \(n_p \in \mathbb{Z} \), all but finitely many are 0.

or \(D = \sum n_p \cdot p \).

Example: \(0 \neq f \in \mathcal{E}(\mathcal{E}) \).

\[
\text{div}(f) = \sum \text{ord}_p(f) \cdot p.
\]

- Has a zero at \(p \) iff \(\text{ord}_p(f) \) is negative.
- Has a pole at \(p \) iff \(\text{ord}_p(f) \) is non-zero.

Similarly, if \(\omega \) is a non-zero meromorphic 1-form, then

\[
\text{div}(\omega) = \sum \text{ord}_p(\omega) \cdot p.
\]

Def: The degree of \(D \) is given by \(\text{deg}(D) = \sum n_p \).

Example: if \(0 \neq f \in \mathcal{E}(\mathcal{E}) \), \(\text{deg}(\text{div}(f)) = 0 \), \(\# \text{zeros} = \# \text{poles} \).

Similarly, \(\text{deg}(\text{div}(\omega)) = 2g - \delta \), where \(g = g(\mathcal{E}) \).

Def: A divisor \(D \) is effective if \(\text{ord}_p(D) \geq 0 \) for all \(p \in \mathcal{E} \).

Notation: \(D \geq 0 \), \((D \geq 0) \).

Def: Given divisor \(D \), define

\[
\mathcal{L}(D) = \{ f \in \mathcal{E}(\mathcal{E}) \mid \text{div}(f) + D \geq 0 \}, \quad \text{or} \{ f \}.
\]
$L(D)$ is a C-v.s.

Explanations:

- Any $D = P_1 + \cdots + P_r$ distinct points.
 \[f \in L(D) \iff \text{div}(f) + \sum P_i \geq 0 \]
 \[\iff \text{div}(f) \geq -\sum P_i. \]
 \[\iff f \text{ has at worst a simple pole at } P_i \text{ and no other poles.} \]

- Similarly, any $D = \sum n_i P_i$, $n_i > 0$. (effective divisor).
 \[f \in L(D) \iff f \text{ has at worst a pole of order } n_i \text{ at } P_i \text{ and no other poles.} \]

- Any $D = \sum n_i P_i - \sum m_j Q_j$, $n_i, m_j > 0$
 \[f \in L(D) \iff \text{div}(f) + \sum n_i P_i - \sum m_j Q_j \geq 0 \]
 \[\iff \text{div}(f) \geq -\sum m_j Q_j - \sum n_i P_i. \]
 \[\iff f \text{ has at worst a pole of order } n_i \text{ at } P_i \text{ and no other poles and zeros of order greater than } \]
 \[\text{equal to } m_j \text{ and no other zeros.} \]

"$L(D)$" allows poles and requires zeros.

Example: $\mathbb{X} = \mathbb{C}/\Lambda$, $\delta \in \mathbb{X}$ the origin.

$V_\delta = L(\delta, \delta).

Thm: $L(D)$ is a finite dimensional C-v.s. and in fact,
\[\dim L(D) \leq \deg D + 1. \text{ If } \deg D < 0, \text{ then } L(D) = 0. \]
Example: $X = P^1$, $D = K \cdot 0 \in C^2$

$$L(D) = \{ \text{polys of degree } n \}$$

Thus, $\dim L(D) = K + 1 = \deg D + 1$.

Proof (Thm): If $\deg D < 0$ and $f \in L(D)$, then $\deg f + D > 0$.

But $\deg(f) = 0$, $\deg D < 0$, so $\deg (LHS) < 0$. $\#$.

Note that if $D' \geq D$, then $L(D) \subseteq L(D')$.

To prove the theorem, it is enough to show $\forall D$, for any $P \in X$,

$L(D) \subseteq L(D + P)$ has codim = 1. (\#)\#.

Suppose $0 \neq f, g \in L(D + P)$, any $\eta_p = \text{ord}_p(D)$, and $f, g \in L(D)$.

Assume for clarity $\eta_p > 0$.

Since $f, g \notin L(D)$, $\text{ord}_p(f) = \text{ord}_p(g) = -\eta_p - 1$.

Take a local coordinate centered at P, then

$$f = \frac{a_0}{x^{\eta_p}} + \text{higher order terms}$$

$$g = \frac{b_0}{x^{\eta_p}} + \text{higher order terms}$$

As $\text{ord}_p(bf - ag) \geq -\eta_p$. Thus $bf - ag \in L(D)$,

i.e., $bf \equiv ag \pmod{L(D)}$.

Plan: Take basis $f_0, \ldots, f_r \in L(D)$. Define $X \rightarrow P^r$

$$(z_1 \rightarrow [f_0(z_1), \ldots, f_r(z_1)])$$

The Riemann-Roch problem is to actually compute the dimension of $L(D)$.
Linear equivalence of Divisors:

Def: Two divisors \(D, D' \) on \(X \) are linearly equivalent \(D \equiv D' \) if \(D - D' = \text{div}(f^i), 0 \neq f \in \mathcal{O}(X) \).

Def: Principal divisors = \(\text{Princ}(X) = \{ \text{div}(f(x)) : 0 \neq f \in \mathcal{O}(X)^* \} \cup \{0\} \).

\(\text{Princ}(X) \subseteq \text{Div}(X) \), as a subgroup. \(\text{div}(f(x) + f(y)) = \text{div}(f(x)) \).

Def: Divisor class group \(\text{Cl}(X) \) (or \(\text{Pic}(X) \)) is \(\text{Cl}(X) = \frac{\text{Div}(X)}{\text{Princ}(X)} \).

Prop: \(\text{Cl}(D) = \text{Cl}(D') \), then \(\mathcal{L}(D) \cong \mathcal{L}(D') \).

Prop: Next class.

Exercise: \(\text{Cl}^0(X) = \frac{\text{Div}^0(X)}{\text{Princ}(X)} \). \(\text{Div}^0(X) = \text{divisors of degree 0} \).

Describe \(\text{Cl}^0(X) \) when \(X = \mathbb{C}/\Lambda \).

(Abel's Thm).
Example: Consider a holomorphic map \(\mathbb{P} \to \mathbb{P}^r \) "ram. deg." in the sense \(\Phi(x) \notin \text{any hyperplane}. \)

Given a hyperplane \(H \subseteq \mathbb{P}^r \), define intersection divisor

\[
\mathbb{X} \cdot \Phi H = \sum_{P \in \mathbb{X}} i_P P
\]

\(i_P \): choose local affine eq \(H \)

\(d_P P = \Phi^{-1}(H) \), define \(i_P = \text{ord}_P(\Phi^{-1}(H)) \)

Exercise: \(\text{deg}(\mathbb{X} \cdot \Phi H) \) is indep of hyperplane \(H \).

Remark: Can do this replacing \(H \) by any hypersurface \(G \) of deg \(e \)

(If \(G \) doesn't vanish identically in \(\Phi(x) \)).

Let \(\mathbb{X} \) be a projective curve, fix \(D \) on \(\mathbb{X} \). We defined \(D(\mathbb{D}) \) last time.

We include \(0 \) in \(D(\mathbb{D}) \) even though it doesn't have a divisor.

Example: if \(D \neq 0 \), then \(1 \in D(\mathbb{D}) \).

Eventually: We'll analyze \(\mathcal{O}(\mathbb{X}) = \text{Div}^0(\mathbb{X}) \) where \(\text{Div}^0(\mathbb{X}) = \text{divisors of degree } 0 \).
Example: \(\omega = \text{mero} \quad \text{b} = \text{one} \quad \text{form} \)

\[K = \text{div}(\omega). \]

\(K \) is called a canonical divisor.

1. \(\text{div}(\omega), \text{div}(\omega') \) are two such \(\omega \) divisors \(K, K' \), then \(K = K' \).
2. \(\mathcal{L}(K) \cong \{ \text{line} _ \text{forms} \} \)

Pf:

1. \(\text{div}(\omega) - \text{div}(\omega') = \text{div}(\frac{\omega'}{\omega}) \)
2. \(\mathcal{L}(K) \mapsto \{ \text{line} _ \text{forms} \} \)

\[f \mapsto f \omega \]

\(f \in \mathcal{L}(K) \) iff \(\text{div}(f) + K = 0 \)

\[\text{div}(f) + \text{div}(K) = 0 \]

\(\text{div}(f) + 0 \rightarrow f \omega \) hold

Prop:
\(\text{div}(D) = 0 \), then \(\mathcal{L}(D) \cong \mathcal{L}(D') \).

Pf:

\(\text{div}(D) = \text{div}(\phi) \).

\[\mathcal{L}(D) \mapsto \mathcal{L}(D') \]

\[f \mapsto \phi \ f \]

Check this works, it is straightforward from the def.

Def (Exercises): Let \(D \) be any divisor on \(\mathcal{X} \). The complete linear series associated to \(D \) is

\[|D| = \{ \text{effective divisor } \ D', \ s.t. \ D = D' + \mathcal{T} \} \]

\[\mathcal{E} = \{ \text{div}(f) + D \mid f \in \mathcal{L}(D) \} \}

\[\cong \mathbb{P}(\mathcal{L}(D)) \]
Exercise: Assume D smooth, choose a basis $1, f_1, \ldots, f_r$ of $\mathcal{L}(D)$.

Let $\phi = \phi_{D_1} : \mathbb{P}^r \to \mathbb{P}^r$. Assume $D' \in D_1$ do not contain any common point.

Then $D_1 = \{H \in \mathbb{P}^r \mid H \cap \phi(H) \neq \emptyset\}$.

More sophisticated: let Δ be a divisor on \mathbb{P}^r with linear bundle $\mathcal{L}_\Delta(D)$ plus maps. Section γ by $\mathcal{L}_\Delta(D)$.

$$D = D' \Leftrightarrow \mathcal{L}_\Delta(D) \cong \mathcal{L}_\Delta(D').$$

$$\mathcal{L}(D) \cong \mathcal{L}_\Delta(D).$$

Riemann's inequality: let D be any divisor on \mathbb{P}^r (smooth proj. curve), then $\dim \mathcal{L}(D) \geq \text{deg } D + 1 - g(\mathbb{P}^r)$.

Example: $\mathbb{P}^r = \mathbb{C}/\Delta$, $V_K = \mathcal{L}(K \cdot \overline{\Delta})$.

Riemann's Thm says:

$$\dim V_K \geq K + 1 - 1 = K.$$
Linear Systems of Plane Curves:

Consider \(\mathbf{V}_d = \{ \text{all homog. poly. deg. } d \in \mathbb{R}^n \} \)
\[= S^d (\mathbb{V}, 1) \]
Complex vector space, \(\text{dim} \mathbf{V}_d = \binom{d+2}{2} \).

Can view \(\mathbb{P}(\mathbf{V}_d) \) as space to all plane curves of degree \(d \).

Example: Conics in \(\mathbb{P}^2 \) is \(\mathbb{P}^5 \).

Write "general" \(F \in \mathbf{V} \) as \(\sum_{i+j+k=d} t_{ijk} x^i y^j z^k \). The coefficients \(t_{ijk} \) are the natural coordinates; \(t_{ijk} \) are natural coordinates in \(\mathbf{V}_d \).

Lemma: Fix \(p \in \mathbb{P}^2 \). Then the set \(\mathbf{V}_d (p) = \{ F \in \mathbf{V}_d \mid F(p) = 0 \} \) is a codim 1 linear subspace of \(\mathbf{V}_d \).

Proof: Any \(p = [a, b, c] \). Let \(F = \sum_{i+j+k=d} t_{ijk} x^i y^j z^k \). Then \(F(p) = 0 \) iff \(\sum_{i+j+k=d} t_{ijk} a^i b^j c^k = 0 \). This is a linear condition on the coefficients. \(\Box \)

Cor: Given any \(p_5, p_6, \ldots, p_r \in \mathbb{P}^2 \),
\[\mathbf{V}_d (p_5, \ldots, p_r) = \{ F \mid F(p_i) = 0 \text{ for all } 5 \leq i \leq r \} \]
is a linear space of codim \(r-2 \).

Example: \(r \) can happen that codim \(< r \).
Take conics through \(p_1, \ldots, p_r \in \mathbb{P}^2 \).
- \(\emptyset \), the \(p_i \) are noncollinear, then we get a codim 4 subspace.
- \(\emptyset \), the \(p_i \) are collinear, then any conic through \(p_1, p_2, p_3 \) contains the line \(l \) which \(p_4 \) lies on, so remains.
Riemann's Thm: \mathbb{X} = smooth proj. curve of genus g, D = divisors on \mathbb{X} of degree d, then
\[\dim L(D) \geq d + 1 - g. \]

Simplifying assumption:
- D effective, $D = p_1 + \cdots + p_r$, p_i are distinct

Proof: (1) Realize \mathbb{X} as a plane curve with only nodes, i.e., consider
\[\phi: \mathbb{X} \to \mathbb{X}', \text{ birational morphism, } \mathbb{X}' = \text{plane curve} \]
\[\text{of degree } f (\mathbb{X}' = \{ F = 0 \}) \text{ with only ordinary double point, } \]
\[\Delta = \text{nodes of } \mathbb{X}', \# \Delta = s \]
Assume that more of the p_i are in Δ.
Recall $g = \frac{(f-1)(f-2)}{2} - s$.
Fix curve $B = B_0$ of degree ≥ 0, not vanishing on \mathbb{X} s.t.
(1) $B = 0$ passes through p_1, \ldots, p_d and Δ

(2) B meets \mathbb{X} in other pts as well: R set of all such wed points.

How many pts in R?
By Bezout, $f \cdot c = \deg (\mathbb{X} \cdot B)$
\[
\text{As } \deg R = \delta e - 2\delta - d. \quad (\text{Assume for simplicity that } R \text{ consists indicated number of distinct } \mathfrak{p}s)
\]

(3°) Now let \(V(R, \Delta) = \sum \text{homo polys } A \) of degree \(e \) vanishing on \(R \) and \(\Delta \).

Here a homomorphism

\[
\begin{align*}
V(R, \Delta) & \overset{\rho}{\longrightarrow} \mathcal{Z}(D) \\
A & \longmapsto \varphi^*(A_{B_0})
\end{align*}
\]

Then we have:

\[
\left(e \right) - \deg R - \delta \leq \dim V(R, \Delta)
\]

i.e., \(\dim V(R, \Delta) \geq \left(e \right) - \delta + d \).

(4°) \(\rho \) is not injective.

In fact, \(\rho(A) = 0 \) iff \(\varphi^*(A_{B_0}) = 0 \)

iff \(\text{FA} \).

Kernel(\(\rho \)) = \(\sum A \mid A = FA \) s.t. \(\deg A = e - f_2 \).

\[
\Rightarrow V_{e,f} = \sum A_2's \sum f_2's.
\]

i.e.,

\[
0 \rightarrow V_{e,f} \overset{-F}{\longrightarrow} V(R, \Delta) \overset{\rho}{\longrightarrow} \mathcal{Z}(D)
\]

Then \(\dim \mathcal{Z}(D) \geq \dim V(R, D) - \dim V_{e,f} \)

\[
\geq \left(e \right) - \delta e + \delta + d - \left(e \right) f_2
\]

\[
= \frac{1}{2} \left((e + 2)(e + 1) - \delta f_2 \delta + \delta d - (e - f_2)(e - f_2 + 1) \right)
\]

\[
= d + 1 - g. \quad \text{Resulting formula for } g.
\]
Riemann-Roch: \(\mathbb{X} = \text{proj curve, genus } g \), \(D \) any divisor on \(\mathbb{X} \).

\[K = \text{div}(w) \text{ for } w \text{ a mer 1-form}, \quad \mathcal{L}(D) = \text{div}(L(D)). \]

Then

\[\mathcal{L}(D) = d + 1 - g + \ell(K-D). \quad (d = \text{deg } D) \]

Note: \(c_0 D \) is effective,

\[\mathcal{L}(K-D) \cong \left\{ \text{holo 1-forms vanishing on } D \right\}. \]

Because

\[\mathcal{L}(K-D) = \left\{ \text{holo 1-forms with } \text{div}(w) = 0 \right\}. \]

Note: \(\ell(K) = \dim \left\{ \text{holo 1-forms} \right\} \geq g. \)

Proof: Realize \(\mathbb{X} \) as a plane curve \(v \) modulo: \(\Phi: \mathbb{X} \to \mathbb{R}^2. \)

\[\left\{ \text{holo 1-forms} \right\} \cong \left\{ \text{homog poly os degree } d-3 \text{ vanishing at } \Phi(v) \right\}. \]

\[\Rightarrow \dim \geq \left(\frac{d-1}{2} \right) - 3 = g. \]

Main Lemma: Let \(D \) be an effective divisor of degree \(d \) on \(\mathbb{X} \). Then

\[\ell(D) \leq d + 1 - g + \ell(K-D). \]

Proof: (1) Fix a basis \(w_1, \ldots, w_5 \in \left\{ \text{holo 1-forms on } \mathbb{X} \right\}. \quad (s \geq g) \]

Assume for simplicity that \(D = P_1 + \cdots + P_s \) distinct points.

Let \(f_1, \ldots, f_s \in \mathcal{L}(P_1, \ldots, P_s) \) be a basis.

The residue theorem says for each \(i = 1, \ldots, s \),

\[\sum_j \text{Res}_{P_i} (f_j w_j) = 0. \]

This puts conditions on the \(f_i \) and \(w_i \) need to come handy.

(2) Choose local coordinates \(z_i \) at \(P_i \). \((z_j = 0 \text{ corresponds to } P_j) \).

Write \(w_j = \phi_i(z_j) \partial z_j \text{ (mean } P_j) \)

\[f \partial z_i = \frac{p_i}{z_i} + \text{holomorphic in } z_j \text{ (mean } P_j). \]
\[\text{Res}_j p_j (w_i) = \beta^j_i w_i(p_j) \]

For \(1 \leq i \leq K \):

\[\vec{V}_k = \begin{pmatrix} \beta_{1k} \\ \vdots \\ \beta_{Kk} \end{pmatrix} \]

"vector of principal parts of \(f \)."

1. Consider the matrix:

\[
\begin{bmatrix}
 w_1(p_1) & \cdots & w_1(p_d) \\
 \vdots & \ddots & \vdots \\
 w_s(p_1) & \cdots & w_s(p_d)
\end{bmatrix}
= M
\]

"Brill–Noether matrix."

For each \(c_k \), \(\sum_j \text{res}_j p_j (f_w w_j) = 0 \). \(\forall i \). \(\implies \)

\[M \cdot \vec{v}_k = 0 \]

Note: \(\vec{v}_k = 0 \iff \text{for \ a \ haw \ no \ poles} \iff \text{for \ a \ constant} \).

So \(\ell(P_1, \ldots, P_d) \leq 1 + \dim \ker M \)

\[\begin{bmatrix}
 \ell & \text{K constants}
\end{bmatrix} \]

2. What is \(\dim \ker M \)?

If \(M \) has full rank:

\[\dim \ker M = (d-s) + \# \text{linear relations among rows of } M \]

A linear relation among the rows of \(M \) is the same as giving a hole \(w \) vanishing at \(P_1, \ldots, P_d \).

\[\# \text{linear relations among rows} = \ell(K-D) \implies \]

\[\dim \ker M = d-s + \ell(K-D) \]

So \(\ell(P_1, \ldots, P_d) \leq 1 + d-s + \ell(K-D) \leq 1 + d-g + \ell(K-D) \).
Proof: The proof of the theorem shows:

\[d + 1 - g \leq \deg(P_1 + \cdots + P_d) \leq 1 + d - s + \deg(K - D). \]

Riemann's thm.

Now take \(d > 2g - 2 \), then \(\deg(K - D) < 0 \Rightarrow \deg(K - D) = 0 \)

\[\Rightarrow \; d + 1 - g < 1 + d - s \quad \text{i.e.}, \quad s > g. \quad \text{But we already know} \; s \geq g. \]

Lemma: Let \(D \) be an effective divisor. Then RR holds for \(D \), i.e., \(\ell(D) = d + 1 - g + \deg(K - D) \).

Proof:

\textbf{Case 1:} \(\deg(K - D) = 0 \)

Then we are done by Main lemma and Riemann's thm.

\textbf{Case 2:} \(\deg(K - D) \neq 0 \).

As \(\deg(K - D) \neq 0 \), take effective \(E = K - D \).

Apply the main lemma to \(E \):

\[\ell(E) \leq \deg(E) + 1 - g + \deg(D) \]

\[= (2g - 2 - d) + 1 - g + \deg(D) \]

\[\Rightarrow \; \ell(D) \geq d + 1 - g + \deg(K - D). \quad \text{Using} \; \ell(E) = \ell(K - D). \]
Remark: RR holds for Diff it holds for K-D.

Proof (RR): Need: \(l(D) = d + 1 - g + l(K-D) \).

- \(l(D) > 0 \Rightarrow D \geq \text{effective divisor}, \text{previous lemma applies.} \)
- \(l(K-D) > 0 \Rightarrow \text{previous lemma applies to K-D, remark gives proof.} \)

So it only remains to prove \(l(D) = l(K-D) = 0 \).

By Riemann's inequality,

\[
\begin{align*}
l(D) &\geq d + 1 - g \\
l(D) = 0 &\Rightarrow d \leq g - 1. \\
l(K-D) &\geq 2g - 2 - d + 1 - g \\
&= g - 1 - d \\
l(K-D) = 0 &\Rightarrow d > g - 1.
\end{align*}
\]

Thus \(d = g - 1 \).

But then this is exactly what RR says. \(\blacksquare \)
Def: The index of speciality of D is $l(K-D)$; $i(D)$.

Claim: If $d \geq 2g-1$, then $i(D) = 0$. So $l(D) = d+1-g$.

Example: $g=1$. If $d \geq 1$, then $l(D) = V_d = d$.
If $d = 0$, $l(D) = 0$ if $D \neq 0$, $l(D) = 1$ if $D = 0$.

Proof: If $d \geq 2g-1$, then $\deg(K-D) = (2g-2) - d < 0$. Thus $l(K-D) = 0$.

Morphisms to \mathbb{P}^r, Linear Series:

$|D| =$ complete linear series associated to D.

\[d \rightarrow \text{div}(h) \rightarrow \mathbb{P}(\mathcal{L}(D)) \]
\[\rightarrow \mathcal{D}_{\text{eff}} \] \[\rightarrow \mathbb{P}(\mathcal{O}(D)) \] \[\rightarrow \mathbb{P}(\mathcal{O}(D)) \]

$|D| = \mathbb{P}(\mathcal{O}(D))$. By

$r(D) =$ dim $|D|$ is the dimension of $\mathbb{P}(\mathcal{O}(D))$.

$r(D) = l(D) - 2$.

Any $r(D) = r \geq 1$.

We want to find a morphism $\phi = \phi_{|D|} : X \rightarrow \mathbb{P}^r$, $\phi(x) \neq$ any hyperplane.

$|D| = \{ x + H \mid H \in \mathbb{P}^r \text{ hyperplane} \}$.

\[X \rightarrow \mathbb{P}^r. \]
Def: \(ID_1 \) (or \(D_1 \)) is base point free (or free) if given any \(P \in \mathbb{P} \), \(\exists D \in ID_1 \) s.t. \(\text{ord}_P(D) = 0 \). Def.

Prop: \(D \) is free, then \(\exists \phi_{ID_1}: \mathbb{P} \to \mathbb{P}^r \) with
\[
\text{ID}_1 = \mathbb{P} \times_{\mathbb{P}^n} \mathbb{P}.
\]

(Choose a basis \(1, f_1, \ldots, f_r \in L(D) \). Define \(\phi_D = \langle f_1, f_2, \ldots, f_r \rangle \)

More intrinsically, assume \(\text{ID}_1 \) free. \(\mathbb{P}^r = \text{ID}_1^* \) a hyperplane in \(\text{ID}_1 \).

\[
\phi_{ID_1}: \mathbb{P} \to \mathbb{P}^r
\]

\[
\phi_{ID_1}(P) = \langle D' \mid \text{ord}_P(D') \geq 1 \rangle
\]

Lemma: \(\text{ID}_1 \) is free iff \(\chi(D-P) = \chi(D) - 1 \) \(\forall P \in \mathbb{P} \).

On this... \(\text{ID}_1 - P_1 \to \text{ID}_1 \). The image is \(\mathbb{P}^r \mid \text{ord}_P(D) \geq 1 \).

Lemma: Assume \(\text{ID}_1 \) is free, so we have \(\phi_{ID_1}: \mathbb{P} \to \mathbb{P}^r \).

\(\phi_{ID_1} \) is an embedding iff \(\chi(D-P-Q) = \chi(D) - 2 \) \(\forall P, Q \in \mathbb{P} \).

Idea of proof:

\(\text{ID}_1 - P - Q \to \text{ID}_1 \)

\(E \to \text{E} + P + Q \).

Assume \(P \neq Q \).

\[P \xrightarrow{Q} P \]
Given P, Q,

$1D - P - Q \cong 1D$

is the set of all hyperplane sections passing through P, Q.

C fails to be an embedding iff C not 1-1, $dC = 0$ at some pt.

Suppose C is not 1-1. Then $\exists P, Q$ s.t. $C_p = C_Q$.

Any hyperplane H through O has $S \cdot H$ contains P, Q.

As $1D - P - Q \cong 1D$ has codim 2. \[\varepsilon (1D - (2 - D) = 1D - D - 1).\]

Recap: $\forall \epsilon 1D - P - Q \cong 1D - 2 \forall P, Q$, then C_{1D} is an embedding.

Case 2. D a divisor on X.

- $\forall \epsilon dD = \epsilon g$, then $1D_{1D}$ is free.
- $\forall \epsilon dD = \epsilon g + 1$, then C_{1D} is an embedding. (is very ample)

(e.g. particular, taking $\epsilon = g + 1$, get an embedding)

$X \to P^{g+1}$ or $\deg d$
Proof: Any \(\deg D \geq g+1 \). \(\forall P, Q, \ deg(D-P-Q) \geq g-1 \),
so \(\ell(D-P-Q) = 0 \).

RR: \(\ell(D) = d+1-g = \ell(D-P-Q) = (d-2) + 1-g \)

\[= d-1-g \]
\[= \ell(D) - 2 \]

As we are getting embeddings of these curves into large projective spaces.

Example: Any \(\mathbb{X} \) of genus \(g \) can be expressed as \(\mathbb{X} \to \mathbb{P}^1 \)
of \(\deg g+1 \).

We'll come back to this later.

Most Interesting Case: Apply this to \(\mathbb{X}_{\text{can}} \).

\(\ell(K) = \dim \mathbb{X}_{\text{can}} \) holomorphic 1-forms \(\mathbb{X}_{\text{can}} = g \).

\(\dim \mathbb{K} = g-1 \).

\(\mathbb{C} \mathbb{P}_{K}: \mathbb{X} \to \mathbb{P}^{g-1} \). "Canonical map"
Recall:

X = smooth proj. curve genus g

$D = \text{effective divisor on } X, \text{ deg } D = 2g - 2$

$|D| = \{ \mathcal{D} \mid \mathcal{D} \sim D \}$

Prop:

1. Assume $P \in X$, $l(D-P) = l(D) - 3$. Then $\exists \phi_P : X \to \mathbb{P}^{n}$

 such that $l(D) = \int X \cdot H^2$, $H \in \mathbb{P}^n$ hyperplane.

2. $\forall \ell \geq l(D-P) = l(D) - 2$, $P, Q \in X$, then ϕ_P is an embedding.

Canonical Mapping:

$D = K - \text{div}(w)$, $w = \text{hol} i - \text{form}.$

Assume that $g \geq 2$.

Lemma: $|K|$ is base point free, i.e., get $\phi_{|K|} : X \to \mathbb{P}^{g-1}$, $l(K) = g$.

Proof:

Let $P \in X$ such that $l(K-P) = l(K) = g$. Apply R.R to $K-P$.

$l(K-P) = \deg(K-P) + 1 - g + l(K-(K-P))$

$l(K-P) = (2g - 3) + 1 - g + l(P)$.

Since $g = g - 2 + l(P)$

i.e., $\exists P$ s.t. $l(P) = 2$.

i.e., $\dim l(P) = 2$.

$\Rightarrow \exists \text{ a meromorphic } f \in l(P)$

We can view f as defining $\tilde{f} : X \to \mathbb{P}^1$.

$\tilde{f}(\infty) = P$ since only a single pole

$\Rightarrow \deg \tilde{f} - 1 = f$ isomorphism.

$g \geq 3$. \end{proof}
Alternative Interpretation:

Def: \(H^1(\mathcal{E}) = \frac{3}{2} \) hole 1-forms 3.

Choose a basis \(\omega_1, \ldots, \omega_3 \in H^1(\mathcal{E}) \).

\(\phi_{1k}: \mathcal{E} \rightarrow \mathbb{P}^3 \)

\(x \mapsto [\omega_1(x), \ldots, \omega_3(x)] \)

"Canonical mapping"

We have said before that \(\mathcal{L}(K) \cong H^1(\mathcal{E}) \).

Thm: The canonical mapping is an embedding unless \(\Sigma \) is hyperelliptic, i.e., \(\Sigma \) admits a 2-1 branched covering \(\tau: \Sigma \rightarrow \mathbb{P}^1 \) of degree 2.

Proof: Assume \(\phi_{1k} \) is not an embedding. Let \(\Sigma, \mathcal{L}, \mathcal{P} \) s.t.

\(\mathcal{L}(K-P-Q) > \mathcal{L}(K-C) - 2 = g-3 \).

Then \(\mathcal{L}(K-P-Q) = g-1 \) by previous lemma.

Apply RR:

\(g-1 = \mathcal{L}(K-P-Q) = (2g-2-2) + 1 - g + \mathcal{L}(P+Q) \)

\(\Rightarrow \mathcal{L}(P+Q) = 2 \). (since \(\mathcal{L}(P+Q) = 2 \).

So as before, we get a meromorphic map \(\mathcal{S} \in \mathcal{L}(P+Q) \),

so gives a 2-1 map \(\Sigma \rightarrow \mathbb{P}^1 \).

Hyperelliptic Curves: (93.2)

\(\Sigma \) genus \(g \), admits \(\Sigma \rightarrow \mathbb{P}^1 \) of degree 2.

\(\Sigma \) is the R.S. associated to \(y^2 = f(x) \).

distinct roots
The number of ramification points P of π:

$$(\deg - 1) + 2g + 2 = \# \text{ ramification points}. $$

$$\deg \pi = - \log(1/2).$$

$$= 2g + 2. \quad (R1)$$

$$y^2 = \begin{cases} f_{2g+1} & \text{one ramification at } \infty. \\ f_{2g+2} & \end{cases}$$

Note:
- Have described these hyperelliptic curves completely explicitly.
- In large genus, hyperelliptic curves are completely atypical among all curves of genus g.

Claim: Every curve of genus $g + 2$ is hyperelliptic.

Proof: Canonical map is $X \rightarrow \mathbb{P}^1$.

$$\deg \phi = \deg \psi = 2g + 2 = 2 \cdot 3.$$

Alternately, $L(\mathcal{K}) = 2g + 2 = 3$ nonet $f \in L(\mathcal{K})$. We can write $f : X \rightarrow \mathbb{P}^1$. Then $\deg \mathcal{K} = 2$,

$$f(x) = x^{2g+2}.$$

Note: $(g - 2)$

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

The canonical map $X \rightarrow \mathbb{P}^1$ ramifies at 5 points. These 5 points are intrinsically defined special points on X.

These are the Weierstrass points.
Genus 3:

Theorem: Let \(X \) be a non-hyperelliptic curve (n.h.) of genus 3, then \(X \) can be realized as a smooth quartic in \(\mathbb{P}^2 \). Conversely, any smooth quartic is the canonical embedding of a curve of genus 3.

Proof: Canonical embedding: \(X \to \mathbb{P}^{g-1} = \mathbb{P}^3 \), and \(\deg X = 2g-2 = 4 \).

So we get a plane quartic.

Conversely, any \(X \subset \mathbb{P}^2 \) is a smooth quartic. Then genus of \(X \) is \((7^3) = 3 \).

Recall: \(Y \subset \mathbb{P}^2 \) is curve of degree \(e \), then \(\deg \text{can}(X) = 3 \cdot \deg(Y) \).

This shows that in genus 3,

\[X \subset \mathbb{P}^3 \text{ a plane quartic} \]

\[K = X \cdot H \]

So \(X \) is embedded by the canonical linear series.

\[X = \text{non h.o. curve of genus 3; } (X \subset \mathbb{P}^3 \text{ of deg 4}). \]

Question: What is the least degree of a branched covering \(X \to \mathbb{P}^2 \)?

It must be at least 3 because it isn’t hyperelliptic. Can we do it for 3? Can we do it for 4 just by projecting? To get degree 3, project from a point on the curve, which is a 3-1 map.
So we get \(\pi: \mathbb{X} \to \mathbb{P}^1 \) of degree 3 by projection from any point \(P \in \mathbb{X} \subseteq \mathbb{P}^2 \).

\[I(K-P) : \]
\[I(K-P) = I(K) - 1 = 2 \quad (K \text{ is base pt. free}) \]

\[\text{Note: } I \text{ a 1-dim family of degree 3 curves } \mathbb{X} \to \mathbb{P}^1. \text{ (Every point on the curve gives this)} \]
Recall: \mathcal{X} curve of genus $g \geq 2$.
Choice basis $v_1, \ldots, v_g \in H^1(\mathcal{X})$.

Define $\varphi_{1k_1}: \mathcal{X} \to \mathbb{P}^{g-1}$
\[x \mapsto \{v_1(x), \ldots, v_{g}(x)\}. \]

Thm: This is an everywhere defined morphism, i.e., not all the 1-forms vanish at any point. i.e., \mathcal{X} is base point free.
φ_{1k_1} is an embedding unless \mathcal{X} is hyperelliptic, i.e., if $\mathcal{X} \to \mathbb{P}^1$ deg 2.

Example: $g = 3$. Either \mathcal{X} is hyperelliptic, or $\mathcal{X} \to \mathbb{P}^2$ is a smooth plane quartic.

Genus 4:

Thm: \mathcal{X} a non-hyperelliptic curve of genus 4. Then \mathcal{X} is a complete intersection of a quadric and cubic surface in \mathbb{P}^3. (Conversely, any such complete intersection is a canonical curve of genus 4.

Complete intersection = transversal intersection of 2 surfaces.

Proof: Look at canonical embedding:
\[\mathcal{X} \to \mathbb{P}^3 \quad \text{by} \quad 1, f_1, \ldots, f_3, L(K) \quad x \mapsto \{1, f_1(x), f_2(x), f_3(x)\} \]

\mathcal{X} has degree $6 = 2g - 2$.

Let $V_p = \{ \text{homog poly of deg p on } \mathbb{P}^3 \}$. $\dim V_p = \binom{p+3}{3}$

Then we have:
\[p_p: V_p \to L(pK) \]
\[\psi \quad \psi \]
\[F(x_0, \ldots, x_3) \to F(1, f_1, \ldots, f_3) \]

$\ker p_p = \mathcal{I}_p = \{ \text{homog poly of deg } p \text{ vanishing on } \mathcal{X} \}$.

\textbf{Claim:} \(\mathcal{X} \) lies on a unique (up to scalars) quadric surface \(F \).

\[\beta : \mathcal{V}_3 \to \mathcal{L}(2k) \]

\[\dim 10 \quad \mathcal{L}(2k) = \deg 2k + 1 - g + 0 \]
\[= 12 + 1 - 4 \]
\[= 9 \]

As there is at least a 1-dim kernel.

\textbf{Remark:} \(\beta \) is an iso by construction.

\textbf{Claim:} \(\dim \ker \beta = 1 \)

\textbf{Pf:} Suppose to contrary that \(Q_1, Q_2 \in \ker \beta \). These have no common factors or else \(\beta \) would not be an iso.

Take a hyperplane \(H \).

\[\begin{array}{c}
\text{H} \\
\# \mathcal{X} \cap H = 6
\end{array} \]

But we can't have two conics intersecting in 6 points.

So \(\deg Q \cap Q \leq 4 \), so \(\mathcal{X} \notin Q_1 \cap Q_2 \)

Thus the claim is satisfied.

\textbf{Cubic:}

\[\beta : \mathcal{V}_3 \to \mathcal{L}(3k) \]

\[\dim 0 \quad \dim 15 \]

So now we have a kernel of dimension at least 5.

\(\ker \beta \ni X_0 F, X_1 F, X_2 F, X_3 F \).

By dimension, \(\exists \) cubic \(G \in \ker \beta \) s.t. \(G \) and \(F \) have no common factors.
\[X \subseteq F \cap G \quad (F = \omega, \, \lambda G = \omega_1). \]

\[\sum_{\text{dyke}} \quad \text{dyke by Bezout.} \]

As there is nothing left, \(X = F \cap G. \)

Question: Does \(X \) admit a 3-1 map to \(\mathbb{P}^1 \)?

\[F = F_c \quad \text{can. set by } c \]

\[\text{rk} F = \begin{cases} 4 & \text{Famous} \\ 3 & \text{F cone over plane conic} \end{cases} \]

The cubic is not intrinsic, but the quadric is.

\[F, \text{ a non-sing quadric (rk4).} : \]

\[F \cong \mathbb{P}^1 \times \mathbb{P}^1 \quad \text{(Segre embedding).} \]

\[\begin{array}{c}
F \\
\text{each line meets the curve} \\
\text{three times counting mult.}
\end{array} \]

In this case, \(X \) admits 2 3-1 maps onto \(\mathbb{P}^1 \),

one for each projection.

\[F, \text{ cone over plane conic:} \]

Projecting gives a 3-1 map to \(\mathbb{P}^1 \), but in

this case this is the only one.
Are any two non-hypereflect curves of \(g = 3 \) isomorphic?

\[\Sigma \in \mathbb{P}^2 \] is a plane quartic (defined up to change of coordinates)

Plane quartics = \(\mathbb{P}^{14} \) = \(\bigcup \) non-\(\Sigma \) curves

\(\text{PGL}(3) = G \) = change of coordinate

has \(\dim \, G \).

This says they aren't all isomorphic.
9.1: Curves are all elliptic. Use Riemann-Roch.

9.2: Curves are hyperelliptic. Use canonical map $\phi_{1k}: \mathbb{B} \to \mathbb{P}^{3}: \mathbb{P}^1$ which has degree $\text{deg} \ k = 2g - 2 = 2$.

9.3: If \mathbb{B} is not hyperelliptic, then it is a smooth quartic in \mathbb{P}^3 and vice versa. Use the canonical map again to get $\phi_{2k}: \mathbb{B} \to \mathbb{P}^{3}: \mathbb{P}^2$ of degree $2g - 2 = 4$.

9.4: If \mathbb{B} is not hyperelliptic, then it is a complete intersection (i.e., transversal intersection) of a quadric and cubic surface in \mathbb{P}^3 and vice versa.
Jacobian:

Σ = smooth projective curve (compact \mathbb{P}^g of genus g)

Recall:

$H_1(\Sigma; \mathbb{Z}) \cong \mathbb{Z}^{2g}$

Beauis homology group.

$H_1(\Sigma; \mathbb{C}) \cong \mathbb{C}^{2g}$

$H^0_{dr}(\Sigma; \mathbb{C}) = H^0(\Sigma)$

\[
\begin{align*}
\text{closed} & \subset \mathcal{C}^0 \text{ 1-forms} \\
\eta \in \text{closed} & \subset \text{exact forms} \\
\eta & \in \mathcal{C} \text{ exact forms}
\end{align*}
\]

Recall:

1. The bilinear map

\[
H^0_{dr}(\Sigma; \mathbb{C}) \otimes H_1(\Sigma; \mathbb{C}) \longrightarrow \mathbb{C}
\]

$$(\eta, \gamma) \longrightarrow \int_\gamma \eta$$

is a perfect pairing.

2. The (alternating) pairing

\[
H'(\Sigma) \otimes H'(\Sigma) \longrightarrow \mathbb{C}
\]

$$(\alpha, \beta) \longrightarrow \int_\Sigma \alpha \wedge \beta$$

is non-degenerate. This is a form of Poincaré duality.
$H^{1,0}(\mathbb{X}) = \left\{ \text{holo } 1\text{-forms } \right\}$ is a complex vector space of complex dimension g.

We showed before a holo 1-form is closed, so we get:

\[H^{1,0} \rightarrow H^1(\mathbb{X}). \]

Def. An anti-holomorphic 1-form is conjugate to a holo 1-form, i.e., any $\omega \in H^{1,0}(\mathbb{X})$. Locally $\omega = f(z)dz = f(z)(dx + idy)$, \[\text{holo, then } \overline{\omega} = f(\overline{z})d\overline{z} = f(\overline{z})(d\overline{x} - id\overline{y}). \]

\[H^{0,1}(\mathbb{X}) = \left\{ \text{vector space of all anti-holo } 1\text{-forms } \right\} \]

\[\dim_{\mathbb{C}} H^{0,1} = g. \]

Exercise: If ω is holo, then $d\overline{\omega} = 0$, i.e., anti-holo forms are closed.

So we have 2 maps:

\[H^{1,0}(\mathbb{X}) \rightarrow H^1(\mathbb{X}) \]

\[H^{0,1}(\mathbb{X}) \rightarrow H^0(\mathbb{X}) \]

Then: These maps are injective, and we have a direct sum decomposition:

\[H^1(\mathbb{X}, \mathbb{C}) = H^{1,0}(\mathbb{X}) \oplus H^{0,1}(\mathbb{X}). \]

More concretely, choose a basis w_1, \ldots, w_g of $H^{1,0}(\mathbb{X})$, then $\overline{w}_1, \ldots, \overline{w}_g$, $\overline{w}_1, \ldots, \overline{w}_g$ are a basis of $H^1(\mathbb{X}, \mathbb{C})$.
Remark: This is a "baby" case of the Hodge decomposition.

Proof: It is enough to show that the cup product pairing among w_i, \bar{w}_j is nondegenerate. This will give the linear independence, which we claim. Counting gives the thm.

For reasons of type

$$\int_X w_i \wedge \bar{w}_j = 0 \quad \text{all } i,j$$

$$\int_X \bar{w}_i \wedge \bar{w}_j = 0$$

In fact, $w_i \wedge \bar{w}_j = 0$, $\bar{w}_i \wedge \bar{w}_j = 0$ because $w_i = f \zeta_i dz$, $\bar{w}_j = g \zeta_{-j} dz$, and $w_i \wedge \bar{w}_j = f \cdot g \zeta_i \zeta_{-j} d\zeta d\bar{\zeta} = 0$

Let $a_{ij} = \int_X w_i \wedge \bar{w}_j$.

Claim: If $A = (a_{ij})$, then iA is a positive definite Hermitian matrix.

Granting the claim, it follows that the matrix for cup product in terms of $w_1, \ldots, w_j, \bar{w}_1, \ldots, \bar{w}_j$, is

$$\begin{pmatrix} 0 & A \\ -\bar{A} & 0 \end{pmatrix}$$

i.e. $iA > 0$.

And this is non-degenerate.

Claim: Fix $0 \neq \omega \in H^{1,0}(\mathbb{C})$. Need to show

$$\int_X \omega \wedge \bar{\omega} > 0.$$ In local coordinates, $\omega = f \zeta \bar{\zeta} d\zeta$, $\bar{\omega} = \bar{f} \zeta \bar{\zeta} d\zeta$

$\bar{\omega} = \bar{f} \zeta \bar{\zeta} (d\zeta - d\bar{\zeta}) \Rightarrow \omega \wedge \bar{\omega} = i f \zeta (\bar{f} \zeta)^2 (d\zeta - d\bar{\zeta})$

Thus, $\int_X \omega \wedge \bar{\omega} = 2 \int_{\mathbb{D}} f^2 (dx \wedge dy) > 0$. □
As \(H^1_{\text{tr}}(\Sigma) \oplus H^0(\Sigma) \subset H^1(\Sigma) \), since \(\dim H^1(\Sigma) = 3 \), we get the result.

Proof: Pairing \(\langle \omega, \eta \rangle = \int_{\Sigma} \omega \cdot \eta \) is a pos. def. Hermitian form on \(H^{1,0}(\Sigma) \).

\[H^{1,0}(\Sigma) \subset H^1(\Sigma). \]

\[C^9 \quad C^{2g} \]

Now define a map:

\[\gamma : H^1(\Sigma, \mathbb{Z}) \rightarrow H^{1,0}(\Sigma)^* \]

\[\gamma \rightarrow T_\gamma = \int_Y \]

Where \(T_\gamma(\omega) = \int_Y \omega \)

Note: This is the comp. \(H^1(\Sigma, \mathbb{Z}) \rightarrow H^1_{\text{tr}}(\Sigma, \mathbb{C})^* \)

\[2 : \mathbb{Z}^{2g} \rightarrow C^9 \]
Thm: The homomorphism i is injective and $\Lambda = \text{im}(i) \subseteq H^0(\Sigma)^*$ is a lattice, i.e., i takes a basis of $H_1(\Sigma, \mathbb{Z})$ in \mathbb{R}^N linearly independent vectors in $H^0(\Sigma)^*$.

\[H^0(\Sigma)^* \]

(like in 1-dim case with elliptic curves)

i.e., $\mathbb{Z}^g \cong \Lambda \subseteq H^0(\Sigma)^* \cong \mathbb{C}^g$

Def: The Jacobian of Σ is $\text{Jac}(\Sigma) = \frac{H^0(\Sigma)^*}{\Lambda}$, a complex torus of dim g.

Proof (Thm): Let $\gamma_1, \ldots, \gamma_g \in H_1(\Sigma, \mathbb{Z})$. Suppose Σ

\[\lambda_1, \ldots, \lambda_g \in \mathbb{R} \text{ s.t. } \sum \lambda_i \gamma_i = 0 \text{ in } H^0(\Sigma)^*. \]

i.e., \((*)\) \[\sum \lambda_i \int_{\gamma_i} \omega = 0 \text{ for all } \omega \in H^0(\Sigma). \]

$\omega \in H^0(\Sigma)$. Since the λ_i are real,

\[(*) \] \[\sum \lambda_i \int_{\gamma_i} \bar{\omega} = 0 \text{ for all } \omega \in H^0(\Sigma). \]

Using $\int_{\gamma_i} \omega = \int_{\gamma_i} \bar{\omega}$. But since $H^0 \otimes H^0 = H^0$,

this implies $\sum \lambda_i \int_{\gamma_i} \eta = 0$ for all $\eta \in H^0(\Sigma)$.

Now by the dolbeau thm, $\sum \lambda_i \gamma_i = 0$ in $H_1(\Sigma, \mathbb{C})$. \(\square\)
Recall:

\[\mathbb{E} = \text{projective curve of genus } g \]

\[H_0^\omega(\mathbb{E}) = \text{holo } 1\text{-forms on } \mathbb{E} = \mathbb{C}^g. \]

\[\iota: H_1(\mathbb{E}, \mathbb{Z}) \to H_1^\omega(\mathbb{E}) \]

\[\gamma \mapsto \oint_{\gamma} \]

\[H_1(\mathbb{E}, \mathbb{Z}) = \mathbb{Z}^g \]

\[\Lambda = \text{im}(\iota) \text{ is a lattice (period lattice)} \]

Definition:

\[\text{Jac}(\mathbb{E}) = \frac{H_1^\omega(\mathbb{E})^*}{\Lambda} \]

Local coordinates:

\[\omega_1, \ldots, \omega_g \in H_1^\omega(\mathbb{E}) \]

\[\gamma_1, \ldots, \gamma_{2g} \in H_1(\mathbb{E}, \mathbb{Z}) \]

\[H_1(\mathbb{E}, \mathbb{Z}) \to H_1^\omega(\mathbb{E})^* \]

\[\gamma \mapsto \oint_{\gamma} \omega = \left(\oint_{\gamma_1} \omega_1, \ldots, \oint_{\gamma_{2g}} \omega_g \right) \]

\[\Lambda \text{ is generated by rows of a } g \times 2g \text{ matrix:} \]

\[
\begin{bmatrix}
\oint_{\gamma_1} \omega_1 & \ldots & \oint_{\gamma_1} \omega_g \\
\ldots & \ldots & \ldots \\
\oint_{\gamma_{2g}} \omega_1 & \ldots & \oint_{\gamma_{2g}} \omega_g
\end{bmatrix} = \text{period matrix} \quad \text{ob } \mathbb{E}
\]

\[\text{Jac}(\mathbb{E}) \text{ is a complex torus of dimension } g, \text{ i.e., } \mathbb{C}^g/\Lambda \cong \mathbb{R}^g/\mathbb{Z}^g \]

\[\cong S^1 \times \cdots \times S^1 \]

\[\text{sm, copi} \]
Example: $\mathbb{X} = \mathbb{C}/\Lambda$.

$$\pi: \mathbb{C} \rightarrow \mathbb{C}/\Lambda = \mathbb{X}$$

$\pi^* H^{1,0}(\mathbb{X}) = \mathbb{C}:dz$,

$$dz = \pi^*(\omega).$$

The natural basis for $H_1(\mathbb{X}, \mathbb{Z})$ is α, β which are the images α, \tilde{z} and β.

$$H_1(\mathbb{X}, \mathbb{Z}) \rightarrow H^{1,0}(\mathbb{X})^*$$

$$(\alpha, \beta) \rightarrow \left(\int_{\alpha} \omega, \int_{\beta} \omega \right)$$

$$\int_{\alpha} \omega = \int_{\tilde{z}} d\tilde{z} = \tilde{z} \bigg|_{0}^{\lambda_1} = \lambda_1.$$

$$\int_{\beta} \omega = \lambda_2.$$

$$\Lambda = \mathbb{Z}\lambda_1 + \mathbb{Z}\lambda_2 \subseteq \mathbb{C}$$

So $\text{Jac} \left(\mathbb{C}/\Lambda \right) = \mathbb{C}/\Lambda$

Abel-Jacobi Map:

Fix base point $p_0 \in \mathbb{X}$. We will define a holomorphic mapping

$$u: \mathbb{X} \rightarrow \text{Jac}(\mathbb{X}).$$
Fix $p \in X$.

Choose a path γ_p from p_0 to p.

Given $w \in H^0(X)$, $\int_{\gamma_p} w \in C$, so get $H^0(X) \xrightarrow{\gamma_p} C$.

Note: \int_{γ_p} depends on the path γ_p.

However, if γ_p, γ'_p are two paths from p_0 to p, then $\gamma_p \cdot \gamma'_p$ is a 1-cycle on X.

So $\int_{\gamma_p} w - \int_{\gamma'_p} w = \int_{\gamma_p \cdot \gamma'_p} w$, i.e., thinking of these integrals as functionals, $\left\{ - \int_{\gamma_p} w \right\} \in \Lambda = \text{im}(\mathcal{L}) = \text{im}\left(H_1(X, \mathbb{Z}) \to H^0(X)^* \right)$.

Thus $\int_{\gamma_p} w \equiv \int_{\gamma'_p} w \pmod{\Lambda}$. i.e., $\int_{\gamma_p} w = \int_{\gamma'_p} w \pmod{\Lambda} \in \frac{H^0(X)^*}{\Lambda} = \text{Jac}(X)$.

So $u(p) = \int_p^1 \in \text{Jac}(X)$ is well-defined, independent of path, from p_0 to p.

$u : X \to \text{Jac}(X)$.
Prop: \(U \) is a holomorphic map of complex manifolds.

Proof: Given \(p \), choose \(Y \) from \(p_0 \) to \(p \) and local coordinate \(z \) centered at \(p \). Choose \(w_1, \ldots, w_g \in H^1(\mathbb{C}) \) a basis, \(w_i = f_i e^{z^2} \) locally.

We need to show \(\int_{p_0}^{p} w_i \) vanishes in \(p' \) for \(p' \) near \(p \).

\[
\int_{p_0}^{p} w_i = \int_{p_0}^{p} w_i + \int_{p}^{p'} w_i
\]

This leads down to the statement that \(\int_{p} f(z) e^{z^2} \) is analytic in \(p' \), which we know from complex analysis.

We will see later that \(U : \mathbb{X} \to \text{Jac}(\mathbb{X}) \) is an embedding.

\[
\text{Hauso map: By means of translation on Jac(\mathbb{X})}, \text{ we have}
\]

\[
\text{a natural identification } T_p (\text{Jac}(\mathbb{X})) = T_0 \text{ Jac}(\mathbb{X}) \text{ (tangent space)}
= H^1(\mathbb{C})^*.
\]

So we get a \textit{Hauso map}.
\(Y : \mathbb{R} \rightarrow \mathbb{P} \mathcal{H}^0(\mathbb{R})^* \)

\[\mathcal{P} \rightarrow T_p(\mathbb{R}) \leq T_0 \text{ Jac}(\mathbb{R}) \cong \mathcal{H}^0(\mathbb{R})^* \]

Abel's Thm: Given \(p_1, \ldots, p_r, q_1, \ldots, q_r \in \mathbb{R} \), there exists \(f \in C(\mathbb{R}) \)

with \(\text{div}(f) = \sum pi - \sum qi \) iff \(\sum u(p_i) = \sum u(q_i) \).

Remarks:

1. The definition of \(u \) depended on the base point \(P_0 \).

\[U = U_{P_0} \]

This is ok though, because there is a canonical map \(\text{Div}^0(\mathbb{R}) \rightarrow \text{Jac}(\mathbb{R}) \)

\[U(P-Q) = \int_{P_0}^P - \int_{P_0}^Q = \int_{P_0}^Q \]

As if we change the base point, the result changes so as to cancel it out.

2. \(\text{Div}^0(\mathbb{R}) \rightarrow \text{Jac}(\mathbb{R}) \), so Abel's thm is equivalent to saying \(\text{Jac}(\mathbb{R}) = \text{Div}^0(\mathbb{R})/\text{Prin}(\mathbb{R}) \)
X is compact R.S. of genus g

Topologically X is a $4g$-gon with sides identified in pairs.

As X is:

\[
\Delta
\]

\[
\begin{align*}
\alpha & : j = 1, \ldots, g \\
\beta & : j = 1, \ldots, g \\
\end{align*}
\]

loops on surface corresponding to α_j and β_j

\[
\begin{cases}
\alpha_i \cdot \beta_i = 1 & \text{for } i \neq j \\
\alpha_i \cdot \alpha_i = \beta_i \cdot \beta_i = 0
\end{cases}
\]

Note: Let $\pi : \pi \rightarrow X$ be a universal cover of X (as π is a R.S.). We can view $\Delta \subset \pi$. So $\Delta \rightarrow X$ is holo.
Given finitely many points \(p_i \in X \), we can assume after translation that \(p_i \in \text{int}(\Delta) \).

Consider closed \(C^\infty \) (or holomorphic) 1-form \(\sigma \) on \(X \).

Def: \(A_i(\sigma) = \int_{a_i}^{b_i} \sigma \) and \("a_i" \ and \ "b_i" \ periodic points of \(\sigma \) \(\int_{a_i}^{b_i} \phi \).

\(\sigma \) lifts to a form on \(\hat{X} \) and also on \(\hat{\Delta} \). Write \(\phi \)
for the form on \(\Delta \).

So \(\int_{a_i}^{a_i} \phi = \int_{a_i}^{a_i} \phi \) on \(\Delta \).

Fix \(p_0 \in \Delta \). Assume \(\sigma \) has no poles on \(\Delta \). For \(x \in \Delta \), define

\[
\int_{p_0}^{x} \phi = \int_{p_0}^{x} \phi \quad (\text{indep of path}: \phi \text{ closed, } \Delta \text{ simply connected})
\]

This is single valued on \(\Delta \) (or \(\Delta \) \(\backslash \) poles of \(\sigma \)).

\(\int_{p_0}^{p_0} \phi = \int_{p_0}^{x} \phi \) if \(\sigma \) is \(C^\infty \) (or holomorphic) if \(\sigma \) is \(\partial \sigma = 0 \).
Prop: Let σ, τ be C^∞ closed 1-forms on Δ. Then

$$\int_{\Delta} f_{\sigma \tau} = \sum_{i=1}^{g} \left(A_i(\sigma) B_i(\tau) - A_i(\tau) B_i(\sigma) \right)$$

Equality continues to hold if τ is nonzero with no poles on Δ.

Proof: Choose $x \in a_i$ with corresponding point $x' \in a_i'$.

Claim: $f_{\sigma}(x) - f_{\sigma}(x') = -B_i(\sigma)$

Pf: Let α_x be a path from x to x'. Then

$$f_{\sigma}(x) - f_{\sigma}(x') = \int_{\alpha_x} \sigma - \int_{\alpha_{x'}} \sigma$$

$$= \int_{x'}^{x} \sigma = -\int_{x'}^{x} \sigma.$$ But $\alpha_x \sim B_i, \alpha_{x'} \sim B_i(\sigma) \Box$.

Similarly, $y \in b_i, y' \in b_i'. \tau$ comes from a 1-form on Δ, so it takes the same values on a_i, a_i' (similarly on b_i, b_i').

$$\int_{\Delta} f_{\sigma \tau} = \sum_{a_i} \left(\int_{a_i} - \int_{a_i'} + \int_{b_i} - \int_{b_i'} \right)$$

$$= \sum_{x \in a_i} \left(\int_{\sigma} \left(f_{\sigma}(x) - f_{\sigma}(x') \right) \tau \right) + \sum_{y \in b_i} \left(\int_{\tau} \left(f_{\tau}(y) - f_{\tau}(y') \right) \sigma \right)$$

$$= \sum_{a_i} \left(\int_{a_i} - B_i(\sigma) \tau \right) + \sum_{b_i} \left(\int_{b_i} A_i(\sigma) \tau \right)$$
Prop.: Suppose w is any nonzero local 1-form on X.

Then $\text{Im} \left(\sum_{i=1}^{g} A_i(\omega) \overline{B_i(\omega)} \right) < 0$.

Proof: Recall $\int \omega \wedge \overline{\omega} = -2i \int (\text{strictly pos})$.

\[\text{Im} \left(\int \omega \wedge \overline{\omega} \right) < 0 \]

Note: \[
\int_{\Delta} f \omega \cdot \overline{\omega} = \int_{\Delta} d(f \omega \cdot \overline{\omega}) = \int_{\Delta} df \omega \cdot \overline{\omega} + \int_{\Delta} f \omega \cdot d\overline{\omega}
\]

\[
= \int_{\Delta} \omega \wedge \overline{\omega} + i d\overline{\omega} = 0
\]

i.e., $\text{Im} \left(\int_{\Delta} f \omega \cdot \overline{\omega} \right) < 0$ \((\star)\)

Now we use the formula just derived:

\[
\int_{\Delta} f \omega \cdot \overline{\omega} = \sum_{i=1}^{g} (A_i(\omega) \overline{B_i(\omega)} - A_i(\overline{\omega}) \overline{B_i(\overline{\omega})})
\]

Also, $A_i(\overline{\omega}) = \overline{A_i(\omega)}$, $B_i(\overline{\omega}) = \overline{B_i(\omega)}$.

Thus, \[
\int_{\Delta} f \omega \cdot \overline{\omega} = 2i \text{Im} \left(\sum_{i=1}^{g} A_i(\omega) \overline{B_i(\overline{\omega})} \right) < 0.
\]

So by \((\star)\) $\text{Im} \left(\sum_{i=1}^{g} A_i(\omega) \overline{B_i(\overline{\omega})} \right) < 0$.

Claim: If ω is a closed 1-form on \mathbb{R}^n, then

$$A_i(\omega) = 0 \forall i \iff \omega = 0 \quad \text{and} \quad B_i(\omega) = 0 \forall i \iff \omega = 0.$$
Period Relations:

\(X = \text{RS genus } g \).

View \(X \) as a \(4g \)-gon with sides identified in pairs.

\[\Delta \]

\(\phi \sigma \) is a closed \(C^0 \)-form on hole 1-form, view \(\sigma \) as a form on \(\Delta \). Fix \(p_0 \). Define \(\int_{\sigma} (x) = \int_{p_0}^{x} \sigma \), \(A_i(\sigma) = \int_{a_i} \sigma \),

\[B_i(\sigma) = \int_{b_i} \sigma. \]

Then if \(\sigma, \tau \) are closed 1-forms,

\[\int_{\sigma} \tau = \sum_{i=1}^{g} (A_i(\sigma) B_i(\tau) - A_i(\tau) B_i(\sigma)) \]

Prop: \(\phi \omega \) is any nonzero hole 1-form on \(X \), then

\[\text{Im} \left(\frac{\partial}{\partial \omega_i} A_i(\omega) B_i(\omega) \right) < 0 \]

\[\text{Im} \left(\frac{\partial}{\partial \omega_i} A_i(\omega) B_i(\omega) \right) > 0. \]

Corol: \(\phi \omega \) is a hole form and \(A_i(\omega) = 0 \) \(\forall i \), then \(\omega = 0 \). The same holds with \(B_i \) instead of \(A_i \).

Corol: Fix a basis \(\{ w_j \} \) of 1-forms \(H^1(\Delta) \). Then

the matrix \(A = (A_i(\omega_j)) = (\int_{a_i} \omega_j) \) is non-singular.

The same holds with \(A_i \) replaced by \(B_i \).
Proof: \[A = \begin{bmatrix} \sum_{a_i} w_i \cdot a_j \end{bmatrix} \]

Now if \(A \) is singular, the rows are dependent.

Adding the rows gives

\[\sum_{a_j} \lambda_i w_i = 0 \]

\[\Rightarrow \sum_{a_i} \lambda_i w_i = 0 \quad \# \text{ because } \sum w_i = 0 \]

Normalized Period Matrices:

By the rank, \(A \) is nonsingular. We can find a unique basis of \(H^0(\mathbf{X}) \) s.t. \(A = \text{Id} \), \(\sum_{a_i} w_j = \delta_{ij} \).

Define \(Z = (\sum_{a_i} w_j) \), formally \(B \),

\[\Lambda = H_1(\mathbf{X}, \mathbf{Z}) \in H^0(\mathbf{X})^* \Rightarrow (\Lambda, Z) \]

Thm (Riemann Bilinear Relations):

1. \(Z \) is symmetric, \(^tZ = Z \)

2. \(\text{Im} \ Z > 0 \) (positive definite)
Remark: Consider any lattice \(\Lambda \in \mathbb{C}^g \). We can choose a basis s.t. \(\Lambda = (I_g, \mathbb{Z}) \). Then \(\Theta \) and \(\Theta' \) imply \(\mathbb{C}^g / \Lambda \) can be embedded in projective space.

Proof: (1) Choose a normalized basis \(w_1, \ldots, w_g \in H^1(\mathbb{Z}) \). Apply the basic period relation to \(\sigma = w_i, \tau = w_j \):

\[
\int_{\Delta} f_{w_i, w_j} = \sum_{k=1}^g \left(A_k(w_i) B_k(w_j) - A_k(w_j) B_k(w_i) \right)
\]

\[
= B_i(w_i) - B_j(w_j) = z_{ij} - z_{ji}
\]

But

\[
\int_{\Delta} f_{w_i, w_j} = \int_{\Delta} d(f_{w_i, w_j}) = \int_{\Delta} (df_{w_i} \wedge w_j + f_{w_i} \wedge dw_j)
\]

\[
= \int_{\Delta} (w_i \wedge w_j) + \text{to .}
\]

Then \(w_i \wedge w_j \) is a \((2,0)\) form, which they are now.

So \(\int_{\Delta} f_{w_i, w_j} = 0 \), i.e., \(z_{ij} = z_{ji} \).

(2) For any \(w_i \), \(\text{Im} \left(\sum_{k=1}^g A_k(w_i) B_k(w_i) \right) > 0 \).

Fix \(\lambda_1, \ldots, \lambda_g \in \mathbb{R} \), not all 0. Then we need to show

\[
\sum_{\alpha, \beta=1}^g \lambda_\alpha \lambda_\beta \text{Im} (B_{\beta}(w_\alpha)) > 0.
\]
Take \(w = \lambda_1 w_1 + \ldots + \lambda_j w_j \). Then

\[
\text{Im} \left(\sum_{k=1}^2 \overline{A_k(w)} B_k(\omega) \right) > 0
\]

\[
\Rightarrow \sum_{k,j} \lambda_k \lambda_j \text{Im} (B_k(\omega_j)) = \sum_{k,j} \lambda_k \lambda_j \text{Im} (B_k(\omega_j)) > 0.
\]

Summary:

- Choose symplectic basis \(\alpha, \beta \in H_1(\mathbb{X}, \mathbb{Z}) \).

- \(\exists! \) basis \(w_1, \ldots, w_j \in H^{1,0}(\mathbb{X}) \), \(\int w_j = \delta_{ij} \).

- \(\mathbb{Z} = \left(\sum_{b_i} w_j \right) \).

- RBI: \(t \mathbb{Z} = \mathbb{Z} \).

- \(\text{Im} \mathbb{Z} > 0 \).

Example: \(g = 1 \)

\(\mathbb{X} = \mathbb{C}/\Lambda \), \(\omega = dz \)

\[
\int_a^b dz = 1, \quad \text{take } z \text{ from } 0 \text{ to } 1
\]

\[
\int_a^b dz = \pi \quad \text{Need } z \text{ in upper half plane}
\]
Recall: Representing on \mathbb{R}^3 by $\mathbf{a}_i \cdot \mathbf{x}$.

Normalized basis 1-forms

$\omega_i, \ldots, \omega_j \in \Omega^1(\mathbb{R})$

$\int \omega_j = \delta_{ij}$

$\left(\int_{b_i} \omega_j \right) = (Z_{ij}) = Z$

Riemann bilinear relations:

1. $\bar{Z} = Z$
2. $\text{Im}(Z) > 0$.

$\int_{\Delta} f \bar{z} = \sum \left(\int_{a_k} \int_{b_k} - \int_{b_k} \int_{a_k} \right)$

$\overline{\omega}$ meromorphic, o.h.o.

Abel's Thm: Harder half.

D a divisor of degree 0, $D = \Sigma n; P_i$ st. $\Sigma n; u(P_i) = 0 \in \text{Jac}(\mathbb{R})$.

Thm: f meromorphic st. $\text{div}(f) = D$.

Main Claim: f meromorphic, η w/ simple poles (only) at P_i, st.

1. $f_{P_i}(\eta) = n_i$
2. $\int_{\eta} \in \mathbb{C} \cdot T \mathbb{R}$ for all $\gamma \in \Omega^1(\mathbb{R}, \mathbb{R})$ (Think $\eta = \frac{df}{\bar{z}}$).

Grant the existence of η. Define $f(x) = \int_{\gamma} \eta$, $x \in \mathbb{R} \setminus \{P_i\}$.

This is well defined by \circ, i.e., indep of choice of paths.
Locally near P_i, \(\eta = \frac{n_i}{z} + \text{holo} \). \(\text{Let} \)
\[
\int_{P_i}^z \eta = n_i \log z + \text{holo},
\]
\[
\int_{P_i}^z \eta = z^{n_i} \text{holo, mon. near at } P_i.
\]

So \(\text{ord}_{P_i}(\eta) = n_i \).

The issue is to construct \(\eta \).

Step 2: Given a divisor \(D = \sum n_i P_i \) of degree \(0 \), find a meromorphic \(\eta \) with simple poles (only) at \(P_i \), \(\text{res}_{P_i}(\eta) = n_i \).

Proof: Consider
\[
\begin{align*}
\begin{cases}
\text{merom. diff} \\
\text{with simple poles at } P_i's
\end{cases}
\rightarrow & \mathbb{C}^d \\
& \text{for } (\lambda_1, \ldots, \lambda_d)
\end{align*}
\]

\[
\eta \rightarrow (\text{res}_{P_1}(\eta), \ldots, \text{res}_{P_d}(\eta)).
\]

By the residue theorem,
\[
\text{Im}(\alpha) \subseteq V = \left\{ (x_1, \ldots, x_d) \mid \sum x_i = 0 \right\}.
\]

Claim: \(\text{Im}(\alpha) = V \).

Proof: Count dimensions:
\[
\ker(\alpha) = H^0(\mathbb{C}) \text{ has dim } 1.
\]
\[
\text{dim LHS} = \mathbb{C}(K + P_1 + \ldots + P_d) \quad (2,1),
\]
\[
= (2g-2+d) + (1-g)
\]
\[
= g + d - 1
\]

So \(\text{dim Im} \alpha = d - 1 = \text{dim } V \). i.e., \(\alpha \) is onto.
Step 3: Assume mon \(\sum_{i=1}^{d} n_i \cdot u_i = 0 \) in \(\mathfrak{S}_n \).

Choose \(\eta = 0 \) in Step 2, \(\text{res}_t(\eta) = n_i \).

Main Point: Show that by adding holes differing to \(\eta \), we can arrange
\[\int_{a_i} \eta, \int_{b_i} \eta \in \mathfrak{S}_n \cdot \mathbb{Z} \quad (1 \leq i \leq g) \]

- Fix minimalized basis \(u_1, \ldots, u_g \in H^{1,0}(E) \).
 \[\int_{a_i} u_j = \delta_{ij}. \]

- And \(\exists \Delta = \sum_{k=1}^{g} u_k \), then \(\exists \Delta = \sum_{k=1}^{g} \eta_k \quad (1 \leq k \leq g) \).

Substep 1: Replacing \(\eta \) by \(\eta = \sum_{k=1}^{g} (\int_{a_i} \eta) u_k \), we can assume all \(\int_{a_k} \eta = 0 \), \(1 \leq k \leq g \).

Substep 2: Basic period relation:
\[\int_{a_1} \left(f_{u_k} \cdot \eta \right) = \sum_{k=1}^{g} \left(\int_{a_k} \left(\int_{a_k} \eta - \int_{b_k} \eta \right) \right) \quad \forall 1 \leq k \leq g. \]
\[= \int_{b_k} \eta \quad \text{(because \(u_k \) is dual basis)} \]

But, on the other hand:
\[\int_{a_1} f_{u_k} \cdot \eta = 2\pi i \sum_{k=1}^{d} f_{w_k} (P_k) \text{res}_t(\eta) \quad \text{(by residue Thm)} \]
\[= 2\pi i \sum_{k=1}^{d} n_k \cdot f_{w_k} (P_k) \]

\[\Rightarrow \]
\[2\pi i \sum_{k=1}^{d} n_k \int_{a_1} f_{w_k} = \int_{b_k} \eta \quad \forall 1 \leq k \leq g. \]
4. Hypothesis: \(\sum_{k=1}^{n} u_{ik}(p_k) = 0 \) means \(\exists e_1, \ldots, e_g \), \(f_1, \ldots, f_g \) s.t. \(\frac{d}{dx} \sum_{k=1}^{n} n_k \int_{p_k}^{p} = \sum_{i=1}^{g} \left(e_i \int_{a_i}^{b_i} + f_i \int_{b_i}^{p} \right) \) (**)

As functions in \(H^{1,0}(B) \).

Hit \(u_k \) with ():** For each \(1 \leq \alpha \leq g \)

\[
\frac{d}{dx} \sum_{k=1}^{n} n_k \int_{p_k}^{p} u_k = \sum_{i=1}^{g} \left(e_i \int_{a_i}^{b_i} + f_i \int_{b_i}^{p} \right)
\]

\[
= e_\alpha + \sum_{i=1}^{g} f_i \int_{b_i}^{p} \]

\[
= e_\alpha + \sum_{i=1}^{g} f_i \int_{b_\alpha}^{p} \text{ (Riem. B1.4).}
\]

Upshot: We had

\[
2\pi \sqrt{-1} \sum_{k=1}^{n} n_k \int_{p_k}^{p} u_k = \int_{b_k}^{p} \eta \quad \forall \alpha.
\]

So for each \(1 \leq \alpha \leq g \),

\[
\int_{b_\alpha}^{p} \eta = 2\pi \sqrt{-1} \left(e_\alpha + \sum_{i=1}^{g} f_i \int_{b_i}^{p} \right)
\]

4. Hypothesis: Let \(\eta' = \eta - 2\pi \sqrt{-1} \left(\sum_{i=1}^{g} f_i \int_{b_i}^{p} \right) \)

\[
\int_{b_k}^{p} \eta' = 2\pi \sqrt{-1} e_\alpha \in 2\pi \sqrt{-1} \cdot \mathbb{Z}.
\]

\[
\int_{a_\alpha}^{b_\alpha} \eta' = -2\pi \sqrt{-1} \left(\sum_{i=1}^{g} f_i \int_{a_i}^{b_i} \right) = -2\pi \sqrt{-1} f_\alpha \in 2\pi \sqrt{-1} \cdot \mathbb{Z}.
\]
\[\text{Div}^0(\mathcal{X}) \xrightarrow{u} \text{Jac}(\mathcal{X}) \].

We've shown \(\ker(u) = \text{Princ}(\mathcal{X}) \).

Now we just need to show \(u \) is surjective, the Jacobi inversion thm.
Structure of Abel-Jacobi Map:

\[X = \text{curve of genus } g. \]

\[\bar{u} : \text{Div}^g(X) \rightarrow \text{Jac}(X) \]

\[\Sigma_{i} u(P_i) \rightarrow \Sigma_{i} u(P_i) \]

Abe's Thm: \[\ker \bar{u} = \text{Princ}(X) \]

Thm (Jacobi domain II): \(\bar{u} \) is surjective. In particular, \(\text{Jac}(X) = \frac{\text{Div}^g(X)}{\text{Princ}(X)} \)

Lemma: Let \(P_1, \ldots, P_g \in X \) be \(g \) general points on \(X \), then \(P_1 + \cdots + P_g \) is not linearly equivalent to any other effective divisor, i.e.,

\[\ell(P_1 + \cdots + P_g) = 1. \]

Proof: By R.R., \(\ell(P_1 + \cdots + P_g) > 1 \iff \ell(K - P_1 - \cdots - P_g) > 1 \).

Consider \(\phi_i : X \rightarrow \mathbb{P}^{g-1} \). Call \(\phi_i \Phi_i \).

\[x \rightarrow [w_1(x), \ldots, w_{g-1}(x)] \]

\[\ell(K - P_1 - \cdots - P_g) > 1 \iff \Phi(P_1), \ldots, \Phi(P_g) \text{ lie on a hyperplane in } \mathbb{P}^{g-1}. \]

Choose \(P_1, \ldots, P_g \in X \) whose images don't lie on a hyperplane in \(\mathbb{P}^{g-1} \). Then \(\ell(K - P_1 - \cdots - P_g) = 0 \). \(\blacksquare \)

Exercise: If \(D \) is a "general" effective divisor of \(\deg D \), then

\[\dim \text{Id}_{D} = \begin{cases} 0 & \text{if } \deg \geq g \\ \deg & \text{if } \deg < g \end{cases} \]

Now define \(\nu : \text{Jac}(X) \rightarrow \text{Jac}(X) \) \((g \text{ copies}) \)

\[(P_1, \ldots, P_g) \rightarrow \sum_{i=1}^{g} u(P_i) \]
Thm (Jacobi dimension II): v_3 is surjective

"Jacobi \Rightarrow Jacobi I": Need $\tilde{u}: \text{Div}^d(X) \to \text{Jac}(X)$ is onto.

Let $F \in \text{Jac}(X)$. Then Jacobi II $\Rightarrow F = \sum_{i=1}^2 u(P_i)$ for some P_i.

Then $F = \tilde{u}(\sum P_i - g P_0)$, since $u(P_0) = 0$.

Proof (Jacobi III): We use the fact (Remmert Proper mapping Thm) that the image $Z = v(X)$ of proper map V is an analytic subvariety of $\text{Jac}(X)$ and Thm on dimension of fibers remains true.

Need to show $\text{Jac}(X) \cong Z = v(X)$, Z has dim g.

If dim $Z < g$, then all fibers of v would have dim ≥ 1.

But $v(P_1, \ldots, P_g) = v(Q_1, \ldots, Q_g) \iff \sum u(P_i) = \sum u(Q_i)$

$\iff \tilde{u}(\sum P_i - \sum Q_i) = 0$

$\iff \sum P_i = \sum Q_i$ (Abel-Jacobi Thm)

However, the lemma tells us that if P_i are general, then $\sum P_i$ is not linearly equivalent to any other effective divisor.

As general fibers of v have dimension 0.

Fix $d > 0$, $P_0 \in X$.

Claim: We can identify $\text{Jac}(X) \cong \text{Div}^d(X) / \sim$, where \sim is linear equivalence classes of degree d.

Use: $\text{Div}^g(X) \xrightarrow{\sim} \text{Div}^d(X)$ by $D \mapsto D + d P_0$.
And Abel’s Thm that $\text{Jac}(\mathcal{X}) \cong \text{Div}^0(\mathcal{X})/\text{Prin}(\mathcal{X})$.

Now we want to construct a space parametrizing effective divisors of deg d.

Symmetric Product:

Fix $d > 0$, $\mathbb{X}^d = \mathbb{X} \times \ldots \times \mathbb{X}$ (d times)

Symm grp S_d acts by permuting the coordinates, so we can view $\mathbb{X}^d_{/S_d}$ as parametrizing unordered d-tuples, i.e.,

effective divisors of deg d.

Thm: $\text{cl} \mathscr{X}$ is a smooth curve, $\mathbb{X}^d_{/S_d} = \mathbb{X}_d = S^d(\mathbb{X})$ (d^{th} symmetric product) is naturally a complex manifold of dim d in such a way that

$$\mathbb{X}^d \longrightarrow \mathbb{X}_d$$

is a holomorphic map.

Proof: (Exercise) Hint: local coordinates on \mathbb{X}_d are elementary symm forms in local coordinates on \mathbb{X}

Model: $\mathbb{C}^X = \mathbb{C}^d \longrightarrow \mathbb{C}_d = \mathbb{C}^d$

$$\begin{aligned}
(2, \ldots, 2) & \longmapsto (\text{elem symm forms})
\end{aligned}$$

Exercise: $S^d(\mathbb{P}^1) = \mathbb{P}^d$

Note: A point in $S^d(\mathbb{X})$ is an effective divisor of deg d on \mathbb{X}, i.e.,

$$S^d(\mathbb{X}) = \left\{ \text{eff divs of deg } d \text{ on } \mathbb{X} \right\}$$
Remark: The Abel-Jacobi map gives a holomorphic map

\[u_d : S^d(\mathbb{R}) \to \text{Jac}^d(\mathbb{R}) \]

\[\begin{array}{c}
\mathbb{R}^d \\
\downarrow \\
S^d(\mathbb{R})
\end{array} \quad \begin{array}{c}
\text{div cl assoc at egd} \\
u_d
\end{array} \quad \begin{array}{c}
\text{Jac}(\mathbb{R})
\end{array} \]
Thm (Abel-Jacobi restated): Fix any integer \(d \). Then we may view \(\text{Jac}^d(\mathbb{P}^1) \) as parameterizing linear equivalence classes of divisors of degree \(d \) on \(\mathbb{P}^1 \). Write \(\text{Jac}^d(\mathbb{P}^1) \) (\(\equiv \text{Jac}(\mathbb{P}^1) \)).

Why? \(\text{Jac}(\mathbb{P}^1) = \begin{cases} \text{lin equiv} \ \{ \text{classes of deg } 0 \} \to \{ \text{lin equiv} \ \{ \text{of deg } d \} \} \\
\begin{array}{c}
D \mapsto D + dP_0
\end{array}
\end{cases} \)

Assume \(d \geq 1 \).

Recall:

\[
S^d(\mathbb{P}^1) = \mathbb{P}^1 \times \cdots \times \mathbb{P}^1 \left/ \sum_{i=1}^{d} \text{symmetric group} \right.
\]

This is called the \(d \)th symmetric product of \(\mathbb{P}^1 \). The points of \(S^d(\mathbb{P}^1) \) are unordered \(d \)-tuples of points (repetitions allowed).

= effective divisors of deg \(d \) on \(\mathbb{P}^1 \).

Thm: \(S^d(\mathbb{P}^1) \) is a complex manifold of complex dimension \(d \).

Moreover, \(u_d : S^d(\mathbb{P}^1) \to \text{Jac}^d(\mathbb{P}^1) \) is a holomorphic map.

\[
\begin{array}{c}
D \mapsto [D]
\end{array}
\]

\[
u_d : S^d(\mathbb{P}^1) \to \text{Jac}^d(\mathbb{P}^1)
\]

\[
d \mapsto d
\]

Fix a linear equivalence class \([D] \in \text{Jac}^d(\mathbb{P}^1)\). (deg \(D = d \)).

\[
u_d^{-1}([D]) = \begin{cases} \text{effective divisors } D' \mid D' = D \end{cases}
\]

\[
= |D| \text{ complete linear series associated to } D.
\]
Thm: \(U_d^{-1}(P^1,\mathbb{P}^r) \) is a projective space as a subvariety of \(S^d(X) \).

Structure of \(U_d \):

1. \(d \leq g \): We saw that the general fiber of \(U_d \) is finite, hence the general fiber is a point. Here \(U_d \) is birational onto its image.

2. \(d > g \): \(U_d \) is surjective. The general fiber has \(\dim d - g \).

 i.e., if \(|D| \) is a general divisor class of \(\deg d > g \), then \(\dim |D| = d - g \). Riemann-Roch says \(\ell(D) = \dim |D| + 1 \)

 \[\ell(D) = d + 1 - g + \ell(K-D) \]

 i.e., \(\dim |D| = d - g + \ell(K-D) \). For \(d \geq g \), one can show \(\ell(K-D) = 0 \) for general \(D \).

3. \(g < d \leq 2g-2 \): Most fibers of \(U_d \) are \(\mathbb{P}^{d-g} \)'s, but some have \(\dim > d - g \), i.e., the ones where \(\ell(K-D) > 0 \).

4. \(d > 2g-2 \): \(\ell(K-D) = 0 \) for all \(D \). Then all fibers are \(\mathbb{P}^{d-g} \).

In fact: \(S^d(X) \to \text{Jac}(X) \) is a proj space bundle (in Zariski top).

Let's go back to \(d \leq g - 1 \):

Defi: \(W_d = \text{im} (U_d) \)
\[W_d = \mathcal{I} \text{ linear equis classes of } \mathcal{O}_X \text{ divs of } \deg d \]
\textbf{Example: } \quad d = 0, \quad (g \geq 2)

\[S^0(X) \rightarrow \text{Jac}^0(X) \]

- X is mon-hyperelliptic, then U_0 is an embedding
- X hyperelliptic, $\exists \ X \xrightarrow{\mathcal{P}^1}{\mathbb{P}^1}$ (unique)

 Then $p^{-1}(pt) = \text{climian class no. degree } \geq 2 \vee r(D) = 1.$

 i.e., $p^{-1}(pt) = \mathbb{P}^1.$

\[\xymatrix{ \mathbb{P}^1 \ar@{.>}[d] & S^0(X) \ar[l] \ar[r] \ar[d] & \text{Jac}^0(X) \ar[l] \ar[d] \ar[r] & W_0 \subseteq \text{Jac}^0(X) \ar[l] } \]

\[g = 2: \] Every curve is hyperelliptic

\[\xymatrix{ \mathbb{P}^1 \ar@{.>}[d] & S^0(X) \ar[l] \ar[r] \ar[d] & \text{Jac}(X) \ar[l] \ar[d] } \]

\textbf{Example: } \quad d = g - 1.

\[S^{g-1}(X) \]

\[\xymatrix{ \ast \ar@{.>}[d] & S^{g-1}(X) \ar[l] \ar[r] \ar[d] & \text{Jac}^{g-1}(X) \ar[l] \ar[d] } \]
Next Big Topic: Find equation for W_{g-1} (Riemann theta-fcn)

$g=4$: $d = g-1 = 3$

$S^3(\mathbb{R})$

$W_3 \subseteq \text{Jac}^3(\mathbb{R})$

$\dim 4$

$\mathbb{P}^1 \rightarrow \mathbb{P}^1$

Rulings of quadric in complex space

*

W_3 for general \mathbb{R} has 0 sing points.

$f_2(x) + f_3(x) + \ldots$

"Mumford's Curves and Their Jacobians"
Recall:

\[X = \mathbb{P}^1 \text{ genus } g \geq 2 \]

\[\text{Div}_d : \mathbb{P}^1(K) \to \text{Jac}^d(X) \]

\[\text{Div}_d((D)) = \text{ID} = \mathbb{P}^{\text{dim}(g)} \]

For \(d \geq g-2 \):

\[W_d = \text{Div}_d \left(\mathbb{P}^1(K) \right) \subset \text{Jac}^d(X) \]

\(W_d \) parameterizes all effective divisor classes \(0 \leq d \).

Example: Any \(RS \) of genus \(g \geq 2 \) can be expressed as a branch covering \(\pi : \mathbb{X} \to \mathbb{P}^1 \) of \(\text{deg } g \).

\[\text{PF:} \]

Need \(D \) of \(\text{deg } g \) s.t. \(\text{l}(D) \geq 2 \), \(\text{r}(D) = \text{l}(D) - 1 \geq 1 \).

If \(\text{deg } D = g \), then \(\text{l}(D) = g + 1 - g = l(K-D) \) (PE)

\[= 1 + l(K-D) \]

We need \(l(K-D) \geq 1 \).

\[\text{deg } (K-D) = (g-2) - g = g-2 \]

Need \(K-D = E \) effective divisor of degree \(g-2 \).

Take \(E \in W_{g-2} \), \(D = K - E \).

In fact, have \(g-2 \)-dimensional family of linear equivalents classes of \(D \)’s with \(l(D) \geq 2 \).

Example (Riemann’s count): "Compute" \(\dim \left\{ X | \text{X has genus } g \geq 2 \right\} \).

Take \(d \gg 0 \). Consider

\[Z = \left\{ (X, \pi) \mid X \text{ is genus } g, \pi : X \to \mathbb{P}^1, \text{deg } d \right\} \]

Take \((X, \pi) \in Z \). \(\pi : X \to \mathbb{P}^1 \).

Suppose \(\pi \) has only simple branching, i.e., \(c_\pi(x) = 1,2 \) for all \(x \in X \). All ramification points have distinct images on \(\mathbb{P}^1 \).
branch points \(\beta \) \((\partial g-2)+2d=b \)

As we get \(b \) points in \(\mathbb{P}^1 \), i.e., an effective divisor, \(\mathcal{d} \in \mathbb{P}^b \).

\[
\mathcal{Z} \to \mathbb{P}^b
\]

\((X, \pi) \to \text{branch divisor of } \pi = \text{Br}(\pi)\).

Claim: \(\beta \) is dominating and generically finite

Idea:

Branch cover gives \(\tau_1, \ldots, \tau_b \in \Sigma_d \sim \text{symm grp} \)

transpositions i.e. \(\tau_1, \ldots, \tau_b = \{1\} \). Conversely, given such permutations \(\tau_1, \ldots, \tau_b \) one can build \(X \to \pi \to \mathbb{P}^1 \).

As for any \(b \) distinct points, can construct finitely many \(X \)s.

\[
\mathcal{Z} = \tilde{\mathcal{Z}} \text{ or } (X, \pi) \text{ genus } g, \pi : \tilde{X} \to \mathbb{P}^1 \text{ deg } d \text{ up to change of coords on } \mathbb{P}^1
\]

As \(\dim \mathcal{Z} = b - 3 \leftarrow \text{dim} \text{ PG}_L(1) \)

\[= (\partial g - 5) + 2d \]
We also have
\[
\mathcal{Z} \xrightarrow{(X, \pi)} (X, \pi) \xrightarrow{\pi} M_g
\]
\[\{X, \pi\} = M_g \xrightarrow{\pi} \mathcal{Z}\]

We need to compute the dimension of fibers of \(Z \rightarrow M_g\),
i.e., for given \(X\), what is the dimension of set of all \(\pi: \mathcal{Z} \rightarrow \mathbb{P}^1\) for \(d \gg 0\)

\[\mathcal{Z} = \left\{ \text{linear series on } \mathcal{Z} \right\}_{\text{of degree } d \text{ and dimension } 2}\]

\[S^d(X) \rightarrow \mathbb{P}^d\text{-bundle}\]
\[\text{Fix } [D] \in \text{Jac}^d(X), \quad [D] = \mathbb{P}^d\]

\[\dim \text{Grass}(\mathbb{P}^1, \mathbb{P}^d) = 2(d - g - 1)\]

\[\dim \left\{ 1\text{-dim linear series on } \mathcal{Z} \text{ of degree } d \gg 0 \right\} = 2(d - g - 1) + g\]

For fixed \(X\), \(\dim \left\{ \pi: \mathcal{Z} \rightarrow \mathbb{P}^1 \right\} = 2d - g - 2\)

\[\mathcal{Z} = \left\{ (X, \pi) \right\} \leq \dim \Theta_{g-5+2d}\]
\[\text{and } \dim = 2d - g - 2\]
A0, \[\dim W_g = (2g-5+2d) - (2d-g-2) \]
\[= 3g-3. \]

\[W_d \in \text{Jac}^d(X) \]

\[W_d^r(X) = \left\{ \mathcal{D} \mid r(\mathcal{D}) \geq r \right\} . \]

\[S^d(X) \quad \text{Can think of} \]
\[\downarrow u_d \]
\[\text{Jac}^d(X) \]

\[W_d^r(X) = \left\{ \mathcal{D} \mid \dim u_d^r(\mathcal{D}) \geq r \right\} . \]

Thm ("Beauville-Nakai"):

1. For any \(X \), \(\dim W_d^r(X) \geq g - (r+1)(g-d+r) \)

2. For "general" \(X \), \(\dim W_d^r = g - (r+1)(g-d+r) \)
 (expt: \(r \) s.t. \(\text{RHS} < 0 \), then \(W_d^r = \emptyset \)).

Example: For \(X \) of genus \(g \), what is least \(d \) for which \(\exists X \rightarrow \mathbb{P}^r \deg d \)?

Solution: Need \(d \) s.t. \(W_d^r(X) \neq \emptyset . \)

\(r = 1: \)
\[g - 3(g - d + 1) \geq 0 \]
\[3d - 2 \geq g \]
\[d \geq \frac{g + 2}{3} \]

\(g = 2: \)
\(d \geq 2 \)
\(g = 3: \) \(d \geq 3 \) \(\dim W_3^2(X) \geq 1 \)
Recall: if \(g > 1.5 \) genus \(g \), we can write period matrix \(\tau \) \((\text{Ig}, \bar{z})\),
\[\tau \in \mathbb{C}, \quad \text{Im}(\tau) > 0. \]

Fix an arbitrary \(g \times g \) complex matrix \(\Omega \) satisfying
\[\Omega^{T} \Omega = \Omega, \]
\[\text{Im} \Omega > 0. \]

We will define and study Riemann \(\Theta \)-function
\[\Theta(z, \Omega) = \Theta(z) \]
an entire function on \(\mathbb{C}^g \).

Def: Let \(\mathbb{C}^g \otimes \Lambda_\Omega = \left\{ \text{Lattice generated by columns} \right\} \)

We'll see that \(\mathbb{C}^g / \Lambda_\Omega \) is \(\Lambda_\Omega \)-invariant, so defines a hypersurface
\[\Theta \text{ in } A_\Omega = \mathbb{C}^g / \Lambda_\Omega. \]

When \(\Omega \) is normalized period matrix of \(g \times g \), we will prove
\[\Theta = W_{g}, \quad (\text{up to translation}) \]
\[\subseteq A_\Omega = \text{Jac}(\mathcal{X}). \]

We'll prove Torelli's Thm: curve \(\mathcal{X} \) is uniquely determined by \((\text{Jac} \mathcal{X}, \Theta) \).

Fix \(\Omega \) as above: \(\tau \Omega = \omega, \quad \text{Im} \omega > 0. \)
Prop/Def: The infinite series $\mathcal{F}(z, \Omega) = \sum_{n \in \mathbb{Z}^d} e^{\left(\pi i \lambda_n z \cdot \delta z + \pi i \lambda_n \cdot \delta z\right)}$

converges absolutely and uniformly on compact subsets of \mathbb{C}^d to define an entire function $\mathcal{F}(z, \Omega)$.

Proof: Since Ω satisfies the Kiemann conditions, $\text{Im}(\lambda n \Omega) \geq c_2 \sum_{n \neq 0} n^2$ for some constant c_2. (Take c_2 s.t. $\text{Im} \Omega > 0, c_2$)

Any $\max \text{Im} z \leq C_0$. Then

$$|e^{\left(\pi i \lambda_n z \cdot \delta z + \pi i \lambda_n \cdot \delta z\right)}| \leq e^{-c_2 \sum_{n \neq 0} n^2 + c_2 \Sigma 1_{n = 1}}.$$

So then we have $\mathcal{F}(z, \Omega) \leq C_3 \left(\sum_{n \neq 0} e^{-c_2 \sum_{n \neq 0} n^2}\right)^{1/3} < \infty.$

Prop: $\mathcal{F}(z+n) - \mathcal{F}(z)$

$\mathcal{F}(z+\Omega n) = e^{\left(-\pi i \lambda_n z \cdot \delta z - \pi i \lambda_n \cdot \delta z\right)} \cdot \mathcal{F}(z)$.

Note: $\mathcal{F} \neq 0$:

$\mathcal{F}(z)$ is periodic w.r.t. $\mathbb{Z}^d \subset \mathbb{C}^d$.

$\mathcal{F}(z) = \sum_{n \in \mathbb{Z}^d} e^{\pi i (\lambda_n z \cdot \delta z + \pi i \lambda_n \cdot \delta z)}$ is its Fourier exp.

Coefficients are $\neq 0 \Rightarrow \mathcal{F} \neq 0$.

Corol: Zero locus $\mathcal{F} = 0$ is invariant under translation by Λ_n. So we get a naturally defined divisor

$D = \Lambda_n : \mathcal{F}^\gamma/\Lambda_n$.
Remark: Can use ν-functions (and cousins) to define projective embeddings $A_\omega \hookrightarrow \mathbb{P}^n$.

Summary: $\Omega \in \mathcal{T} \cap \mathcal{J}$, $\text{Im}(\Omega) > 0$ gives us:

- $\Lambda_\Omega \in \mathbb{C}^g$
- $A_\Omega = \mathbb{C}^g / \Lambda_\Omega$ complex torus
- $\Theta_\Omega \in A_\Omega$ divisor, actually an ample divisor of minimal class.
- A_Ω a proj alg. variety.

(A, Θ) is called a principally polarized abelian variety.

Aside: Prove mult$_\mathbb{Q}$(\Theta) ∞ $\forall x \in A_\Omega$ (Thm by Kollár)

Back to R.S.:

$\Delta = $ compact R.S. genus g.

$\omega_1, \ldots, \omega_g \in H^0(\Delta)$ normalized basis.

$\Delta \xhookrightarrow{\psi} \mathbb{C}^g$

$\psi \downarrow \Delta \xrightarrow{\psi} \mathbb{C}^g$

Have "Abel - Jacobi" map $\tilde{\psi}_*: \Delta \rightarrow \mathbb{C}^g$ $\psi_*: \psi_* = (\omega_1, \ldots, \omega_g)$.

Not uniquely defined up to translation. To compensate for the choice of p_o, we'll look at translates.

Fix $x \in \mathbb{C}^g$.
Define analytic eta on \(\Delta \)

\[
\tilde{\eta}_x(p) = \eta\left(x + \int_{p_0}^p \omega \right) \\
= \eta\left(x + \tilde{u}(p) \right)
\]

Riemann's Thm: \(\exists \delta \in C^g \) s.t for fixed \(x \in C^g, \tilde{f}_x(p) \) either

vanishes identically on \(\Delta \) or else has \(g \) zeroes

\(Q_1, \ldots, Q_g \in \Delta \) (counting multiplicity) s.t.

\[
\sum_{i=1}^g \int_{p_0}^{Q_i} \omega = -x + \delta \pmod{\Lambda_G}
\]

i.e., \(\tilde{u}(Q_1, \ldots, Q_g) = [-x + \delta] \in \text{Jac}(\mathbb{B}) \).
\[X = \mathcal{R}, \text{ genus } g, \omega = (\omega_1, \ldots, \omega_g) \text{ normalized periods} \]

\[\Delta = \text{period matrix, } \begin{pmatrix} \omega_1 & \omega_2 & \cdots & \omega_g \end{pmatrix} \]

\[\mathcal{V}(z) = \sum_{n \in \mathbb{Z}^g} e^{(2\pi i n \cdot \omega + 2\pi i n \cdot \omega)} \text{ an entire function in } \mathbb{C}^g \]

\[\Lambda = \Lambda_\Delta = \{ \mathbf{v} \text{ lattice spanned by } \omega \} \]

\[\text{Jac}(\Lambda) = \text{Jac}(\Delta) = \mathbb{C}^g / \Lambda \]

\[\mathcal{V}(z+1) = \mathcal{U}_g(z) \mathcal{V}(z) \text{ all } z + \Lambda, \mathcal{U}_g \text{ matrix vanishing} \]

\[\Theta := \int_{\Delta} \mathcal{V} = 0 \leq \text{Jac}(\Delta). \]

Remark: \[\mathcal{V}(z) \] is an even function.

\[\Delta \]

Given \(x \in \mathbb{C}^g \), consider the function on \(\Delta \):

\[\int_{\Delta} \mathcal{V}(x) = \mathcal{V}(x + \sum_{n} \omega) = \mathcal{V}(x + u(x)) \]

Riemann's Thm: There exists \(\delta \in \mathbb{C}^g \) s.t. for any fixed \(x \in \mathbb{C}^g \), we have \(\int_{\Delta} \mathcal{V}(x + u(x)) \) either vanishes identically or has \(g \) zeros counting multiplicity of \(Q_1, \ldots, Q_g \) s.t.

\[\sum_{i=1}^{g} \int_{\Delta} \mathcal{V}(x + u(x)) = -x + \delta \pmod{\Lambda} \]

We'll prove this theorem next time. Today we deduce geometric consequences.
Fix any $a \in J(\mathcal{X})$. Let $\mathcal{X}_a = \mathcal{X} + a$ translate of \mathcal{X} by a.

Note: The images of f_a are well-defined on \mathcal{X}. The defo imply

$$
(\begin{array}{c}
\text{zeros of } f_a \\
\text{zeros of } a
\end{array}) = (\begin{array}{c}
\mathcal{X}_a \\
\emptyset
\end{array})
$$

For most a, $\mathcal{X}_a \cap \emptyset$ is a finite set.

As divisors,

$$\emptyset \cdot \mathcal{X}_a = Q_1 + \cdots + Q_g \leq \mathcal{X}(\mathcal{X})$$

Main point: $u(Q_1) + \cdots + u(Q_g) = -a + S$ in $J(\mathcal{X})$.

This is relating the group law in the Jacobian and the intersection of the theta divisor with \mathcal{X}_a.

Jacobi inverse: Since $S^g(\mathcal{X}) \longrightarrow \text{Jac}^g(\mathcal{X}) = \text{Jac}(\mathcal{X})$ is surjective and generically 1-1.

Given general $\beta \in J(\mathcal{X})$, $J(\mathcal{D}) \cap \psi \subseteq \mathcal{X}$, $\psi(\mathcal{D}) = \beta$. In fact,

$$\mathcal{D} = \emptyset \cdot \mathcal{X} + \psi$$
As we have an effective form of Jacobian inversion:

Carl a. Riemann's Thm: For any \(g \)-1 points \(p_1, \ldots, p_g \in \mathbb{X} \),

\[
u(p_1 + \cdots + p_g) - \delta \in \Theta, \text{ i.e., } \nu(\sum_{i=1}^{g} p_i \omega - \delta) = 0.
\]

Remark: \(U_{g-1} : S^{g-1}(\mathbb{X}) \longrightarrow J(\mathbb{X}) = S^g(\mathbb{X}) \)

\(W_{g-1} = \text{im}(U_{g-1}) \)

As the corollary, \(W_{g-1} \subseteq \Theta + \delta \).

Pf (cont.): Let it is enough to prove this for general points \(p_1, \ldots, p_g \in \mathbb{X} \)

\[
\begin{aligned}
(U_{g-1}^{-1}(\Theta + \delta) \subseteq S^{g-1}(\mathbb{X}) \text{ analytic subvariety, if it contains a general point of } S^{g-1}(\mathbb{X}) \),
\end{aligned}
\]

Choose \(g \) general points \(p_1, \ldots, p_g \in \mathbb{X} \) s.t. \(\lambda(p_1 + \cdots + p_g) = 1 \)

Consider \(\nu(\delta - \sum_{i=1}^{g} \int_{p_i} \omega + \sum_{i=1}^{g} \int_{p_i} \omega) = \psi(p) \) where

\[
y = \delta - \sum_{i=1}^{g} \int_{p_i} \omega.
\]

Suppose \(\psi \equiv 0 \). Then take \(p = p_0 \),

\[
\nu(\delta - \sum_{i=1}^{g} \int_{p_i} \omega) = 0.
\]

But \(\nu \) is even, so

\[
\nu(\sum_{i=1}^{g} \int_{p_i} \omega - \delta) = 0.
\]

Suppose \(\psi \neq 0 \). Then \(\psi \) has \(g \) zeroes \(Q_1, \ldots, Q_g \) s.t.

\[
\sum_{i=1}^{g} \int_{Q_i} \omega = \left(\sum_{i=1}^{g} \int_{p_i} \omega - \delta \right) + \delta. \text{ (Riemann's thm)}
\]

As \(U(Q_1 + \cdots + Q_g) = U(p_1 + \cdots + p_g) \), then using Abel’s thm we have \(Q_1 + \cdots + Q_g = p_1 + \cdots + p_g \).

Since \(\lambda(p_1 + \cdots + p_g) = 1 \) this means \(p_1 + \cdots + p_g = Q_1 + \cdots + Q_g \).

In particular, \(\psi(p_g) = 0 \Rightarrow \nu(-\sum_{i=1}^{g} \int_{p_i} \omega + \delta) = 0 \).
Recap:

\[W_{g-1} \subseteq \Theta + \delta \]

Next time:

- \[W_{g-1} = \Theta + \delta \]
- Prove Riemann's thm.
\[\overline{\Delta} \]

\[\mathfrak{X} = \mathbb{R}^3 \text{ genus } g \]

\[w_1, \ldots, w_g \text{ normalized basis by diff.} \]

For \(x \in \mathbb{C}^g \), define \(f_x(p) = \mathcal{V}(x + \sum_{p_0} w) \)

Thm: \(\exists \mathcal{S} \subset \mathbb{C}^g \) s.t for all \(x \in \mathbb{C}^g \), either \(f_x \) vanishes identically or else has \(g \) zeroes \(q_1, \ldots, q_g \) s.t.

\[\sum_{q_i} \frac{1}{\mathfrak{S}_0} \sum_{p_0} \overline{w} \equiv -x + \mathcal{S} \pmod{\mathfrak{A}}. \]

Proof: We assume \(f_x \neq 0 \). Let \(\mathcal{S} = \{ q_i \} \) be the zeroes of \(f_x \) (in interior or \(\overline{\Delta} \)).

Step I: Show there are \(g \) zeroes counting multiplicities.

Pf:

\[\# \text{ zeroes of } f \text{ in } \overline{\Delta} = \frac{1}{2\pi i} \int_{\partial \overline{\Delta}} \frac{df}{f} \]

\[= \frac{1}{2\pi i} \left(\sum_{k \in A} \int_{A_k^+ - A_k^-} \frac{df}{f} + \sum_{k \in B} \int_{B_k^+ - B_k^-} \frac{df}{f} \right) \]

\[\int \mathbb{C} - \mathbb{B}^2 \]

Want to compare \(\int \frac{df}{f} \) at \(p, p' \). (k is fixed here)

\[\int_{p} w - \int_{p'} w = \int_{p} w = e_k \]

\[f_x(p') = \mathcal{V}\left(x + \int_{p} w\right) \]

\[= \mathcal{V}\left(x + \int_{p} w - e_k\right) \]

\[= \mathcal{V}\left(x + \int_{p} w\right) \]

\[= f_x(p). \]
\[\int \frac{df}{f} = 0 \quad \text{since } f \text{ is the same in } B^+_k \text{ as } B_k. \]

\[B^+_k \cap B_k \]

\[\int_{A_k^*} \frac{df}{f} : \quad \text{Place } p \text{ and } p' \text{ similarly to in } B_k \text{ calculation.} \]

\[\int_{p'}^p \omega - \int_{p}^{p'} \omega = \int_{p}^{p'} \omega \]

\[= - \int_{B_k} \omega \]

\[= -\Omega \omega \quad \text{where } \Omega \text{ is the period matrix.} \]

\[\int_{x} (p') = \mathcal{V}(x + \int_{p}^{p'} \omega) \]

\[= \mathcal{V}(x + \int_{p}^{p'} \omega + \Omega \omega) \]

\[= \mathcal{V}(x + \int_{p}^{p'} \omega) \exp(-\pi i \Omega \omega - 2\pi i (x + \int_{p}^{p'} \omega) \cdot e_k) \]

\[= \int_{x} (p) \exp(-\pi i \Omega \omega - 2\pi i (x + \int_{p}^{p'} \omega) \cdot e_k) \]

\[d \log f(p) = d \log (f(p)) - 2\pi i \omega \]

\[\int \frac{df}{f} = \int -2\pi i \omega = 2\pi i \int \omega \]

\[A_k^* - A_k^* \quad A_k^* \quad A_k \]

\[= 2\pi i \]

\[A_0 \quad \frac{1}{2\pi i} \int \frac{df}{f} = g. \]

\(\square \)
Step 2: Fix index $l \leq j$. Let $g_e = \int_{p_l}^p w_e$, $dw_e = dg_e$.

Hence, on Δ, $\frac{1}{2\pi i} \int_{\Delta} g_e \frac{df}{f} = \sum_{i} \text{res}_{\Delta_i} (g_e \frac{df}{f})$

$= \sum_{i=1}^{g} g_e \lambda_i \text{ord}_{\Delta_i} (\lambda_i)$

$= \sum_{i=1}^{g} \text{ord}_{\Delta_i} (\lambda_i) \int_{p_l}^{p_i} w_e$

Enough to show

$\frac{1}{2\pi i} \int_{\Delta} g_e \frac{df}{f} \equiv -\chi_\lambda + \delta_\lambda (\text{mod } \Lambda)$.

As before:

$\int_{\Delta} g_e \frac{df}{f} = \sum_{k=1}^{g} \left(\int_{B_k^+}^{B_k^-} + \int_{A_k^-}^{A_k^+} \right)$

$\int_{F_n} g_e \frac{df}{f}$: For $p \in B_k^-$, $p' \in B_{k'}^+$,

$g_e(p) - g_e(p') = \int_{p'}^{p} w_e$

$= \int_{A_k^-}^{A_k^+} w_e$

$= -\delta_{kk}$

We saw in Step 1 that

$f(p') = f(p)$

$\sum_{k=1}^{g} \int_{B_k^+-B_k^-} g_e \frac{df}{f} = \sum_{k=1}^{g} \delta_k f_k \int_{B_k^-}^{B_k^+} \frac{df}{f}$
\[
\int_{B_e^-} d \log f = \text{change in value of } \log f \text{ as you move along } B_e^-.
\]

\[
\begin{align*}
\frac{f(y')}{f(y)} &= \mathcal{F}(x + \int_{B_e^-} y' \omega) \\
&= \mathcal{F}(x + \int_{B_e^-} y' \omega + \int_{B_e^-} \omega) \\
&= \mathcal{F}(x + \int_{B_e^-} y' \omega - \Omega \epsilon_e) \\
&= \frac{f(y)}{f(y')} \exp\left(\pi i \Omega \epsilon_e + \partial_x \left(x_e + \int_{B_e^-} \omega \right) \right).
\end{align*}
\]

So the change in the value of \(\log f \) as you move along \(B_e^- = -\pi i \Omega \epsilon_e - \partial_x \left(x_e + \int_{B_e^-} \omega \right) = -\pi i x_e + \partial x_i m_k \) (for some \(m_k \)) is:

\[
-\partial x_i x_e + \text{stuff independent of } x_e + \partial x_i m_k.
\]

Make a similar computation for \(\int_{A_k^-} \).

So we get:

\[
\sum_{A_k^-} \partial x_i \int_{A_k^-} g \frac{df}{f} = (\text{term independent of } x) + \Omega \epsilon_e
\]

and

\[
\int_{A_k^-} \frac{1}{2 \pi i} \partial \int_{A_k^-} g \frac{df}{f} = -\gamma_k + \left(\text{stuff independent of } x \right) \pmod{\Lambda}.
\]
Let $K \subset \overline{K}$ be not necessarily algebraically closed.

Let C/K be a curve. Suppose D is a divisor over K. Suppose $\sigma \in \text{Gal}(\overline{K}/K)$. Then D is defined over K if $D^\sigma = D$ where $D = \sum_p \mathcal{O}_p$, then $D^\sigma = \sum_p \mathcal{O}_p \sigma(p)$.

For a rational function, $\text{div}(f^\sigma) = \text{div}(f)^\sigma$. So if $f \in K(C)$, then $\text{div}(f)$ is a divisor defined over K.

Lemma: Let V be a K-vs., and assume $\text{Gal}(\overline{K}/K)$ acts continuously on V in a manner compatible with its action on K. Let $V_K = \ker(\text{Gal}(\overline{K}/K)) = \{ v \in V | \forall \sigma \in \text{Gal}(\overline{K}/K), \sigma(v) = v \}$

Then $V \cong K \otimes_K V_K$; i.e., V has a basis of $\text{Gal}(\overline{K}/K)$ invariant vectors.

Prop: Let C/K be a smooth curve, and let $D \in \text{Div}_K(C)$. Then $L(D)$ has a basis consisting of functions in $K(C)$.

Proof: Since D is defined over K, we have $L(D^\sigma) = L(D)$. So for $f \in L(D)$, $f^\sigma \in L(D) \forall \sigma \in \text{Gal}(\overline{K}/K)$. Thus $\text{Gal}(\overline{K}/K)$ acts on $L(D)$. Now apply the above Lemma to $L(D)$ to conclude it has a basis of functions in $K(C)$.

Given a curve of genus 0, let \(p \in C \) be any point.

Then \(\deg K = 2g - 2 = -2 \) for any canonical divisor \(K \).

So, in particular, \(\ell(K - p) = 0 \) whenever \(\deg p > \deg K = -2 \).

Thus \(\ell(p) = \deg p + 1 - g + \ell(K - D) = \deg p + 1 = 2 \). As \(f \) is a nonconstant function in \(\mathbb{K}(p) \), by definition of \(\mathbb{K}(p) \),

\(f \) must have a simple pole at \(p \) and no others. We always have a map from any curve \(C \to \mathbb{P}^1 \) defined by \(P \mapsto [f(P):1] \). The degree of this map is the \# of preimages of any point \(p \). Since \(f \) has a single simple pole, we get this map having degree 1, hence is an isomorphism.

This same process would give \(C \cong \mathbb{P}^1(K) \) over an algebraically closed field using the results on curves over arbitrary fields.
Let E be a curve of genus 1 and suppose p a k-rational point $p \in E$. Then we can consider the vector spaces $V(p)$ for $n \in \mathbb{N}$. Let $div(u) = K - D$ be a canonical divisor, so it has deg $2g-2 = 2 \cdot 1 - 2 = 0$. As for any divisor D we have deg $D > 0$, $l(K-D) = 0$.

$l(np) = n + 1 - 1 + l(K-np)$.

As for $n = 0$, we have $l(0,p) = 1$, thus $l(0,p)$ consists of constants.

<table>
<thead>
<tr>
<th>np</th>
<th>$l(np)$</th>
<th>Basis of $V(np)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.p</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1.p</td>
<td>1</td>
<td>1, x</td>
</tr>
<tr>
<td>2.p</td>
<td>2</td>
<td>1, x, y</td>
</tr>
<tr>
<td>3.p</td>
<td>3</td>
<td>1, x, y</td>
</tr>
<tr>
<td>4.p</td>
<td>4</td>
<td>1, x, y, x^2</td>
</tr>
<tr>
<td>5.p</td>
<td>5</td>
<td>1, x, y, x^2, xy</td>
</tr>
<tr>
<td>6.p</td>
<td>6</td>
<td>1, x, y, x^2, xy, x^3, y^2</td>
</tr>
</tbody>
</table>

As there are 7 elements in $V(6,p)$, so there must be a relation amongst them. This will give the Weil-Petersson equation.

Call the equation this defines in $P^2 \mathbb{C}$, then we have a map $\phi: E \to C$ with $\phi = [x:y:1]$. We want ϕ to be an iso, so we need to show $K(E) = K(x,y)$. Since x has degree 2, $[K(E):K(x,y)] = 2$, similarly $[K(E):K(y)] = 3$. Since 2 and 3 must be divisible by $[K(E):K(x,y)]$, it must be 1.