The Hardy-Ramanujan theorem and related results

Lee Troupe
University of Georgia

Let \(\omega(n) \) denote the number of distinct prime divisors of a natural number \(n \). In 1917, Hardy and Ramanujan famously proved that the normal order of \(\omega(n) \) is \(\log \log n \); in other words, a typical natural number \(n \) has about \(\log \log n \) distinct prime factors. In this talk, we’ll say what it means for an arithmetic function to have a normal order and give some examples. In particular, we’ll discuss the normal order of \(\omega(s(n)) \), where \(s(n) \) is the usual sum-of-proper-divisors function. This new result supports a conjecture of Erdős, Granville, Pomerance, and Spiro; namely, that if a set of natural numbers has asymptotic density zero, then so does its preimage under \(s \).

All welcome. Research students in particular are encouraged to attend.

For further information, contact Jim Brown, jimlb@clemson.edu, Long 111.
Online: http://www.math.clemson.edu/~jimlb/NumberTheoryGroup/NTSeminar.html/