MTHSC 102 Section 1.2 – Function Behavior and End Behavior Limits

Kevin James

Kevin James MTHSC 102 Section 1.2 – Function Behavior and End Behavior

A function f defined over an input interval is said to be

- INCREASING if the output values increase as the input values increase.
- DECREASING if the output values decrease as the input values increase.
- CONSTANT if the output values remain the same as the input values increase.

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

A function f defined over an input interval is said to be

CONCAVE DOWN if the graph of the function appears to be a portion of an arc opening downwards.

向下 イヨト イヨト

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

A point on the graph of a continuous function where the concavity changes is called an inflection point.

回 と く ヨ と く ヨ と

A point on the graph of a continuous function where the concavity changes is called an inflection point.

EXAMPLE

The graph of
$$f(x) = x^3 - 6x^2 + 9x + 1$$

has an inflection point at (2,3).

DESCRIBING FUNCTION BEHAVIOR

Example

The amount A of a certain bacteria present in a host t days after initial infection for the first 20 days is given by the following graph.

- Identify intervals on which A is increasing, decreasing or constant.
- **2** Identify intervals on which A is concave up, down or neither.
- **3** Using the information above, describe what is happening to the bacteria population in the host.

The term <u>end behavior</u> refers to the behavior of the output values of a function as the input values either increase without bound or decrease without bound.

(신문) (신문)

The term <u>end behavior</u> refers to the behavior of the output values of a function as the input values either increase without bound or decrease without bound.

Note

There are 3 possible types of end behavior of a function

- The output values may approach or equal a certain number.
- The output values may increase or decrease without bound.
- The output values may oscillate and fail to approach a particular number.

個 と く ヨ と く ヨ と

・ロト ・同ト ・ヨト ・ヨト

æ

 $\lim_{x \to \infty} f(x) = 10 \qquad \lim_{x \to \infty} f(x) = \infty \qquad \lim_{x \to \infty} f(x) = \mathsf{DNE}$ $\lim_{x \to -\infty} f(x) = 110 \qquad \lim_{x \to -\infty} f(x) = -\infty \qquad \lim_{x \to \infty} f(x) = \mathsf{DNE}$

A 3 >

A ■

→ 프 ▶ - 프

LIMIT NOTATION

DEFINITION

We write

- 1 $\lim_{x\to\infty} f(x) = \infty$ if f increases without bound as x gets large and positive.
- ② $\lim_{x\to\infty} f(x) = -\infty$ if *f* decreases without bound as *x* gets large and positive.
- 3 lim_{x→∞} f(x) = L if f approaches L as x gets large and positive. Note that this means that f has a horizontal asymptote at y = L.
- ④ $\lim_{x\to-\infty} f(x) = \infty$ if f increases without bound as x gets large and negative.
- **6** $\lim_{x\to-\infty} f(x) = -\infty$ if f decreases without bound as x gets large and negative.
- 6 lim_{x→-∞} f(x) = L if f approaches L as x gets large and negative. Note that this means that f has a horizontal asymptote at y = L.

 $\lim_{x\to\infty} 3x + 1 =$ _____ $\lim_{x\to-\infty} 3x + 1 =$ _____ $\lim_{x\to\infty} e^x =$ _____ $\lim_{x\to-\infty} 3^x =$ _____ $\lim_{x\to\infty} \frac{10}{1+e^{-x}} =$ _____ $\lim_{x\to-\infty} \frac{10}{1+e^{-x}} =$ _____

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久(で)

1
$$\lim_{x\to\infty} 3x + 1 =$$

2 $\lim_{x\to-\infty} 3x + 1 =$ _____
3 $\lim_{x\to\infty} e^x =$ _____
4 $\lim_{x\to-\infty} 3^x =$ _____
5 $\lim_{x\to\infty} \frac{10}{1+e^{-x}} =$ _____
6 $\lim_{x\to-\infty} \frac{10}{1+e^{-x}} =$ _____

DEFINITION

If $\lim_{x\to\infty} f(x) = L_1$ and/or $\lim_{x\to-\infty} f(x) = L_2$ then we say that the line(s) $y = L_1$ and/or $y = L_2$ are horizontal asymptotes.

◆□> ◆□> ◆三> ◆三> ● 三 のへの