5e Calculus Concepts	
LaTorre, et al.	

Learning Activity 2.4 page 1 of 2

Numerically Estimating

	page 1 of 2	
Name:		Grade:
Group Members Present:		
,	. &	

- 1. $P(x) = -0.015x^3 + 0.88214x^2 12.857x + 427.6212$ thousand people gives the projected population of 18- to 24-year-olds in South Carolina between 1990 and 2025.
 - a. Numerically estimate the rate of change of the 18- to 24-year-old population in 1995 to two decimal places.

x	$\frac{P(x) - P(5)}{x - 5}$	x	$\frac{P(x) - P(5)}{x - 5}$
4.9		5.1	
4.99		5.01	
4.999		5.001	
4.9999		5.0001	
4.99999		5.00001	
$\lim_{x\to 5^-} \frac{P(x) - P(5)}{x - 5} \approx$		lii x	$\lim_{x \to 5^+} \frac{P(x) - P(5)}{x - 5} \approx$

- b. Interpret the result in part a.
- c. Calculate P(5).
- d. Calculate the percentage rate of change at x = 5.
- e. Interpret the result in part d.

- 2. The table lists the number of bald eagle pairs in the United States.
 - a. Find a cubic model for the data with input aligned to years since 1980 and output represented by E(x).

Year	Eagle pairs
1988	1900
1989	2500
1990	3000
1991	3400
1992	3700
1993	4000
1994	4500

b. Numerically estimate (to the nearest whole number) how rapidly the number of bald eagle pairs was growing in 1990.

x	$\frac{E(x) - E(10)}{x - 10}$	x	$\frac{E(x) - E(10)}{x - 10}$
9.9			
9.99			
$\lim_{x \to 10^{-}} \frac{E(x) - E(10)}{x - 10} \approx$		1	$\lim_{x \to 10^+} \frac{E(x) - E(10)}{x - 10} \approx$

$$\frac{dE}{dx}\Big|_{x=10} \approx$$

c. Calculate and interpret the percentage rate of change of E at x = 10.